
GOexpress: identify and visualise robust gene
ontology signatures through supervised clas-
sification of gene expression data

Kévin Rue-Albrecht, Paul A. McGettigan, Belinda Hernán-
dez,
David A. Magee, Nicolas C. Nalpas, Andrew C. Parnell,
Stephen V. Gordon, and David E. MacHugh

October 27, 2020

Contents

1 Introduction . 2

1.1 The origin and purpose of GOexpress 2

1.2 Purpose of this document . 3

2 Before you start . 3

2.1 Installation . 3

2.2 Getting help . 4

2.3 Citing GOexpress. 4

3 Quick start . 5

3.1 Input data . 5

3.2 Main analysis. 6
3.2.1 Preparing the grouping factor to analyse 6
3.2.2 Running the random forest algorithm using local annotations. . . 7
3.2.3 Important notes in the absence of local annotations 8

3.3 Permutation-based P-value for ontologies 9

3.4 Filtering of results . 9
3.4.1 Filtering of the result object 9
3.4.2 Quick filtering of the ontology scoring table 10

3.5 Details of the top-ranking GO terms 11

3.6 Hierarchical clustering of samples based on gene expression asso-
ciated with a GO term . 11

3.7 Details of genes associated with a GO term 14

3.8 Expression profile of a gene by sample group 15
3.8.1 Using the unique feature identifier 15
3.8.2 Using the associated gene name. 17

http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

3.9 Expression profile of a gene by individual sample series 18
3.9.1 Using the unique feature identifier 18
3.9.2 Using the associated gene name. 19

3.10 Comparison of univariate effects on gene expression 20

4 Additional controls and advanced functions 21

4.1 Custom annotations . 21
4.1.1 Generating custom annotations 21
4.1.2 Using custom annotations 22

4.2 Using subsets of samples . 23

4.3 Distribution of scores . 23

4.4 Reordering scoring tables . 24
4.4.1 Reordering by score . 24
4.4.2 Reordering by P-value 25
4.4.3 Reordering and breaking ties 25

4.5 Subsetting an ExpressionSet to specific sample groups 25

5 Statistics . 26

5.1 Overview . 26

5.2 Data-driven visualisation functions 26

5.3 Random Forest . 26

5.4 One-way Analysis of Variance (ANOVA) 27

6 Integration with other packages 27

6.1 shiny . 27

7 Notes. 28

7.1 Authors’ contributions . 28

7.2 Acknowledgement . 28

7.3 Session information. 29

1 Introduction

1.1 The origin and purpose of GOexpress

The idea leading to the GOexpress R package emerged from a set of plotting functions I
regularly copy-pasted across various complex multifactorial transcriptomics studies from both
microarray and RNA-seq platforms. Those functions were repeatedly used to visualise the
expression profile of genes across groups of samples, to annotate technical gene identifiers
from both microarray and RNA-seq platforms (i.e., probesets, Ensembl gene identifiers) with
their associated gene name, and to evaluate the classification of samples based on genes
participating in a common cellular function or location (i.e. gene ontology). While developing

2

http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

the GOexpress package and discussing its features with colleagues and potential users, a few
more features were added, to enhance and complement the initial functions, leading to the
present version of the package.
Complex multifactorial experiments have become the norm in many research fields, thanks to
the decrease in cost of high-throughput transcriptomics platforms and the barcoding/multiplexing
of samples on the RNA-seq platform. While much effort has been (correctly!) spent on the
development of adequate statistical frameworks for the processing of raw expression data,
much of the genewise exploration and visualisation is left to the end-user. However, data
summarisation and visualisation can be a daunting task in multifactorial experiments, or re-
quire large amounts of copy-pasting to investigate the expression profile of a handful or genes
and cellular pathways.
Developed and tested on multiple RNA-seq and microarray datasets, GOexpress offers an
extendable set of data-driven plotting functions readily applicable to the output of widely
used analytic packages estimating (differential) gene expression. Once the initial analysis and
filtering of GOexpress results is complete — literaly two command lines —, each gene and
gene ontology is accessible by a single line of code to produce high-quality graphics and sum-
mary tables. In short, GOexpress is a software package developed based on real experimental
datasets to ease the visualisation and interpretation of multifactorial transcriptomics data by
bioinformaticians and biologists, while striving to keep it a simple, fast, and intuitive toolkit.
Notably, the use of the biomaRt package enables GOexpress to support and annotate gene
expression identifiers from any species and any microarray platform present in the Ensembl
BioMart server (http://www.ensembl.org/biomart/martview), while custom annotations may
also be provided for the analysis of species or platforms not supported yet, the classification
of non-transcriptomics datasets (e.g., proteomics), or the comparison of panels of biomarkers
independent from gene ontology annotations.

1.2 Purpose of this document

This User’s Guide was intended as a helpful description of the main features implemented in
the GOexpress package, as well as a tutorial taking the user through a typical analysis pipeline
that GOexpress was designed for. While an example usage will be provided for each function
of the package, the many arguments of each function cannot realistically be demonstrated
in this Guide, and we kindly ask users to also read the individual help pages accompanying
the corresponding package functions for further details.

2 Before you start

2.1 Installation

Instructions to install the package are available [here](http://bioconductor.org/packages/GOexpress/).
Installation issues should be reported to the Bioconductor mailing list.

3

http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/biomaRt
http://bioconductor.org/packages/GOexpress
http://www.ensembl.org/biomart/martview
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

2.2 Getting help

The GOexpress package is still relatively young and may require some fine-tuning or bug
fixes. Please contact the maintainer with a copy of the error message and the command run.
> maintainer("GOexpress")

[1] "Kevin Rue-Albrecht <kevinrue67@gmail.com>"

Despite our efforts to repeatedly test the package on in-house datasets of both microarray
and RNA-seq platform, and of human and bovine origin, many of the model species and gene
expression platforms have not been tested yet. We welcome feedback!
Interesting suggestions for additional package functions, or improvement of existing ones are
most welcome and may be implemented when time allows. Alternatively, we also encourage
users to fork the GitHub repository of the project, develop and test their own feature(s), and
finally generate a pull request to integrate it to the original repository (https://github.com/
kevinrue/GOexpress).
As for all Bioconductor packages, the Bioconductor support site is the best place to seek
advice with a large and active community of Bioconductor users. More detailed information
is available at:
http://www.bioconductor.org/help/support.

