
Integrative Analysis of Epigenomic sequencing (and
microarray) data with Repitools

Mark Robinson Aaron Statham Dario Strbenac

Last compiled on: October 27, 2020

1 Introduction

Repitools is a package that allows exploratory as well as targeted statistical analysis of absolute
and differential binding for ChIP-seq and MeDIP-seq data types, and gives visual summaries in a
variety of formats. Some basic quality checking utilities are available for sequencing data. Much
of the functionality available is implemented for both tiling microarrays and sequencing data, with
very similar function calls for both types of data.

In this vignette, we highlight various features within the package. Further description of the
package can be found in the associated Bioinformatics Applications Note1 as well as in the help
documents.

To start with, set a random seed, and load the Repitools package:

> options(prompt = " ", continue = " ")

set.seed(4)

library(Repitools)

2 Example Datasets

Caution : All data distributed with the package is a reduced version of the full dataset presented
here. Also, all variable names have .subset appended to them. Therefore, the code presented
here cannot simply be copied and pasted into R.

A small GRangesList of mapped short reads (four samples run on an Illumina Genome Anal-
yser) is included with the package (for example, see ?binPlots). This data has been published
and is available here. LNCaP is a prostate cancer cell line, and PrEC is a (normal) prostate ep-
ithelial cell line. Here, the “IP” represents an MBD capture experiment, whereby a population of
DNA fragments containing methylated DNA (generally in the CpG context) and“input” represents
fragmented genomic DNA from the same cell lines.

Note that GRanges objects of mapped reads from many popular aligners can be created in R
using the readAligned function in the ShortRead package, then coerced with as(alnRdObj,

1Repitools: an R package for the analysis of enrichment-based epigenomic data

1

mailto:m.robinson@garvan.org.au
mailto:a.statham@garvan.org.au
mailto:d.strbenac@garvan.org.au
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24546
http://bioinformatics.oxfordjournals.org/content/26/13/1662.abstract

"GRanges"). Alternatively, two convenience methods BAM2GRanges and BAM2GRangesList in
Repitools could also be used, if the reads were stored on disk in BAM format (this uses the
scanBam function from the Rsamtools package). By default, these two methods read in only the
uniquely-mapping reads. See the ShortRead package documentation for ideas about how to read
other sequencing data into GRanges or GRangesList objects.

library(GenomicRanges)

data(samplesList)

class(samples.list)

[1] "GRangesList"

attr(,"package")

[1] "GenomicRanges"

names(samples.list)

[1] "PrEC input" "PrEC IP" "LNCaP input" "LNCaP IP"

elementNROWS(samples.list)

PrEC input PrEC IP LNCaP input LNCaP IP

11061279 10008129 19119904 10139044

samples.list[[1]]

GRanges with 11061279 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [248, 283] +

[2] chr1 [447, 482] -

[3] chr1 [602, 637] -

[4] chr1 [3182, 3217] +

[5] chr1 [4783, 4818] -

[6] chr1 [6287, 6322] -

[7] chr1 [6310, 6345] +

[8] chr1 [7340, 7375] -

[9] chr1 [9103, 9138] -

...

[11061271] chrM [16531, 16566] +

[11061272] chrM [16532, 16567] +

[11061273] chrM [16532, 16567] -

[11061274] chrM [16533, 16568] -

[11061275] chrM [16533, 16568] +

[11061276] chrM [16534, 16569] -

[11061277] chrM [16535, 16570] -

[11061278] chrM [16536, 16571] +

[11061279] chrM [16536, 16571] -

seqlengths:

chr1 chr2 chr3 chr4 ... chrX chrY chrM

247249719 242951149 199501827 191273063 ... 154913754 57772954 16571

2

Also, an annotation of genes will be used. The annotation used here is based on one provided
from Affymetrix for their Gene 1.0 ST expression arrays2. We will relate the epigenomic sequencing
data to the Affymetrix gene expression measurements. Of course, users may wish to make use of
the rich functionality available within the GenomicFeatures package.

gene.anno <- read.csv(system.file("data/geneAnno.csv", package = "Repitools"),

stringsAsFactors = FALSE)

head(gene.anno)

name chr strand start end symbol

1 7896759 chr1 + 781253 783614 LOC643837

2 7896761 chr1 + 850983 869824 SAMD11

3 7896779 chr1 + 885829 890958 KLHL17

4 7896798 chr1 + 891739 900345 PLEKHN1

5 7896817 chr1 + 938709 939782 ISG15

6 7896822 chr1 + 945365 981355 AGRN

dim(gene.anno)

