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1 Data Import

To import data using the oligo package, the user must have data at the probe-level. This

means that if Affymetrix data are to be imported, the user is expected to have CEL files; if

Nimblegen data are used instead, then XYS files are to be available.

Once sets of such files are available, the user can two tools, depending on the array

manufacturer, to import the data: read.celfiles - for CEL files; and read.xysfiles -

for XYS files. To assist the user on obtaining the names of the CEL or XYS files, the

package provides two functions, list.celfiles and list.xysfiles, which accept the same

arguments as the list.files function defined in the R base package. The basic usage of

the package tools to import CEL or XYS files present in the current directory consists in

combining the read.files functions with their list.files counterparts, as shown below,

in a hypothetical example:

R> library(oligo)

R> celFiles <- list.celfiles()

R> affyRaw <- read.celfiles(celFiles)

R> xysFiles <- list.xysfiles()

R> nimbleRaw <- read.xysfiles(xysFiles)

The oligo package will attempt to identify the annotation package required to read the

data in. If this annotation package is not installed, oligo will try to download it from

BioConductor. If the annotation is not available on BioConductor, the user should use the

pdInfoBuilder package to create an appropriate annotation. In case oligo fails to identify the

annotation package’s name correctly, the user can use the pkgname argument available for

both read.celfiles and read.xysfiles.

From this point on, this document provides examples on the usage of the oligo package

using datasets available in the oligoData package.
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Object Name Description
affyExpressionFS Latin Square - Affymetrix U95A

nimbleExpressionFS Sample Expression Dataset Nimbeglen
affyExonFS Exon Sample Dataset - Human
affySnpFS HapMap samples on XBA Array

nimbleTilingFS Sample ChIP-chip dataset

Table 1: Datasets used in this document.

2 Preprocessing Expression Arrays

2.1 Affymetrix Expression

The dataset used in this example corresponds to the Latin Square Data for Expression

Algorithm Assessment on the Human Genome U95 platform, made available by Affymetrix

on their website1. To be used with oligo, requires the availability of the pd.hg.u95a annotation

package, built with the pdInfoBuilder package.

After the annotation package is installed, the next step is to load oligo and identify the

files to be used in the analysis. The list.celfiles function can be used to appropriately

list Affymetrix CEL files. If CEL files were available in a directory called expressionData,

then, in the snippet below, the celFiles would contain the CEL filenames, including the

full path.

R> library(oligo)

R> celFiles <- list.celfiles("expressionData", full.names=TRUE)

Importing the CEL files is achieved with the read.celfiles function. The function

will, in general, correctly identify the annotation package to be used with the experimental

data being imported, but the user can specify the pkgname argument to force the use of a

particular one, if for some reason this is required. Note that the snippet below corresponds

to a hypothetical example, in which we would read CEL files saved in a directory called

expressionData.
R> affyExpressionFS <- read.celfiles(celFiles, pkgname="pd.hg.u95a")

In reality, the affyExpressionFS object is already available in the oligoData package.

1http://www.affymetrix.com/support/technical/sample_data/datasets.affx
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The example below demonstrates how it could be loaded.
R> library(oligoData)

R> data(affyExpressionFS)

The object affyExpressionFS belongs to the ExpressionFeatureSet class, as it corre-

sponds to expression data. The object, like all FeatureSet-like objects, represents features

in the rows and samples in the columns and can be easily subsetted, using the standard [

operator. All the manipulation structure is inherited through te tight integration between

oligo and Biobase, whose documentation we recommend to the interested reader.
R> class(affyExpressionFS)

[1] "ExpressionFeatureSet"

attr(,"package")

[1] "oligoClasses"

Figure 1 demonstrates how the image method can be used to generate pseudo-images of

the samples. In this particular plot, we use the first sample as an example and a grayscale

palette for plotting.
R> image(affyExpressionFS, 1, col=gray((64:0)/64))

1521a99hpp_av06.CEL − exprs

Figure 1: Pseudo-image, used for visual assessment of the array, for sample
1521a99hpp_av06.CEL.

The user can evaluate the distribution of the observed data by using the hist method,

which will produce smoothed histograms for each sample available in the dataset. Before
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plotting, the method transforms the data using the function passed to the transfo argument,

whose default is log2, explaining why the plot is shown on the log2 scale.
R> hist(affyExpressionFS)
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Figure 2: Smoothed histograms for samples in the dataset.