2.3 Citing GOexpress

The work underlying GOexpress has not been formally published yet. A manuscript has been
submitted for peer-review. In the meantime, users of the GOexpress package are encouraged
to cite it using the output of the citation function in the utils package, as follows:
To cite package ‘GOexpress’ in publications use:

Kevin Rue-Albrecht (2020). GOexpress: Visualise microarray and RNAseq

data using gene ontology annotations. R package version 1.24.0.

https://github.com/kevinrue/GOexpress

A BibTeX entry for LaTeX users is

@Manual{,

title = {GOexpress: Visualise microarray and RNAseq data using gene ontology annotations},

author = {Kevin Rue-Albrecht},

year = {2020},

note = {R package version 1.24.0},

url = {https://github.com/kevinrue/GOexpress},

}

4

http://bioconductor.org/packages/GOexpress
https://github.com/kevinrue/GOexpress
https://github.com/kevinrue/GOexpress
http://www.bioconductor.org/help/support
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

3 Quick start

3.1 Input data

Despite their different underlying technologies, microarray and RNA-seq analytic pipelines
typically yield a matrix measuring the expression level of many gene features in each sample.
Commonly, this expression matrix is filtered to retain only genes qualified as “informative”
(e.g. > 1 cpm in at least N replicates; N being the number of replicates for a given set of
experimental conditions); and genes lowly expressed are removed to limit the False Discovery
Rate (FDR) of differentially expressed genes induced by the larger variability of expression at
the lower end of the dynamic range.
GOexpress requires this filtered normalised expression matrix to be accompanied by an An-
notatedDataFrame object of the Biobase package providing phenotypic information for each
of those samples (e.g. unique identifier, treatment, time-point). GOexpress expects those
two variables in an ExpressionSet container of the Biobase package, both simplifying the
manipulation of the data and, most importantly, ensuring interoperatibility with other pack-
ages that handle Bioconductor ExpressionSet objects. The other fields of the ExpressionSet
container may be left empty as GOexpress does not currently access them. Instructions to
create AnnotatedDataFrame and ExpressionSet objects are detailed in the vignettes of the
Biobase package.
To use the analytical part of the GOexpress package, the phenotypic data-frame — phenodata

slot of the ExpressionSet — must contain at least one column containing an experimental
factor made of two or more levels in the strict meaning of “factor” and “levels” in the R
programming language. The above ExpressionSet and the name of the column containing
such a factor are the minimal two input variables required for the GO_analyse function to
work. Additional arguments may be required, in particular for microarray datasets, but those
are discussed in section 3.2.3.
In the examples below, we will use the toy dataset AlvMac provided with the package and made
of a subset of 100 bovine Ensembl gene identifiers (rows) measured in 117 samples (columns),
extracted from a larger RNA-seq experiment (see help page for the AlvMac object). This
toy ExpressionSet also includes an AnnotationDataFrame detailing a number of phenotypic
information fields describing each sample.
Let us load the GOexpress package and import the toy dataset in the workspace:
> library(GOexpress) # load the GOexpress package

> data(AlvMac) # import the training dataset

Now, the expression matrix and phenotypic data of the ExpressionSet container can be
accessed using dedicated functions from the Biobase package:
> exprs(AlvMac)[1:5,1:5] # Subset of the expression data

N1178_CN_24H N1178_CN_2H N1178_CN_48H N1178_CN_6H

ENSBTAG00000027610 6.756882 6.622802 6.563849 6.542920

ENSBTAG00000019253 3.679282 3.395152 3.296391 3.595889

ENSBTAG00000025564 7.125069 7.440622 7.302704 7.337605

ENSBTAG00000047107 5.405097 7.583981 4.772563 6.433678

ENSBTAG00000016683 8.753575 10.226074 8.130427 9.325824

N1178_MB_24H

5

http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/Biobase

GOexpress: Visualise gene expression data using gene ontology annotations

ENSBTAG00000027610 7.340347

ENSBTAG00000019253 3.880105

ENSBTAG00000025564 7.925776

ENSBTAG00000047107 8.222054

ENSBTAG00000016683 9.332076

> head(pData(AlvMac)) # Subset of the phenotypic information

File Sample Animal Treatment Time Group Timepoint

N1178_CN_24H N1178_CN_24H N1178_CN_24H N1178 CN 24H CN_24H 24

N1178_CN_2H N1178_CN_2H N1178_CN_2H N1178 CN 2H CN_2H 2

N1178_CN_48H N1178_CN_48H N1178_CN_48H N1178 CN 48H CN_48H 48

N1178_CN_6H N1178_CN_6H N1178_CN_6H N1178 CN 6H CN_6H 6

N1178_MB_24H N1178_MB_24H N1178_MB_24H N1178 MB 24H MB_24H 24

N1178_MB_2H N1178_MB_2H N1178_MB_2H N1178 MB 2H MB_2H 2

An advantage of the ExpressionSet container is that it takes care of the compatibility between
the expression matrix and the phenotypic information data-frame. For instance, it will check
that samples names do not differ between expression matrix and phenotypic information.
Users can visually inspect that adequate row names are used in the expression matrix:
> head(rownames(exprs(AlvMac))) # Subset of gene identifiers

[1] "ENSBTAG00000027610" "ENSBTAG00000019253" "ENSBTAG00000025564"

[4] "ENSBTAG00000047107" "ENSBTAG00000016683" "ENSBTAG00000016085"

Comment: In the training dataset, the Time column of pData(targets) is an R factor while
the Timepoint column is a numeric vector. The fomer is useful for grouping the samples for
the analysis, while the latter is better suited to plot gene expression profiles respecting the
relative distance between the time-points. See section 3.8.1 for examples using of a numeric
value or a factor as the variable of the X-axis.

3.2 Main analysis

3.2.1 Preparing the grouping factor to analyse

In this example, we search for GO terms containing genes that best classify samples according
their Treatment level. In other words, after estimating the capacity of each gene to classify
the different experimental groups, the algorithm will use this gene ranking to rank GO terms
based on the average rank (alternatively, score) of their annotated genes. But first, let us
make sure that the Treatment column of pData(targets) is indeed an R factor:
> is.factor(AlvMac$Treatment) # assertion test

[1] TRUE

> AlvMac$Treatment # visual inspection

[1] CN CN CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN

[26] CN CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN CN

[51] CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN CN CN

[76] MB MB MB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB

6

GOexpress: Visualise gene expression data using gene ontology annotations

[101] MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB

Levels: CN MB TB

In this case, it is already a properly formatted factor. If that was not the case, the following
line of code would convert the column to an R factor and allow to continue the analysis
(note that in some cases, it may be preferrable to order the different levels of a factor, for an
example see factor Time):
> AlvMac$Treatment <- factor(AlvMac$Treatment)

3.2.2 Running the random forest algorithm using local annotations

Now, we use the random forest statistical framework to score each gene feature on its ability to
classify samples from different treatments separately, before summarising this information at
the ontology level. The ensuing analysis therefore considers the Treatment factor, irrespective
of the Time and Animal factors (we search for time- and animal-independent discriminants of
infection). Alternatively, a subset of samples from the input ExpressionSet may be specified
to address more specific hypotheses. In this example, we use locally saved copies of gene
and gene ontology annotations previously downloaded from Ensembl annotation release 75
using the biomaRt package (See section 4.1 to generate suitable local annotations, and the
benefits of using them).
> set.seed(4543) # set random seed for reproducibility

> AlvMac_results <- GO_analyse(

+ eSet = AlvMac, f = "Treatment",

+ GO_genes=AlvMac_GOgenes, all_GO=AlvMac_allGO, all_genes=AlvMac_allgenes)

Using custom GO_genes mapping ...

91 features from ExpressionSet found in the mapping table.

Using custom GO terms description ...

Analysis using method randomForest on factor Treatment for 100

genes. This may take a few minutes ...

ntree OOB 1 2 3

100: 50.43% 23.08% 58.97% 69.23%

200: 52.99% 25.64% 61.54% 71.79%

300: 56.41% 25.64% 64.10% 79.49%

400: 58.12% 25.64% 69.23% 79.49%

500: 55.56% 25.64% 61.54% 79.49%

600: 55.56% 25.64% 64.10% 76.92%

700: 57.26% 25.64% 66.67% 79.49%

800: 57.26% 25.64% 66.67% 79.49%

900: 55.56% 25.64% 66.67% 74.36%

1000: 56.41% 25.64% 69.23% 74.36%

Using custom gene descriptions ...