[1] 24966 6

Lastly, there is matrix of gene expression changes, with each element related to the corresponding
row in the gene annotation table. These values are moderated t-statistics (see the limma package)
of background corrected and RMA normalised Affymetrix expression array experiments. The
unprocessed array data is available here.

data(expr)

head(expr)

t-stat

7896759 4.1130688

7896761 3.0691214

7896779 0.9724271

7896798 -0.5090460

7896817 2.1949896

7896822 -6.4049774

dim(expr)

[1] 24966 1

3 Quality Checking

As mentioned, two of the samples are MBD2 IPs, and two are inputs. Therefore, the IP samples
should differ to the inputs in at least two ways. Firstly, they should be more CpG-rich, since we
are enriching for methylated DNA, whcih rarely occurs outside of this sequence context. Secondly,
DNA methylation tends to occur in peaks since CpG sites are often present in CpG-rich islands.

2http://www.affymetrix.com/Auth/analysis/downloads/na27/wtgene/HuGene-1 0-st-
v1.na27.hg18.transcript.csv.zip

3

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19726
http://www.affymetrix.com/Auth/analysis/downloads/na27/wtgene/HuGene-1_0-st-v1.na27.hg18.transcript.csv.zip
http://www.affymetrix.com/Auth/analysis/downloads/na27/wtgene/HuGene-1_0-st-v1.na27.hg18.transcript.csv.zip

Conversely, the input samples should be distributed somewhat uniform genome-wide, aside from
the usual mappability and GC content biases.

We can visualize the (log) frequencies of normalized coverage to get an idea of whether the
reads occur in clusters or more dispersed, at least in a relative sense. For this, we can use enrich-

mentPlot. Similarly, we can calculate the CpG density of reads (or reads extended to a certain
fragment size) and plot distributions across multiple samples using cpgDensityPlot, as below.

seqinfo(samples.list)

Seqinfo of length 25

seqnames seqlengths isCircular genome

chr1 247249719 <NA> hg18

chr2 242951149 <NA> hg18

chr3 199501827 <NA> hg18

chr4 191273063 <NA> hg18

chr5 180857866 <NA> hg18

chr6 170899992 <NA> hg18

chr7 158821424 <NA> hg18

chr8 146274826 <NA> hg18

chr9 140273252 <NA> hg18

...

chr17 78774742 <NA> hg18

chr18 76117153 <NA> hg18

chr19 63811651 <NA> hg18

chr20 62435964 <NA> hg18

chr21 46944323 <NA> hg18

chr22 49691432 <NA> hg18

chrX 154913754 <NA> hg18

chrY 57772954 <NA> hg18

chrM 16571 <NA> hg18

enrichmentPlot(samples.list, seq.len = 300,

cols = c("black", "green", "orange", "red"),

xlim = c(0, 10), lwd = 2)

4

0 2 4 6 8 10

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e
+

08
Enrichment Plot

Normalised Enrichment Level of reads

F
re

qu
en

cy

PrEC input
PrEC IP
LNCaP input
LNCaP IP

The code makes use of the SeqInfo annotation of samples.list to retrieve the maximum base
of chromosomes. Normalization scales coverage value to “reads per 10 million”. The argument
seq.len=300 is passed in as the length to extend reads to, since that is approximately the real
length of the fragments sequenced in this experiment. As expected, many more bases in the IP
samples have high read coverages.

An alternative comparative visualization, which is somewhat specific to methylated DNA enrich-
ment experiments, is a summary of the distribution of CpG density among reads/fragments:

library(BSgenome.Hsapiens.UCSC.hg18)

cpgDensityPlot(samples.list, organism = Hsapiens, w.function = "none", seq.len = 300,

cols = c("black", "green", "orange", "red"), xlim = c(0, 30), lwd = 2)

5

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

CpG Density Plot

CpG Density of reads

F
re

qu
en

cy

PrEC input
PrEC IP
LNCaP input
LNCaP IP

The full genome sequence of the organism is required so that the (here, 300 base) DNA sequence can
be fetched. In this example, the BSgenome package of the hg18 assembly for human is used (many
other BSgenome objects for other organisms are available from Bioconductor). The w.function

parameter allows the count of CpGs to be weighted. In this example, raw counts are used.

