
covEB package

1 Introduction

In Bioinformatics, one commonly used tool in differential expression analysis has been an empirical
Bayes approach to estimating variances. This method was shown to reduce the false positive
rates, particularly at low sample sizes. Small sample sizes are by monetary necessity, common
place in experiments. This method, combines information across genes, shrinking the gene-specific
variances to a common variance across all genes. Because this approach is used in linear regressions,
we hypothesised that a similar methodology could be used with correlations as these are linear
regressions between two variables. Correlation matrices are important in inferring relationships
and networks between regulatory or signalling elements. As the sample sizes for experiments are
small, these correlations can be difficult to estimate and can exhibit high false positive rates. This
package is designed to reduce these false positive rates and therefore direct the researcher to higher
value relationships that are more likely to be validated experimentally. At a genome-wide scale
estimation of correlation matrices can also be computationally demanding. This package provides
an empirical Bayes approach to improve covariance estimates for gene expression, where we assume
the covariance matrix has block diagonal form. These covariance matrices can be estimates from
either microarray or RNA-seq data.

1.1 A Simple Example

We show a simple example of how to run the empirical Bayes estimation, these are trivial examples
but serve to illustrate the syntax and parameters of the function. We use the package mvtnorm to
simulate data from a multivariate normal distribution.

> library(covEB)

> sigma <- matrix(c(4,2,2,3), ncol=2)

> x <- rmvnorm(n=500, mean=c(1,2), sigma=sigma)

> samplecov<-cov(x)

> test<-EBsingle(samplecov,startlambda=0.4,n=500)

In this example we pass the sample covariance matrix (samplecov) to the function EBsingle. In
addition we give the number of samples used to calculate the covariance matrix, in this case 500.
The third parameter startlambda is a thresholding parameter that is used to determine the block
diagonal structure of the matrix. Once the block diagonal structure is known, the average of the
correlations within each block is used to create the block diagonal prior that has a flat correlation
structure within each block. An alternative approach is shown below in test2 where the groupings
of the variables is assumed to be known, this information is then passed to the function as a list of
elements in each block.

> sigma <- matrix(c(4,2,0.5,0.5,2,3,0.5,0.5,0.5,0.5,3,2.5,0.5,0.5,2.5,4), ncol=4)

> x <- rmvnorm(n=500, mean=c(1,2,1.5,2.5), sigma=sigma)

> samplecov<-cov(x)

> vnames<-paste("a",1:4,sep="")

> rownames(samplecov)<-vnames

> colnames(samplecov)<-vnames

> test2<-EBsingle(samplecov,groups=list(c("a1","a2"),c("a3","a4")),n=500)

1

1.2 Example with biological data

Here we use a data set available from bioconductor to demonstrate how the covEB package can be
used in the pipeline analysis of gene expression data. We load the data package curatedBladderData
that contains gene expression from bladder cancer patients in the R object type expression set. We
get the gene expression data matrix, this contains around 5,000 probes from microarrays with 40
samples and store this in the matrix Edata.

> library(curatedBladderData)

> data(package="curatedBladderData")

> data(GSE89_eset)

> Edata<-exprs(GSE89_eset)

We filter the data to include those that are ’expressed’ as defined as being in the top 20th
percentile according to variance across samples. This gives us just over a thousand genes, we then
calculate the covariance matrix between the genes. This covariance matrix is our input into the
covEB function.

> variances<-apply(Edata,1,var)

> edata<-Edata[which(variances>quantile(variances,0.8)),]

> covmat<-cov(t(edata))

> cormat<-cov2cor(covmat)

> #we are now able to use covmat as input into covEB:

> out<-EBsingle(covmat,startlambda=0.5,n=40)

We now provide an example of how the output may be used. We can visualise the correlations
between genes using functions available in R and its associated packages. First we use simple
thresholding to define significant correlations, we create adjacency matrices for graphs, setting
correlations below 0.5 to zero.

> outmat<-out

> outmat[abs(out)<0.5]<-0

> outmat[abs(out)>=0.5]<-1

We find connected subgraphs in the adjacency matrix using the clusters function and then select
one of the subgraphs (number 6) that has 12 genes in it. Finally, for visualisation purposes, we
remove edges between nodes and themselves (i.e. the diagonal)

> clusth<-clusters(graph.adjacency(outmat))

> sel<-which(clusth$membership==6)

> subgraphEB<-outmat[sel,sel]

> subgraph<-cormat[sel,sel]

> subgraph[subgraph<0.5]<-0

> subgraph[subgraph>=0.5]<-1

> diag(subgraph)<-0

> diag(subgraphEB)<-0

We can now plot these graphs, there are 6 fewer edges after using covEB. On a larger network this
would help the interpretability of the model further.

> plot(graph.adjacency(subgraph,mode="undirected"))

> plot(graph.adjacency(subgraphEB,mode="undirected"))

2

2 References

Champion, C. J. (2003). Empirical Bayesian estimation of normal variances and covariances. Jour-
nal of Multivariate Analysis, 87(1), 60-79. http://doi.org/10.1016/S0047-259X(02)00076-3

Benjamin Frederick Ganzfried, Markus Riester, Benjamin Haibe-Kains, Thomas Risch, Svitlana
Tyekucheva, Ina Jazic, Xin Victoria Wang, Mahnaz Ahmadifar, Michael Birrer, Giovanni Parmi-
giani, Curtis Huttenhower, Levi Waldron. curatedOvarianData: Clinically Annotated Data for the
Ovarian Cancer Transcriptome, Database 2013: bat013 doi:10.1093/database/bat013 published
online April 2, 2013.

3

	Introduction
	A Simple Example
	Example with biological data

	References