Merging score into result table ...

At this stage, it is a good idea to save the result variable into an R data-file using the save

function. Mostly because the stochastic aspect of the sampling approach implemented by
the randomForest package may return slightly different scores in each run (as opposed to the
use of ANOVA F-score).

7

http://bioconductor.org/packages/biomaRt
https://CRAN.R-project.org/package=randomForest

GOexpress: Visualise gene expression data using gene ontology annotations

The output variable of the analysis summarises the parameters of the analysis and can easily
be browsed with standard R functions:
> names(AlvMac_results) # Data slot names

[1] "GO" "mapping" "genes" "factor" "method" "subset" "rank.by"

[8] "FUN.GO" "ntree" "mtry"

> head(AlvMac_results$GO[, c(1:5, 7)], n=5) # Ranked table of GO terms (subset)

go_id ave_rank ave_score total_count data_count namespace_1003

1308 GO:0004113 3.0 3.256801 1 1 molecular_function

3498 GO:0009214 3.0 3.256801 1 1 biological_process

11129 GO:0070427 6.5 1.988207 2 2 biological_process

6532 GO:0033091 9.0 1.160690 1 1 biological_process

11216 GO:0070673 9.0 1.160690 1 1 biological_process

> head(AlvMac_results$genes[, c(1:3)], n=5) # Ranked table of genes (subset)

Score Rank external_gene_name

ENSBTAG00000007239 7.133532 1 TSG-6

ENSBTAG00000047107 3.322455 2 TNIP3

ENSBTAG00000025762 3.256801 3 CNP

ENSBTAG00000016683 2.815724 4 BIKBA

ENSBTAG00000019872 2.469105 5 PIK3AP1

> head(AlvMac_results$mapping) # Gene to gene ontology mapping table (subset)

gene_id go_id

1 ENSBTAG00000020495 GO:0005515

2 ENSBTAG00000020495 GO:0006661

3 ENSBTAG00000020495 GO:1900027

4 ENSBTAG00000020495 GO:0032587

5 ENSBTAG00000020495 GO:0019902

6 ENSBTAG00000020495 GO:0035091

Comment: In the tables of GO terms and genes above, the column containing the name of
the GO terms and the column containing the description of the genes are hidden, as their
content is very long in some cases, affecting the readability of this document.

3.2.3 Important notes in the absence of local annotations

If no annotations mapping gene features identifiers to gene ontology identifiers are provided,
GO_analyse will connect to the Ensembl server to fetch appropriate annotations in a semi-
automated procedure (See arguments dataset and microarray of the GO_analyse function).
Typically, the first feature identifier in the ExpressionSet is used to determine the corre-
sponding species and type of data. This is a fairly straightforward process for Ensembl gene
identifiers (e.g. in the prefix ‘ENSBTAG’, ‘BT’ indicates Bos taurus). Hence, the simplest
use of the GO_analyse is:
> AlvMac_results <- GO_analyse(eSet = AlvMac, f = "Treatment")

Warning: Without local annotations, connecting to the Ensembl server and downloading
the annotations significantly impacts the runtime of the function.

8

GOexpress: Visualise gene expression data using gene ontology annotations

However, it can be more difficult to identify the microarray used to obtain a certain dataset,
as many different Affymetrix chips contain probesets named with the pattern “AFFX.*”
for instance. In cases where the microarray platform cannot be detected automatically, we
recommend using the microarray argument of the GO_analyse function. The list of valid
values for the microarray argument is available in the microarray2dataset data frame which
can be loaded in the workspace using:
> data(microarray2dataset)

3.3 Permutation-based P-value for ontologies

To assess the significance of GO term ranking — or scoring —, we implemented a permutation-
based function randomising the gene feature ranking, and counting how many times each
GO term is ranked (scored) equal or higher than the real rank (score).
Critically, the function should be applied directly to the output of the GO_analyse function
prior to filtering, in order to use the full list of gene features as a background for permutation:
> AlvMac_results.pVal = pValue_GO(result=AlvMac_results, N=100)

Warning: The pValue_GO function is relatively lengthy. However, it is suggested to calculate
P-values on the basis of at least 1,000 permutation (approximately 50 min on a standard
Ubuntu server) to obtain reach minimal non-zero P-values as low as 0.001.

Given that many genes are associated to various gene ontologies due to the hierarchical rela-
tionships in the three Direct Acyclic Graphs (DAGs), a permutation-based approach appears
the best suited strategy to assess the significance of ontology-related genes to display a spe-
cific average rank (or score). As further discussed in the next section, this approach also
addresses the issue of the considerable range of gene counts associated with each known
gene ontology.

3.4 Filtering of results

3.4.1 Filtering of the result object

The subset_scores function allows users to filter for GO terms passing certain criteria (e.g.
maximal P-value, minimal gene counts, type of ontology). A filters.GO slot will be created
in the filtered result object, stating the filters and cutoff values applied. A filtered object may
be further filtered, and the filters.GO slot will be updated accordingly.
Importantly, an early-identified bias of the scoring function is that GO terms associated with
fewer genes are favored at the top of the ranking table. This is due to the fact that it is
much easier for a group of 5 genes (e.g. “B cell apoptotic process”) to have an high
average rank — and average score — than it is for a group of 6,000 genes (e.g. “protein
binding”). Indeed, the highest possible average rank of 5 genes is 3 while it is 3,000 for a
group of 6,000 genes. The calculation of P-values using the pValue_GO partially controls that
bias, as smaller groups of ontology-related genes may appear by chance at a higher average
rank than observed using the ranking based on actual gene expression.

9

GOexpress: Visualise gene expression data using gene ontology annotations

Furthermore, in our experience, this bias presents some benefits. First, it implicitely favors
specific and well-defined GO terms (e.g. “negative regulation of T cell apoptotic pro

cess”) as opposed to vague and uninformative GO terms (e.g. “cytoplasm”). Secondly,
we observed many top-ranking GO terms associated with a single gene. Those GO terms
are consequently susceptible to single-gene events and artefacts in the expression data, as
opposed to GO terms with a reasonable number of associated genes. Using the above filtering
function, it is straightforward to filter out those GO terms with only a handful of associated
genes, in combination with a standard P-value filter:
> BP.5 <- subset_scores(

+ result = AlvMac_results.pVal,

+ namespace = "biological_process",

+ total = 5, # requires 5 or more associated genes

+ p.val=0.05)

> MF.10 <- subset_scores(

+ result = AlvMac_results.pVal,

+ namespace = "molecular_function",

+ total = 10,

+ p.val=0.05)

> CC.15 <- subset_scores(

+ result = AlvMac_results.pVal,

+ namespace = "cellular_component",

+ total = 15,

+ p.val=0.05)

Finally, the inherent hierarchical structure and “granularity” of gene ontology terms can be
browsed conveniently by using increasingly large values of the total filter. Note that this
filter retains only GO terms associated with a minimal given count of genes in the gene-GO
mapping table. It is also possible to use the data argument to filter for GO terms associated
with a certain count of genes in the given expression dataset, although this approach is
obviously more data-dependent and less robust.
Warning: To optimise the use of memory space, after removing all ontologies not passing
the criteria, the function will also discard from the filtered result object all gene features not
associated with the remaining gene ontologies, and the mapping information related to gene
ontologies absent from the filtered data. However, those data will still be left in the original
object containing unfiltered raw results.