Notice that at lower CpG densities, the two input samples have a higher frequency of reads than
the two IP samples. At higher CpG densities, this trend is reversed. This suggests that the en-
richment of methylated CpGs has worked.

4 Analyses

4.1 Statistics of Differential Enrichment

The blocksStats function is a convenient way to do statistical tests of differential enrichment
between two experimental conditions, using counts in regions of interest. The windows can be
relative to some genomic landmarks, like transcription start sites (TSSs), and their size can be
specified with the up and down parameters. If up and down are not provided, then windows are
defined by start and end coordinates. The function leverages edgeR’s count modelling and its

6

adaptation of Fisher’s exact test for assessing differential enrichment. The procedure also uses
Bioconductor’s facilities (i.e. countOverlaps) for counting mapped read in regions of the genome.

design.matrix <- matrix(c(0, -1, 0, 1), dimnames = list(names(samples.list), "C-N"))

design.matrix

C-N

PrEC input 0

PrEC IP -1

LNCaP input 0

LNCaP IP 1

stats <- blocksStats(samples.list, gene.anno, up = 2000, down = 0, seq.len = 300,

design = design.matrix)

Comparison of groups: 1 - -1

stats <- stats[order(stats$`adj.p.vals_C-N`),]

head(stats)

chr start end width strand name symbol PrEC input

8019804 chr18 99064 112217 13154 + 8019804 ROCK1 600

8015798 chr17 38802738 38821439 18702 - 8015798 --- 87

7904879 chr1 145017918 145018085 168 + 7904879 --- 21

7908529 chr1 196148257 196165896 17640 + 7908529 LHX9 16

8115391 chr5 153834725 153838017 3293 - 8115391 HAND1 8

7976848 chr14 100592279 100592359 81 + 7976848 --- 29

PrEC IP LNCaP input LNCaP IP PrEC IP_pseudo LNCaP IP_pseudo logConc_C-N

8019804 397 686 58 399.588658 57.6237948 -16.01856

8015798 56 64 314 56.365618 311.9656941 -16.21306

7904879 13 28 153 13.085296 152.0084843 -17.78513

7908529 3 13 112 3.020114 111.2740395 -19.06788

8115391 4 28 95 4.026631 94.3841477 -18.97912

7976848 75 33 1 75.489482 0.9929602 -20.14963

logFC_C-N p.value_C-N adj.p.vals_C-N

8019804 -2.793764 1.662518e-64 4.150642e-60

8015798 2.468516 6.449624e-44 8.051066e-40

7904879 3.538199 1.681848e-31 1.399634e-27

7908529 5.203643 1.220924e-29 7.620397e-26

8115391 4.551106 1.238883e-23 6.185989e-20

7976848 -6.247568 1.032321e-21 4.295489e-18

Note that this is not a real design matrix (in a statistical sense), it is simply a way of specifying
the two experiment conditions to compare (they must be 1 and -1).

The example above calculates statistics on regions that start 2000 bases upstream of the TSS and
finish at the TSS, after the reads have been extended to being 300 bases. A coverage plot from
UCSC browser illustrates the best found region. For the output table, the read counts are scaled
as if there were 10 million reads covering the regions of interest.

7

Note that this procedure only works for simple 2-group comparisons. Using this strategy for more
complicated designs requires manually creating the count tables (see annotationCounts below)
and calling the GLM-based procedures (e.g. using real design matrices) within edgeR.

This differential enrichment strategy can be used on bins covering the entire genome. The
genomeBlocks function can be used to generate windows along the genome.

4.2 Domains of Concordant Change

Another analysis of interest is the detection of regions where changes in expression (or an epigenetic
mark, etc.) occur on a particular chromosome. The function findClusters addresses this need.
The method of determining clusters requires a search through the column of scores (e.g. t-statistics)
for a persistent change. Significance of clusters is determined by randomization. The order of the
statistics is permuted a large number of times and the number of clusters found in the true statistics
column and the permuted statistics columns is counted, ranging from a loose cutoff to a tight cutoff.
A cutoff is chosen to control the user-specified FDR. Importantly, the table must be pre-sorted in
positional order. This allows the user to use whatever definition of position they want. Note that
the distance between features is not taken into account in this implementation.