3.4.2 Quick filtering of the ontology scoring table

As an alternative to the above cascade-filtering of gene ontologies and gene features result
tables, users can extract and filter information from either the gene or the gene ontology
scoring tables using the subset function.
An example of filtering the gene ontology result table for the top ontologies of the ‘Biological
Process’ type, associated with at least 5 genes, and a P-value lower than 0.05:
> subset(

+ AlvMac_results.pVal$GO,

+ total_count >= 5 & p.val<0.05 & namespace_1003=='biological_process'

+)

10

GOexpress: Visualise gene expression data using gene ontology annotations

Comment: Note that the above command will return a data-frame containing only the
filtered GO terms, as opposed to the full result object returned by the subset_scores function.

3.5 Details of the top-ranking GO terms

Once the GO terms are ranked (and filtered), the top-ranking GO terms in the filtered object
are those containing the largest proportion of top-ranking genes with expression levels that
best classify the predefined groups of samples, based on the levels of the factor considered
(raw_results$factor).
In this example, we list the top filtered “Biological Process” GO terms extracted above and
their statistics (currently ranked by increasing average rank of their associated genes):
> head(BP.5$GO)

go_id ave_rank ave_score total_count data_count p.val

18 GO:0034142 40.00000 1.3278388 8 7 0

32 GO:0034134 63.00000 0.7295710 5 3 0

34 GO:0070431 63.60000 0.6744856 5 2 0

68 GO:0071223 78.28571 0.2487055 7 2 0

70 GO:0010745 81.60000 0.4742608 5 1 0

71 GO:0010888 81.60000 0.4742608 5 1 0

name_1006

18 toll-like receptor 4 signaling pathway

32 toll-like receptor 2 signaling pathway

34 nucleotide-binding oligomerization domain containing 2 signaling pathway

68 cellular response to lipoteichoic acid

70 negative regulation of macrophage derived foam cell differentiation

71 negative regulation of lipid storage

namespace_1003

18 biological_process

32 biological_process

34 biological_process

68 biological_process

70 biological_process

71 biological_process

3.6 Hierarchical clustering of samples based on gene expression
associated with a GO term

In the previous section, we identified the GO terms containing the largest proportion of top-
ranking genes that best classify samples according to their treatment. We will now generate
for the top-ranked GO term (“toll-like receptor 4 signaling pathway”) a heatmap to
visualise simulatenously the clustering of samples and the expression level of each gene in
each sample:

> heatmap_GO(

+ go_id = "GO:0034142", result = BP.5, eSet=AlvMac, cexRow=0.4,

11

GOexpress: Visualise gene expression data using gene ontology annotations

+ cexCol=1, cex.main=1, main.Lsplit=30)

S
10

0A
14

T
N

IP
3

IR
A

K
1

R
IP

K
2

T
LR

4

B
IK

B
A

P
IK

3A
P

1

CN
CN
MB
MB
TB
CN
CN
MB
CN
CN
CN
CN
CN
CN
CN
CN
TB
CN
CN
TB
MB
TB
MB
TB
MB
MB
TB
TB
MB
TB
MB
TB
MB
MB
TB
TB
TB
CN
CN
MB
TB
MB
MB
TB
TB
MB
CN
CN
TB
TB
MB
CN
TB
CN
MB
TB
MB
MB
MB

GO:0034142 toll−like receptor 4
signaling pathway

−10 0 5

Value

0
20

Color Key
and Histogram

C
ou

nt

In this example, we can observe a group of “Control” (i.e., untreated; green color) samples
clustering together at the bottom of the heatmap.
Re-labelling of samples by Group (i.e. combination of treatment and time-point) reveals that
those samples are mainly 24 and 48 hours post-infection control samples:

> heatmap_GO(

+ go_id = "GO:0034142", result = BP.5, eSet=AlvMac, cexRow=0.4,

+ cexCol=1, cex.main=1, main.Lsplit=30,

+ labRow=AlvMac$Group)

Subsequently encouraging the generation of a heatmap restricted to samples from those
time-points (i.e. 24H and 48H):

> heatmap_GO(

+ go_id = "GO:0034142", result = BP.5, eSet=AlvMac, cexRow=0.6,

12

GOexpress: Visualise gene expression data using gene ontology annotations

+ cexCol=1, cex.main=1, main.Lsplit=30,

+ labRow='Group', subset=list(Time=c('24H','48H')))

S
10

0A
14

T
N

IP
3

IR
A

K
1

R
IP

K
2

T
LR

4

B
IK

B
A

P
IK

3A
P

1

CN_48H

CN_48H

CN_48H

CN_48H

CN_48H

CN_24H

CN_24H

CN_48H

CN_24H

TB_24H

MB_48H

CN_24H

MB_48H

MB_48H

MB_24H

TB_24H

TB_48H

TB_24H

MB_48H

TB_24H

TB_24H

MB_48H

TB_24H

TB_24H

MB_24H

TB_48H

MB_24H

MB_24H

TB_24H

GO:0034142 toll−like receptor 4
signaling pathway

−10 0 5

Value

0
10

25

Color Key
and Histogram

C
ou

nt

Alternatively, it is possible to focus only on the hierarchical clustering of samples. The follow-
ing code will build a dendrogram clustering samples using the expression data of the subset
of genes associated with the “toll-like receptor 4 signaling pathway” gene ontology,
considering only samples obtained 24 and 48 hours post-infection, and labelling samples by
Group rather than simply Treatment:

> cluster_GO(

+ go_id = "GO:0034142", result = BP.5, eSet=AlvMac,

+ cex.main=1, cex=0.6, main.Lsplit=30,

+ subset=list(Time=c("24H", "48H")), f="Group")

13

GOexpress: Visualise gene expression data using gene ontology annotations

M
B

_2
4H

M
B

_4
8H

T
B

_2
4H

T
B

_4
8H

M
B

_4
8H

M
B

_2
4H

T
B

_2
4H

T
B

_4
8H

M
B

_2
4H

T
B

_2
4H

M
B

_4
8H

M
B

_4
8H

C
N

_2
4H

T
B

_4
8H

M
B

_4
8H

T
B

_4
8H

M
B

_4
8H

M
B

_2
4H

M
B

_4
8H

M
B

_2
4H

M
B

_4
8H

T
B

_2
4H

T
B

_4
8H

M
B

_2
4H

M
B

_2
4H

M
B

_4
8H

T
B

_2
4H

T
B

_4
8H

M
B

_2
4H

T
B

_2
4H

T
B

_2
4H

T
B

_2
4H

T
B

_4
8H

M
B

_2
4H

M
B

_2
4H

T
B

_2
4H

C
N

_4
8H

T
B

_4
8H

C
N

_4
8H

C
N

_2
4H

C
N

_4
8H

C
N

_2
4H

C
N

_4
8H

C
N

_2
4H

C
N

_4
8H

C
N

_4
8H

C
N

_2
4H

C
N

_4
8H

C
N

_2
4H

C
N

_2
4H

C
N

_4
8H

T
B

_4
8H

C
N

_2
4H

T
B

_2
4H

C
N

_2
4H

C
N

_2
4H

C
N

_4
8H

0
1

2
3

4
5

GO:0034142 toll−like receptor 4
signaling pathway

hclust (*, "average")
Distance

H
ei

gh
t

Note that labelling samples by another factor does not affect the clustering process itself, as
the underlying expression data has not changed.