stats.table <- data.frame(chr = "chr1", pos = 1:500, t.stat = rnorm(500))

stats.table[100:104, "t.stat"] <- rnorm(5, 5)

stats.table[200:204, "t.stat"] <- rnorm(5, -5)

stats.clustered <- findClusters(stats.table, score.col = 3, w.size = 5, n.med = 2, n.consec = 3, cut.samps = seq(-2, -10, -2), maxFDR = 0.05, trend = "down", n.perm = 10)

cluster.1 <- which(stats.clustered$cluster == 1)

stats.clustered[cluster.1,]

chr pos t.stat cluster

199 chr1 199 -1.1954751 1

200 chr1 200 -5.0523318 1

201 chr1 201 -5.2746643 1

202 chr1 202 -4.4846953 1

203 chr1 203 -6.3055200 1

204 chr1 204 -3.3008998 1

205 chr1 205 -0.7678417 1

8

In this example, a running window of 5 consecutive genes is calculated along each chromosome;
the median value of those 5 genes is assigned to the middle gene. If, in the 5-gene window, there
are at least 2 genes that have an assigned median above the cutoff being used (cutoffs of -2, -4,
-6, -8, and -10 are tried), then those genes are candidate cluster-generating genes. Starting from a
candidate gene, and working outwards until encountering a positive t-statistic, if a consecutive run
of at least 3 genes with t-statistic being negative could be made, then this forms a cluster. The
default estimated FDR of 0.05 is used.

4.3 Finding enriched regions in a single sample

Repitools contains an implementation of ChromaBlocks (described in Hawkins RD et al), designed
to discover regions of the genome which are enriched for epigenetic marks, such as H3K27me3.
Briefly, ChromaBlocks counts the number of sequencing reads aligned to adjacent bins in the
genome in both Immunoprecipitated and Input samples, determines which bins exceed a cutoff
for IP-Input enrichment (either specified or set at a supplied FDR by permutation) and returns
regions of the genome where multiple adjacent bins are enriched.
Data from the Human Reference Epigenome Mapping Project is used to demonstrate ChromaBlocks.
The data was downloaded from here. Samples GSM466734, GSM466737, GSM466739, and GSM450270
are used here. The file containing the reads is available for download from the University of Zurich.
After loading it into your R session, run the commands:

class(H1samples)

[1] "GRangesList"

attr(,"package")

[1] "GenomicRanges"

names(H1samples)

[1] "H3K4me1" "H3K27me3" "H3K36me3" "Input"

S4Vectors::elementNROWS(H1samples)

H3K4me1 H3K27me3 H3K36me3 Input

1201402 8673675 4151895 15289957

H3K27me3.blocks <- ChromaBlocks(rs.ip = H1samples["H3K27me3"],

rs.input = H1samples["Input"],

organism = Hsapiens, chrs = "chr20",

preset = "small", seq.len = 300)

Permutation 1.

Permutation 2.

Permutation 3.

Permutation 4.

Permutation 5.

Testing positive regions.

Using cutoff of 2.337163 for a FDR of 0.01

.

9

http://www.ncbi.nlm.nih.gov/pubmed/20452322
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16256
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM466734
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM466737
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM466739
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSM450270
http://imlspenticton.uzh.ch/dump/H1samples.RData

ChromaBlocks returns a ChromaResults object, from which an IRangesList of the regions
determined to be enriched can be retrieved using the regions method.

H3K27me3.blocks

Object of class 'ChromaResults'.

1400 regions found with using a cutoff of 2.337163

regions(H3K27me3.blocks)

IRangesList of length 1

$chr20

IRanges of length 1400

start end width

[1] 60150 61550 1401

[2] 189750 191050 1301

[3] 228950 236350 7401

[4] 237050 243050 6001

[5] 243450 245550 2101

[6] 245850 248250 2401

[7] 259250 260950 1701

[8] 275950 277950 2001

[9] 279350 281050 1701

...

[1392] 62185050 62186750 1701

[1393] 62204850 62206750 1901

[1394] 62272950 62274750 1801

[1395] 62282050 62285250 3201

[1396] 62362950 62364450 1501

[1397] 62367750 62371150 3401

[1398] 62404450 62405650 1201

[1399] 62407650 62409450 1801

[1400] 62426850 62428550 1701

5 Visualisations

The visualisations in the following two subsections manipulate matrices of scores (such as coverages
or intensities) in some way, such as clustering them, or summarising them by some defined grouping.
The common interface for creating matrices of scores at regular distances from a reference point,
such a TSS, is the featureScores function. The following example samples smoothed coverages
between 5000 bases upstream of gene TSSs, and 1000 bases downstream of the TSS, at 1000 base
intervals, in the PrEC and LNCaP immunoprecipitated samples. The scores are then subtracted
from each other.

prostateCvgs <- featureScores(samples.list[c("PrEC IP", "LNCaP IP")], gene.anno,

up = 5000, down = 1000, freq = 1000, s.width = 500)

prostateCvgs

10

An object of class 'ScoresList'.

Tables: PrEC IP, LNCaP IP.

Features:

GRanges with 24966 ranges and 2 elementMetadata values:

seqnames ranges strand | name symbol

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr1 [781253, 783614] + | 7896759 LOC643837

[2] chr1 [850983, 869824] + | 7896761 SAMD11

[3] chr1 [885829, 890958] + | 7896779 KLHL17

[4] chr1 [891739, 900345] + | 7896798 PLEKHN1

[5] chr1 [938709, 939782] + | 7896817 ISG15

[6] chr1 [945365, 981355] + | 7896822 AGRN

[7] chr1 [1092346, 1092441] + | 7896859 ---

[8] chr1 [1093105, 1093195] + | 7896861 ---

[9] chr1 [1094247, 1094330] + | 7896863 ---

...

[24958] chrY [19611913, 19614093] - | 8177222 CD24

[24959] chrY [19640262, 19640361] - | 8177227 ---

[24960] chrY [20076704, 20124427] - | 8177229 BCORL2

[24961] chrY [20326698, 20366197] - | 8177232 JARID1D

[24962] chrY [21036941, 21090502] - | 8177261 TTTY10

[24963] chrY [21954227, 21957634] - | 8177273 ---

[24964] chrY [22001970, 22008519] - | 8177280 ---

[24965] chrY [22154873, 22165940] - | 8177282 TTTY13

[24966] chrY [22852332, 22854411] - | 8177344 TTTY5

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr6 chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA NA

Region: 5000 bases up to 1000 bases down.

Smoothing: 500, 500 bases.

Sampling : 1000 bases.

prostateCvgs@scores <- list(tables(prostateCvgs)[[2]] - tables(prostateCvgs)[[1]])

names(prostateCvgs) <- "LNCaP - PrEC"

This object will be used in the next few visualisation functions.

5.1 Integrative analysis of epigenetics and gene expression

Epigenomic data is often gathered with other data, such as gene expression. It may be of interest
to see the profile of epigenetic enrichment at a variety of distances from TSSs, stratified by gene
expression level. The binPlots function is a convenient way to look at these interactions.

binPlots(prostateCvgs, ordering = expr, ord.label = "Cancer-Normal t-stat",

plot.type = "heatmap", n.bins = 50)

11

Signal Intensity

−
2e

−
08

 3
e−

08
 7

e−
08

 1
e−

07
 2

e−
07

 2
e−

07
 2

e−
07

 3
e−

07
 3

e−
07

 4
e−

07
 4

e−
07

−5000 −4000 −3000 −2000 −1000 0 1000

Relative Position

B
in

−40 −20 0 20

Cancer−Normal t−stat

0:
n.

bi
ns

Signal: LNCaP − PrEC Order: t−stat

Enrichment levels (here, differential enrichment) are split into bins based on the moderated t-
statistics for change in expression. Signal for (differential) enrichment is averaged over genes in the
bin and plotted as a heatmap. As expected, the genes that are silenced in cancer exhibit higher
levels of DNA methylation around their TSS, compared to normal cells. This visualization can be
represented as a lineplot, by setting plot.type= "line" (see below).

binPlots(prostateCvgs, ordering = expr, ord.label = "Cancer-Normal t-stat",

plot.type = "line", n.bins = 10)

12

−5000 −3000 −1000 0 1000

0.
0e

+
00

5.
0e

−
08

1.
0e

−
07

1.
5e

−
07

2.
0e

−
07

2.
5e

−
07

Relative Position

S
ig

na
l

Cancer−Normal t−stat

(−37.9,−2.37]
(−2.37,−1.19]
(−1.19,−0.658]
(−0.658,−0.289]
(−0.289,0.0453]
(0.0453,0.411]
(0.411,0.892]
(0.892,1.62]
(1.62,2.86]
(2.86,26.5]

Signal: LNCaP − PrEC Order: t−stat

This strategy is useful for determining the location (e.g. relative to TSS) signal most often
occurs relative to expression and can be coupled to ranked gene expression levels, instead of differ-
ential expression. These determined regions of interest relative to TSS can then be used in targeted
analyses (e.g. blocksStats, see above).