3.7 Details of genes associated with a GO term

Following the identification of relevant GO terms in the above sections, users may want to
have a closer look at the individual genes associated with a given GO term. The default
behaviour of the function is to order the gene features by increasing rank (equivalent to
decreasing score):
> table_genes(go_id = "GO:0034142", result = BP.5)[,c(1:3)]

Score Rank external_gene_name

ENSBTAG00000047107 3.3628134 3 TNIP3

ENSBTAG00000016683 2.3713040 4 BIKBA

ENSBTAG00000019872 2.3293233 5 PIK3AP1

ENSBTAG00000015271 1.0011242 11 RIPK2

ENSBTAG00000006240 0.7398141 32 TLR4

14

GOexpress: Visualise gene expression data using gene ontology annotations

ENSBTAG00000021377 0.5009235 67 S100A14

ENSBTAG00000016085 0.3174076 97 IRAK1

ENSBTAG00000024340 NA NA <NA>

Comment: In the table above, the column containing the description of the genes is hidden,
as its content was very long in some cases, affecting the readability of this document.

Note that the default behaviour of the above function is to return a table of all the genes
associated with the GO term based on the annotations collected. For obvious reasons, genes
present in the annotations but absent from the expression dataset will be absent from the
score table and consequently lack data in this result table. It is possible to restrict the above
table to only genes present in the expression dataset using the data.only argument set to
TRUE.
If only the feature identifiers associated with a given GO identifier are needed, users may use
the function below:
> list_genes(go_id = "GO:0034142", result = BP.5)

[1] "ENSBTAG00000047107" "ENSBTAG00000016683" "ENSBTAG00000016085"

[4] "ENSBTAG00000021377" "ENSBTAG00000019872" "ENSBTAG00000006240"

[7] "ENSBTAG00000015271"

3.8 Expression profile of a gene by sample group

3.8.1 Using the unique feature identifier

In the above section, we listed the genes associated with a particular gene ontology. In our
example, the respective score and rank of each gene estimates the capacity of the gene to
classify the samples according to the treatment factor. The genes that most improve the
classification of samples will have the highest scores and the lowest ranks. Those genes will
likely produce the expression profiles with the most consistent differential expression between
the treatment groups over time. Here is one example:

> expression_plot(

+ gene_id = "ENSBTAG00000047107", result = BP.5, eSet=AlvMac,

+ x_var = "Timepoint", title.size=1.5,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15)

15

GOexpress: Visualise gene expression data using gene ontology annotations

−5

0

5

10

0 10 20 30 40 50
Timepoint

lo
g2

(c
pm

)

Treatment

CN

MB

TB

ENSBTAG00000047107 = TNIP3

Note that Timepoint is another column of pData(targets). that encodes a numeric vector,
as opposed to the column named Time, encoding a factor. This difference enables the
plotting function to respect the relative distance between the time-points for an output more
representative of the actual time-scale.
To investigate the impact of other factors on the expression level of the same gene, users
are encouraged to use the f and x_var arguments to specify alternate grouping factor and
X variable, respectively. Note that the geom_smooth of the ggplot2 package may fail if a
minimal number of replicates is not available to calculate proper confidence intervals. In
such cases, it is recommended to use the function expression_profiles described in section
3.9.
Here is another valid example separating samples by the factor Animal on the X axis and
summarising all time-points in a confidence 95% confidence interval on the Y-axis:

> expression_plot(

+ gene_id = "ENSBTAG00000047107", result = BP.5, eSet=AlvMac,

+ x_var = "Animal", title.size=1.5, axis.text.angle=90,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15)

16

http://bioconductor.org/packages/ggplot2

GOexpress: Visualise gene expression data using gene ontology annotations

−5

0

5

10

N
11

78

N
12

1

N
13

8

N
15

8R

N
18

55

N
18

59

N
18

61

N
18

64

N
18

70

N
98

Animal

lo
g2

(c
pm

)

Treatment

CN

MB

TB

ENSBTAG00000047107 = TNIP3

3.8.2 Using the associated gene name

It is also possible to visualise the expression profile of genes from their associated gene name
if any. This is a more human-friendly version of the function presented in the previous
subsection:

> expression_plot_symbol(

+ gene_symbol = "BIKBA", result = BP.5, eSet=AlvMac,

+ x_var = "Timepoint", title.size=1.5,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15)

However, the benefits of this feature are balanced by the fact that genes lacking an associated
gene name cannot be visualised in this manner, and that some gene symbols are associated
with multiple Ensembl gene identifiers and probesets (e.g. ‘RPL36A’). In the latter case, we
turned the ambiguity into an additional useful feature: a lattice is created, and each of the
multiple features associated with the given gene symbol are plotted simultaneously in the
lattice. Subsequently, each of the sub-figures plotted may be re-plotted by itself using the
index argument as indicated in the accompanying message printed in the R console:

> expression_plot_symbol(

+ gene_symbol = "RPL36A", result = AlvMac_results, eSet=AlvMac,

+ x_var = "Timepoint", title.size=1.5,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15)

Fetching feature identifier(s) annotated to RPL36A ...

Multiple gene ids found for RPL36A

17

GOexpress: Visualise gene expression data using gene ontology annotations

Indices are:

[1] "ENSBTAG00000019253" "ENSBTAG00000027610" "ENSBTAG00000025564"

Use argument 'index=1' to plot the first gene id alone, and so on.

Plotting ENSBTAG00000019253

Plotting ENSBTAG00000027610

Plotting ENSBTAG00000025564

[1] "ENSBTAG00000019253" "ENSBTAG00000027610" "ENSBTAG00000025564"

3.9 Expression profile of a gene by individual sample series

3.9.1 Using the unique feature identifier

It may be useful to track and visualise the expression profile of genes in each individual sample
series, rather than their average. This could help identify outliers within sample groups, or
visually compare paired samples, for instance.
In the AlvMac dataset, samples from each of the animals were subjected to all three treatments
in parallel (i.e. paired samples). In the figure below, a sample series is defined by a given
Animal and a given Treatment. Each sample series is then tracked over time, and coloured
according to the Treatment factor (default, factor stored in raw_results$factor):

> AlvMac$Animal.Treatment <- paste(AlvMac$Animal, AlvMac$Treatment, sep="_")

> expression_profiles(

+ gene_id = "ENSBTAG00000047107", result = AlvMac_results,

+ eSet=AlvMac, x_var = "Timepoint", line.size=1,

+ seriesF="Animal.Treatment", linetypeF="Animal",

+ legend.title.size=10, legend.text.size=10,

+ legend.key.size=15)

18

GOexpress: Visualise gene expression data using gene ontology annotations

−5

0

5

10

0 10 20 30 40 50
Timepoint

lo
g2

(c
pm

)