5.2 Gene Set Enrichment

Sets of genes (e.g. genes disrupted in a certain type of cancer, or differentially expressed between
experimental conditions) are ever-present in genomics research. For such genes of interest, the
profile of intensities or counts can be plotted versus the profile of randomly selected gene lists
using the profilePlots function. In the following example, the DNA methylation profile of genes
silenced in cancer is significantly different to random sets of genes.

which.loss <- which(expr < -3)

profilePlots(prostateCvgs,

gene.lists = list(`Downregulated Genes` = which.loss),

cols = "red")

13

−5000 −4000 −3000 −2000 −1000 0 1000

5.
0e

−
08

1.
5e

−
07

2.
5e

−
07

LNCaP − PrEC

Relative Position

S
ig

na
l

Downregulated Genes

The blue region forms the “null” distribution that was created by sampling random gene lists of
the same size as the user-specified gene list a number of times, as set by the nSamples parameter.
By default, the null region is a between the 0.025 and 0.975 quantiles of the null distribution. In
this example, it appears that the genes silenced in cancer have a significant gain of methylation
2000 bases either side of the TSSs, in comparison to random sets of other genes.

5.3 Clustering epigenomic signals

clusterPlots is another way to look at read depth at regular positions around a feature (e.g.
TSS). The first step is to use featureScores to get the coverage tables, which essentially gives
a list of coverage tables for the samples used. clusterPlots is then called, which does k-means
clustering, or if the user wants to use their own clustering algorithm, the cluster ID of each feature
can be passed in. In any case, the features are grouped by their cluster memberships and plotted as
either a heatmap with one row for every feature, or a set of lineplots showing the average coverage
of all features belonging to each cluster. If gene expression data is also available, it can be plotted
alongside the heatmaps.

cvgs <- featureScores(H1samples[1:3], gene.anno, up = 5000, down = 2000, dist = "base",

freq = 200, s.width = 500)

cp <- clusterPlots(cvgs, scale = function(x) sqrt(x), plot.type = "heatmap",

t.name = "H1 Cells", n.clusters = 10)

null device

1

14

Here, we have scaled the signal using the square root transformation. If you don’t specify this,
no scaling is done.

Note that we have saved the output of clusterPlots (a ClusteredCoverageList object),
which can be plotted in alternative ways, such as line plots:

table(clusters(cp))

1 2 3 4 5 6 7 8 9 10

950 5399 1187 1770 2175 2450 5675 1698 1892 1770

clusterPlots(cp, plot.type = "line", t.name = "H1 Cells")

15

0%

50%

100%

S
co

re
H3K4me1

−5000 −3600 −2200 −800 0 800 1800

Relative Position

H3K27me3 H3K36me3 ID

1

2

3

4

5

6

7

8

9

10

H1 Cells

Also, this allows users to do their own clustering and use clusterPlots for the plotting,
or to extract the cluster identifiers for downstream analyses (e.g. functional category analysis).
Furthermore, in addition to specifying a vector of expression values and plotting it alongside the
clustered epigenetic signal, users can give an additional vector in the sort.data argument to sort
on within a cluster (e.g. gene length, CpG density, etc.).

6 Utility Functions

The function described in this section perform useful tasks that are commonly made with epigenetic
data.

6.1 Windows and Counts

Often, it is required to create a set of windows covering the entire genome, for some analysis. The
function genomeBlocks does this.

chrs <- c(50000, 10000)

names(chrs) <- c("chr1", "chr2")

genomeBlocks(chrs, width = 5000)

GRanges object with 12 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 1-5000 *

[2] chr1 5001-10000 *

[3] chr1 10001-15000 *

[4] chr1 15001-20000 *

16

[5] chr1 20001-25000 *

...