Treatment

CN

MB

TB

Animal

N1178

N121

N138

N158R

N1855

N1859

N1861

N1864

N1870

N98

ENSBTAG00000047107 = TNIP3

In the figure above, the linetypeF helps to highlight samples from an animal which start
at unusually high expression values, while those samples progressively return to expression
values similar to other samples in their respective treatment groups.
If omitted, the linetypeF argument will mirror the colourF, which can be useful for colour-
blind people. Alternatively, a single line-type can be applied to all groups using the lty

argument as follows:

> expression_profiles(

+ gene_id = "ENSBTAG00000047107", result = AlvMac_results,

+ eSet=AlvMac, x_var = "Timepoint",

+ lty=rep(1,10), # use line-type 1 for all 10 groups

+ seriesF="Animal.Treatment", linetypeF="Animal",

+ legend.title.size=10, legend.text.size=10,

+ legend.key.size=15, line.size=1)

3.9.2 Using the associated gene name

Similarly to the expression_plot function, an alternative was implemented to use gene names
instead of feature identifiers. An example:

> expression_profiles_symbol(

+ gene_symbol="TNIP3", result = AlvMac_results,

+ x_var = "Timepoint", linetypeF="Animal", line.size=1,

+ eSet=AlvMac, lty=rep(1,10), seriesF="Animal.Treatment",

19

GOexpress: Visualise gene expression data using gene ontology annotations

+ title.size=1.5, legend.title.size=10, legend.text.size=10,

+ legend.key.size=15)

3.10 Comparison of univariate effects on gene expression

While the analysis is restricted to the evaluation of a single factor, it can be helpful to compare
the relative impact of all known factors present in the the accompanying phenoData on the
gene expression in the different groups of samples.
In other words, given a GO term identifier this feature will generate a plot for each associated
gene, where the mean (default; can be changed) expression level will be computed for each
level of each factor and compared to one another:

> plot_design(

+ go_id = "GO:0034134", result = BP.5, eSet=AlvMac,

+ ask = FALSE, factors = c("Animal", "Treatment", "Time", "Group"),

+ main.Lsplit=30)

4.
6

4.
8

5.
0

5.
2

GO:0034134 toll−like receptor 2
signaling pathway

Factors

m
ea

n
of

 E
N

S
B

TA
G

00
00

00
16

08
5

N1178

N121

N138

N158R

N1855

N1859
N1861N1864

N1870

N98 CN
MB
TB

2H

6H

24H

48H

CN_2H

CN_6H

CN_24H

CN_48H

MB_2H

MB_6H

MB_24H

MB_48H

TB_2H

TB_6H

TB_24H
TB_48H

Animal Treatment Time Group

20

GOexpress: Visualise gene expression data using gene ontology annotations

4 Additional controls and advanced functions

4.1 Custom annotations

To enable all downstream filtering and visualisation features, the GO_analyse function uses
three types of annotations:

• GO_genes: Mapping of gene feature identifiers to gene ontology identifiers.
• all_genes: Annotations of gene feature identifiers.
• all_GO: Annotations of gene ontology identifiers.

The use of custom annotations has several advantages:
• Traceability and reproducibility: the Ensembl annotations are updated on a regular

basis. A local copy of annotations allows use of archived annotation releases. In the
absence of local annotations, GO_analyse() systematically connects to the latest (i.e.
current) Ensembl release.

• Speed: Providing custom annotations will skip calls to the Ensembl server, significantly
reducing the runtime of the GO_analyse function.

• Autonomy from web-services: occasionally the Ensembl server may be unavailable
(e.g. maintenance, internet connection). A local copy of annotations allows to work
independently from any web-service.

• Alternative annotations: Users working with gene feature identifiers not supported in
the Ensembl annotations (e.g. species, or platforms), or comparing panels of biomarkers
instead of GO terms for instance, may provide their own custom annotations to enable
the ranking and visualisation of their data using GOexpress.

4.1.1 Generating custom annotations

Using the Ensembl release 75, we show below the code used to retrieve annotations for Bos
taurus Ensembl gene identifiers:
> # Load the interface to BioMart databases

> library(biomaRt)

> # See available resources in Ensembl release 75

> listMarts(host='feb2014.archive.ensembl.org')

> # Connect to the Ensembl Genes annotation release 75 for Bos taurus

> ensembl75 = useMart(

+ host='feb2014.archive.ensembl.org',

+ biomart='ENSEMBL_MART_ENSEMBL', dataset='btaurus_gene_ensembl')

> ## Download all the Ensembl gene annotations (no filtering)

> allgenes.Ensembl = getBM(

+ attributes=c('ensembl_gene_id', 'external_gene_id', 'description'),

+ mart=ensembl75)

> # Rename the gene identifier column to 'gene_id'

> # This allows GOexpress to treat microarray and RNA-seq data identically

> colnames(allgenes.Ensembl)[1] = 'gene_id'

> ## Download all the gene ontology annotations (no filtering)

21

http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

> allGO.Ensembl = getBM(

+ attributes=c('go_id', 'name_1006', 'namespace_1003'),

+ mart=ensembl75)

> ## Download all the mapping between gene and gene ontology identifiers

> GOgenes.Ensembl = getBM(

+ attributes=c('ensembl_gene_id', 'go_id'),

+ mart=ensembl75)

> # Rename the gene identifier column to 'gene_id'

> colnames(GOgenes.Ensembl)[1] = 'gene_id'

> # Cleanup: remove some blank fields often found in both columns

> GOgenes.Ensembl = GOgenes.Ensembl[GOgenes.Ensembl$go_id != '',]

> GOgenes.Ensembl = GOgenes.Ensembl[GOgenes.Ensembl$gene_id != '',]

Comment: The automated retrieval procedure retrieves all gene ontology annotations from
the Ensembl server, inclusive of annotations not Inferred from Experiment (EXP). Users may
consider filtering local annotations for desired GO Evidence code(s).

4.1.2 Using custom annotations

The annotations download above can then be saved in local R data files, and subsequently
used to run entirely offline analyses of ExpressionSet objects with corresponding gene feature
identifiers:
> # save each custom annotation to a R data file

> save(GOgenes.Ensembl, file='GOgenes.Ensembl75.rda')

> save(allGO.Ensembl, file='allGO.Ensembl75.rda')

> save(allgenes.Ensembl, file='allgenes.Ensembl75.rda')

> # Run an analysis using those local annotations

> GO_analyse(

+ eSet=AlvMac, f='Treatment',

+ GO_genes=GOgenes.Ensembl,

+ all_GO=allGO.Ensembl,

+ all_genes=allgenes.Ensembl)

Ideally, all three annotation objects should be provided, to enable all downstream features.
A toy example for each type of custom annotations, ready for analysis, is provided with the
package:
> data(AlvMac_GOgenes)

> data(AlvMac_allGO)

> data(AlvMac_allgenes)

Warning: Critically, it is highly recommended to provide full genome annotations for the
species of interest, including annotations for feature identifiers that are absent from the given
ExpressionSet. As described in section 5.1, all genes present in the annotations will affect
the scoring of gene ontologies, even if they are absent from the ExpressionSet.

22

GOexpress: Visualise gene expression data using gene ontology annotations

4.2 Using subsets of samples

It may be desirable to rank genes and gene ontologies according to their capacity to classify
only specific subsets of samples, while visualising the expression data of all samples. Instead
of creating two separate ExpressionSet objects (one containing all the samples to visualise,
another one containing only the samples to analyse), a subset argument was added to most
functions in the GOexpress package, allowing the use of a single ExpressionSet object from
which the desired subset of samples is extracted at run time.
This argument takes a named list where names must be column names existing in col

names(pData(eSet)), and values must be vectors of values existing in the corresponding
column of pData(eSet). The original ExpressionSet will be left unchanged. An example:

> AlvMac_results <- GO_analyse(

+ eSet = AlvMac, f = "Treatment",

+ subset=list(

+ Time=c("6H","24H", "48H"),

+ Treatment=c("CN","MB"))

+)

> expression_plot(

+ gene_id = "ENSBTAG00000047107", result = BP.5, eSet=AlvMac,

+ x_var = "Timepoint", title.size=1.5,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15,

+ subset=list(Treatment=c("TB","MB"))

+)

4.3 Distribution of scores

Users might be interested in the general distribution of score and rank statistics produced by
GOexpress. The distribution of scores may be represented as a histogram:

> hist_scores(result = BP.5, labels = TRUE)

23

http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

Distribution of average scores in BP.5

Average score

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
50

10
0

15
0

20
0 201

9
2 2 0 0 1

Alternatively, quantile values can be returned for default or customised percentiles:
> quantiles_scores(result = BP.5)

90% 95% 99% 99.9% 99.99%

0.1479628 0.2207809 0.6464542 1.1998095 1.3150358

4.4 Reordering scoring tables

4.4.1 Reordering by score

While scores are more prone to extreme outlier values and may slightly fluctuate between
multiple runs of the random forest algorithm; ranks of genes and subsequently average ranks
of GO terms tend to be more stable and may be more reliable estimators of the importance
of genes and cellular functions. Therefore, the default behaviour of GOexpress is to use the
rank and average rank metrics to order genes and GO terms, respectively, in the returned
score tables.
It is however possible to re-order the tables in the output variable according to the score
metric (or revert back to the original one) as in the example below:
> BP.5.byScore <- rerank(result = BP.5, rank.by = "score")

24

http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

4.4.2 Reordering by P-value

Additionally, it is possible to reorder GO terms by increasing P-value, provided those values
were were computed using the pValue_GO function.
> BP.5.byPval <- rerank(result = BP.5, rank.by = "p.val")

4.4.3 Reordering and breaking ties

For instance, to rank GO terms by P-value, while breaking ties on their ave_rank value, one
needs to first rank the object by rank, and rank the resulting object by p.val:
> BP.5.pVal_rank <- rerank(result = BP.5, rank.by = "rank")

> BP.5.pVal_rank <- rerank(result = BP.5.pVal_rank, rank.by = "p.val")

4.5 Subsetting an ExpressionSet to specific sample groups

While this feature exists, users may want to consider the newer section 4.2 describing the
definition of a subset of samples from the given ExpressionSet on-the-fly without the need
to create a new object containing the subsetted ExpressionSet.
It is straightforward to subset an ExpressionSet by extracting given columns (i.e. samples)
and rows (i.e. gene features). Nevertheless, the randomForest package is quite sensitive to
the definition of R factors; for instance, the randomForest function will crash if a factor is
declared to have 3 levels (e.g. "A", "B", and "C"), while the ExpressionSet only contains
samples for two of them (e.g. "A" and "B"). A simple fix is to update the known levels of
the factor after having subsetted the ExpressionSet:
> pData(AlvMac) <- droplevels(pData(AlvMac))

Comment: Note that this operation preserves the order of ordered factors.

Typically, subsetting an ExpressionSet by rows and columns does not automatically update
the known levels of each factor to the remaining levels. The function subEset performs this
additional task. The function takes a named list, where names must be column names from
the phenoData slots and values must be present in the corresponding columns, and returns a
subset of the original ExpressionSet including only the samples which match those values:
> subEset(

+ eSet=AlvMac, subset=list(

+ Time=c("2H","6H","24H"),

+ Treatment=c("CN","MB")))

25

https://CRAN.R-project.org/package=randomForest

GOexpress: Visualise gene expression data using gene ontology annotations

5 Statistics

5.1 Overview

GOexpress was initially created from a set of gene-based, and later ontology-based, visualisa-
tion functions. Following the integration of those various plotting functions at the core of the
GOexpress package, the need for a ranking of genes and GO terms soon became apparent in
order to rapidly identify those with gene expression data best classify samples according to
the experimental factor studied. A two-fold procedure was implemented:

1. Using the available expression data, each gene present in the dataset is scored, evaluat-
ing its ability to classify the predefined groups of samples. Genes are ranked according
to their respective score; ties are resolved by assigning the lowest rank R to all G genes,
giving the rank G+n to the next gene(s). The genewise scoring functions implemented
are described in the following subsections, and all were validated on in-house datasets
cross-checked with comparable analytic pipelines (e.g. Ingenuity®Pathway Analysis,
SIGORA)

2. Using the above ranks and scores, each GO term in the gene ontology annotations
is assigned the mean score and the mean rank of all the genes associated with it
in the gene-GO annotations. Genes present in the annotations but absent from the
ExpressioSet are assigned a score of 0 (minimum valid score; indicates no power to
discriminates the predefined groups of sample) and a rank equal to the number of genes
present in the ExpressioSet plus one (worst rank, while preserving discrete continuity
of the ranking).

5.2 Data-driven visualisation functions

Importantly, the statistics performed to rank GO terms and genes do not influence the be-
haviour of the subsequent plotting functions; heatmaps, dendrograms and gene expression
profiles are purely driven by the expression data, sample phenotype annotations provided
and GO terms annotations, without any transformation or normalisation applied to the data.
Therefore, users are encouraged to use and suggest alternative relevant scoring and ranking
strategies, which could prioritise GO terms and genes in different ways. A current acknowl-
edged bias is the higher scoring of GO terms associated with fewer genes, which is discussed
in section 3.4.

5.3 Random Forest

We implemented the Random Forest framework to answer the question: “How well does
each gene in the dataset classify predefined groups of samples?”. The random forest consists
of multiple decision trees. Each tree is built based on a bootstrap sample (sample with
replacement) of observations and a random sample of variables. The randomForest package
first calculates the Gini index (Breiman et al, 1984) for each node in each tree. The Gini
index is a measure of homogeneity from 0 (homogeneous) to 1 (heterogeneous). The decrease
in the Gini index resulting from a split on a variable is then calculated for each node and
averaged for each variable over all the trees in the model. The variable with the biggest mean

26

http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
https://CRAN.R-project.org/package=randomForest

GOexpress: Visualise gene expression data using gene ontology annotations

decrease in the Gini index is then considered the most important. Technically, GOexpress
extracts the MeanDecreaseGini value from the importance slot of the randomForest output
and uses this value as the score for each gene.
A key feature of the Random Forest framework is the implicit handling of interactions between
genes, given a sufficient number of trees generated and genes sampled. Indeed, at each node
in the decision tree, genes are sampled from the expression data and tested for their individual
capacity to improve the partitioning reached in the previous node. The larger the number of
trees and genes sampled, the more complete the coverage of interactions will be.