[8] chr1 35001-40000 *

[9] chr1 40001-45000 *

[10] chr1 45001-50000 *

[11] chr2 1-5000 *

[12] chr2 5001-10000 *

seqinfo: 2 sequences from an unspecified genome; no seqlengths

This example makes a GRanges object of 5 kb windows along both example chromosomes.

annotationCounts is useful to tally the counts of reads surrounding some set of genomic land-
marks. annotationBlocksCounts is the analogous function for counting in user-specified regions
of the genome.

annotationCounts(samples.list, head(gene.anno, 10), up = 2000, down = 500,

seq.len = 300)

PrEC input PrEC IP LNCaP input LNCaP IP

7896759 25 35 29 69

7896761 10 2 8 36

7896779 11 15 10 14

7896798 19 61 15 83

7896817 20 41 22 46

7896822 11 17 8 28

7896859 24 35 8 70

7896861 21 57 6 78

7896863 18 85 8 85

7896865 22 92 18 90

This example counts reads that fall within 2000 bases upstream and 500 bases downstream of (the
first ten) TSSs in the gene annotation table. Reads are extended to 300 bases.

6.2 Characteristics of the DNA sequence

It would be useful to know when seeing a lack of reads in some windows, if the mappability of
the window is the cause. Some regions of the genome have low complexity sequence, where reads
are unlikely to map uniquely to. The function mappabilityCalc calculates the percentage of each
region that can be mapped to by reads generated from the experiment. It operates on a user-created
BSgenome object of a masked genome sequence. The definition of which bases are mappable and
which are not depends on the read length of the sequencing technology used. Therefore, there is
no one masked BSgenome object that can be used by all users. Note that by masking, we mean
replacing the unmappable reference sequence bases by ‘N’, not creating a built-in mask.

library(BSgenome.Hsapiens36bp.UCSC.hg18mappability)

locations <- data.frame(chr = c("chr4", "chr9"),

position = c(50000000, 100000000))

mappabilityCalc(locations, organism = Hsapiens36bp, window = 500, type = "center")

17

<NA> <NA>

0.000 0.998

The region on chromosome 4 is completely unmappable, whereas the region on chromosome 9 is
almost completely mappable.

Next, we may be interested in determining CpG density of a region.

cpgDensityCalc(head(gene.anno, 10), window = 100, organism = Hsapiens)

[1] 0 10 16 7 10 20 6 4 6 4

This example calculates the CpG density of a window 100 bases either side of the TSS for the first
ten genes in the gene annotation table. By default, the CpG density is just the raw number of
counts in the windows. There are also linearly, exponentially and logarithmically decaying weight
schemes available.

7 Summary

Repitools has a number of useful functions for quality checking, analysis, and comparison of trends.
Many of the functions work seamlessly on array data, as well as sequencing data. Also, there are
numerous utility functions, that perform some common task in the investigation of epigenomic
data. Consult the package documentation for instructions on how to use functions that were not
demonstrated by this vignette.

8 Environment

This vignette was created in:

sessionInfo()

R version 2.14.1 (2011-12-22)

Platform: x86_64-pc-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] BSgenome.Hsapiens36bp.UCSC.hg18mappability_1.0

[2] cluster_1.14.1

18

[3] gplots_2.10.1

[4] KernSmooth_2.23-7

[5] caTools_1.12

[6] bitops_1.0-4.1

[7] gdata_2.8.2

[8] gtools_2.6.2

[9] Ringo_1.18.0

[10] Matrix_1.0-2

[11] lattice_0.20-0

[12] limma_3.10.2

[13] RColorBrewer_1.0-5

[14] Biobase_2.14.0

[15] edgeR_2.0.5

[16] BSgenome.Hsapiens.UCSC.hg18_1.3.17

[17] BSgenome_1.22.0

[18] Biostrings_2.22.0

[19] GenomicRanges_1.6.6

[20] IRanges_1.12.5

[21] Repitools_1.0.11

loaded via a namespace (and not attached):

[1] annotate_1.32.0 AnnotationDbi_1.16.0 DBI_0.2-5

[4] genefilter_1.36.0 RSQLite_0.10.0 splines_2.14.1

[7] survival_2.36-10 tools_2.14.1 xtable_1.6-0

19

	Introduction
	Example Datasets
	Quality Checking
	Analyses
	Statistics of Differential Enrichment
	Domains of Concordant Change
	Finding enriched regions in a single sample

	Visualisations
	Integrative analysis of epigenetics and gene expression
	Gene Set Enrichment
	Clustering epigenomic signals

	Utility Functions
	Windows and Counts
	Characteristics of the DNA sequence

	Summary
	Environment