5.4 One-way Analysis of Variance (ANOVA)

We implemented the ANOVA statistical framework to answer the question: "How different is
the expression level of each gene in the dataset in the different groups of samples?". Given
the expression level of a gene in all the samples, the one-way ANOVA determines the ratio of
the variance between the groups compared to the variance within the groups, summarised as
an F statistic that GOexpress uses as a score for each gene. Simply put, if samples from the
same groups show gene expression values similar to each other while samples from different
groups show different levels of expression, those genes will produce a higher score. This score
cannot be less than 0 (variance between groups insignificant to variance within groups), while
very large ratios can easily be reached for genes markedly different between groups.
Contrary to the random forest framework, the Analysis of Variance makes important assump-
tions on the data: namely, the independence of observations, the normality of residuals, and
the equality of variances in all groups. While the former two are the responsibility of the
user to verify, the latter is taken care of by GOexpress. Indeed, the oneway.test function of
the package stats is used with parameter var.equal set to to FALSE. While this reduces the
sensitivity of the test, all genes are affected by this correction based on the relative amount
of variance in the different predefined groups of samples. Finally, it is once again important
to note that the one-way ANOVA only evaluates univariate changes, while the random forest
framework implicitely allows for interactions between genes.

6 Integration with other packages

6.1 shiny

Shiny is an R package that makes it easy to build interactive web applications (apps) straight
from R as shown in Figure 1. More information is available at http://shiny.rstudio.com/.

27

http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://shiny.rstudio.com/

GOexpress: Visualise gene expression data using gene ontology annotations

Figure 1: Shiny app
This simple application allows visualisation of genes using the GOexpress expression_profiles_symbol func-
tion. An online interactive version was made available at: https://kevinrue.shinyapps.io/alvmac/

7 Notes

7.1 Authors’ contributions

Conception and development of the GOexpress package was carried out by KR-A with contri-
butions by PAM, under the supervision of SVG and DEM. Experimental data used for testing
was generated and analysed with the help of DAM and NC. Integration of the random forest
statistical frameworks was advised by BH and ACP. This User’s Guide was prepared by KR-A,
and edited by PAM, BH, DAM, NCN, ACP, SVG, and DEM.

7.2 Acknowledgments

Since the early beginning, GOexpress has grown from constructive feedback, and I would like
to thank a number of colleagues and scientists from all backgrounds who contributed each in
their own way to the present version and features of the package. Special thanks to Dr. Paul
Cormican, Simone Coughlan, Dr. Karsten Hokamp, and an unknown reviewer for feedback
leading to some features. Sincere thanks to Dr. Kate Killick for testing on human data and
feedback. My thanks to the Bioconductor staff and in particular to Hervé Pagès for the
helpful feedback which improved the standards of the code and documentation. Last but not
least, thanks to the University College Dublin "OpenSequencing" group, the "Virtual Institute
of Bioinformatics and Evolution" (VIBE), and the "UCD PhD Symposium in Computational
Biology & Innovation" where I first presented raw versions of GOexpress and received valuable
feedback and advice in return, underlying a significant number of updated and new features.

28

http://bioconductor.org/packages/GOexpress
https://kevinrue.shinyapps.io/alvmac/
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress
http://bioconductor.org/packages/GOexpress

GOexpress: Visualise gene expression data using gene ontology annotations

7.3 Session information

> sessionInfo()

R version 4.0.3 (2020-10-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.5 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.12-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.12-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel grid stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] GOexpress_1.24.0 Biobase_2.50.0 BiocGenerics_0.36.0

loaded via a namespace (and not attached):

[1] Rcpp_1.0.5 lattice_0.20-41 prettyunits_1.1.1

[4] gtools_3.8.2 assertthat_0.2.1 digest_0.6.27

[7] BiocFileCache_1.14.0 R6_2.4.1 stats4_4.0.3

[10] RSQLite_2.2.1 evaluate_0.14 httr_1.4.2

[13] ggplot2_3.3.2 pillar_1.4.6 gplots_3.1.0

[16] rlang_0.4.8 progress_1.2.2 curl_4.3

[19] blob_1.2.1 S4Vectors_0.28.0 Matrix_1.2-18

[22] rmarkdown_2.5 labeling_0.4.2 splines_4.0.3

[25] stringr_1.4.0 RCurl_1.98-1.2 bit_4.0.4

[28] biomaRt_2.46.0 munsell_0.5.0 compiler_4.0.3

[31] xfun_0.18 pkgconfig_2.0.3 askpass_1.1

[34] mgcv_1.8-33 htmltools_0.5.0 openssl_1.4.3

[37] tidyselect_1.1.0 tibble_3.0.4 IRanges_2.24.0

[40] randomForest_4.6-14 XML_3.99-0.5 crayon_1.3.4

[43] dplyr_1.0.2 dbplyr_1.4.4 bitops_1.0-6

[46] rappdirs_0.3.1 nlme_3.1-150 gtable_0.3.0

[49] lifecycle_0.2.0 DBI_1.1.0 magrittr_1.5

[52] scales_1.1.1 KernSmooth_2.23-17 stringi_1.5.3

[55] farver_2.0.3 xml2_1.3.2 ellipsis_0.3.1

[58] generics_0.0.2 vctrs_0.3.4 BiocStyle_2.18.0

[61] RColorBrewer_1.1-2 tools_4.0.3 bit64_4.0.5

[64] glue_1.4.2 purrr_0.3.4 hms_0.5.3

[67] yaml_2.2.1 AnnotationDbi_1.52.0 colorspace_1.4-1

29

GOexpress: Visualise gene expression data using gene ontology annotations

[70] BiocManager_1.30.10 caTools_1.18.0 memoise_1.1.0

[73] knitr_1.30

30

	1 Introduction
	1.1 The origin and purpose of GOexpress
	1.2 Purpose of this document

	2 Before you start
	2.1 Installation
	2.2 Getting help
	2.3 Citing GOexpress

	3 Quick start
	3.1 Input data
	3.2 Main analysis
	3.2.1 Preparing the grouping factor to analyse
	3.2.2 Running the random forest algorithm using local annotations
	3.2.3 Important notes in the absence of local annotations

	3.3 Permutation-based P-value for ontologies
	3.4 Filtering of results
	3.4.1 Filtering of the result object
	3.4.2 Quick filtering of the ontology scoring table

	3.5 Details of the top-ranking GO terms
	3.6 Hierarchical clustering of samples based on gene expression associated with a GO term
	3.7 Details of genes associated with a GO term
	3.8 Expression profile of a gene by sample group
	3.8.1 Using the unique feature identifier
	3.8.2 Using the associated gene name

	3.9 Expression profile of a gene by individual sample series
	3.9.1 Using the unique feature identifier
	3.9.2 Using the associated gene name

	3.10 Comparison of univariate effects on gene expression

	4 Additional controls and advanced functions
	4.1 Custom annotations
	4.1.1 Generating custom annotations
	4.1.2 Using custom annotations

	4.2 Using subsets of samples
	4.3 Distribution of scores
	4.4 Reordering scoring tables
	4.4.1 Reordering by score
	4.4.2 Reordering by P-value
	4.4.3 Reordering and breaking ties

	4.5 Subsetting an ExpressionSet to specific sample groups

	5 Statistics
	5.1 Overview
	5.2 Data-driven visualisation functions
	5.3 Random Forest
	5.4 One-way Analysis of Variance (ANOVA)

	6 Integration with other packages
	6.1 shiny

	7 Notes
	7.1 Authors' contributions
	7.2 Acknowledgement
	7.3 Session information