Another approach to assess the data distribution is to use the boxplot method. On

FeatureSet objects, the method will automatically transform the data to the log2 scale, but

this is easily modified through the transfo argument, which takes a function as a valid value.
R> boxplot(affyExpressionFS)

Plotting log-ratio versus average intensity can often reveal intensity effects on log-ratios,

as shown by the MA plot on Figure 4. The argument arrays can be specified to determine

which samples will be plotted and the lowessPlot is a logical flag to indicate that the user

wants a lowess curve to be overlapped to the data points.
R> MAplot(affyExpressionFS, which=1, ylim=c(-1, 1))

The annotation packages used by oligo store feature sequences. This is done through

instances of DNAStringSet objects implemented in the Biostrings package. The sequences

for PM probes can be easily accessed via the pmSequence function, as shown below.
R> pmSeq <- pmSequence(affyExpressionFS)

R> pmSeq[1:5]

A DNAStringSet instance of length 5

width seq
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Figure 3: Boxplot showing the distribution of the observed log2-intensities on the sample
dataset. The boxplot method implemented in oligo follows the standards of the original
method used by R.
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Figure 4: The MA plot can be used to assess the dependence of log-ratios on average log-
intensities.
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[1] 25 GCTGCCCACAGTGACCGACCAGGAG

[2] 25 GCAGCCACCAGTGGACCTAGCCTGG

[3] 25 CAGCCACCAGTGGACCTAGCCTGGA

[4] 25 CGCATCCACGTGAACTTGAGCACTG

[5] 25 GGCTTCACAGTCACTCGGCTCAGTG

When importing the data, oligo does not impose any transformation, so one needs to

manually apply, for example, the log2 transform to the intensities of PM probes, which can

be accessed with the pm function, as needed. Below, we present how to centralize the log2-PM

intensities for each sample in affyExpressionFS.
R> pmsLog2 <- log2(pm(affyExpressionFS))

The dependence of intensity on probe sequence is a well established fact on the microarray

literature. The use of the oligo package simplifies significantly the observation of this event,

as it provides simple access to both observed intensities and annotation. Below, we estimate

the affinity splines coefficients (?).
R> coefs <- getAffinitySplineCoefficients(pmsLog2, pmSeq)

On Figure 5, we show how the results above can be used to estimate the base-position

effects on the log2-intensities observed for the first sample in the dataset. The getBasePro-

file function provides a simple way of using the affinity coefficients to estimate the effects

of interest. It accepts a plot argument, which takes logical values, to make the plot and re-

turns, invisibly, the estimated effects. All the arguments that can be passed to the matplot

function can also be passed to getBaseProfile.
R> colors <- darkColors(4)

R> xL <- "Base Position"

R> yL <- "Effect"

R> pchs <- c("A", "C", "G", "T")

R> getBaseProfile(coefs[,1], plot=TRUE, pch=pchs, type="b", xlab=xL, ylab=yL,

lwd=3, col=colors, ylim=c(-.4, .4))

Tools implemented in other packages can be used in conjunction with oligo to investi-

gate different hypothesis. The example below shows how the alphabetFrequency function,

defined by the Biostrings can be used to determine the GC content of the probe sequences

accessed by oligo.
R> counts <- Biostrings::alphabetFrequency(pmSeq, baseOnly=TRUE)

R> GCcontent <- ordered(counts[, "G"]+counts[, "C"])
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Figure 5: Sequence effect for the first sample in the dataset. These results have been reported
in detail elsewhere, but can be easily reproduced with the use of the oligo package.

In addition to Figure 5, we can also plot the log2-intensities as a function of the GC

content computed above. Figure 6 presents the strong dependency of log2-intensities on GC

contents for sample 1, which is also present in all other samples.
R> colors <- seqColors(nlevels(GCcontent))

R> xL <- "GC Frequency in 25-mers"

R> yL <- expression(log[2]~intensity)

R> boxplot(pmsLog2[,1]~GCcontent, xlab=xL, ylab=yL, range=0, col=colors)

To preprocess expression data, oligo implements the RMA algorithm (??). The rma

method, as shown below, proceeds with background subtraction, normalization and summa-

rization using median-polish.
R> ppData <- rma(affyExpressionFS)

The results are returned in an ExpressionSet instance and used in downstream analyses,

as currently done by several strategies for microarray data analysis and described elsewhere.
R> class(ppData)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

At this point, the user can proceed with, for example, differential expression analyses.

The methodologies involved in this step make use of several other packages, like limma
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Figure 6: On this boxplot stratified by GC content, we can observe the strong dependency
of log2-intensities on the number of G or C bases observed in the probe sequency.

and genefilter. When preprocessing the data, oligo stores the summaries in a matrix called

exprs, present in the assayData data slot of the ExpressionSet object. Therefore, the only

restriction the additional strategies used with the preprocessed data have is to be aware that

the processed data can be easily accessed with the exprs method.

2.2 Nimblegen Expression

This section presents a non-trivial use of the oligo Package for the analysis of NimbleGen

Expression data. This vignette follows the structure of the chapter From CEL files to a

list of interesting genes by R. A. Irizarry in Bioinformatics and Computational Biology

Solutions Using R and Bioconductor, which shows a case study for Affymetrix Expression

arrays.

In order to analyze microarray data using oligo, the user is expected to have installed

on the system a package with the annotation for the particular array design on which the

experiment was performed. For the example in question here, the design is hg18 60mer expr

and the annotation package associated to it is pd.hg18.60mer.expr, which is built by using
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the pdInfoBuilder package.

2.2.1 Initialization of the environment

On this particular example, we will read XYS files instead of loading the FeatureSet object

already available through the oligoData package (the maqc object that we will create below is

exactly the nimbleExpressionFS data object provided by the oligoData package). We start

by loading the packages that are going to be used in this session. The maqcExpression4plex

package provides a set of six samples on the MAQC Study; the set is comprised of samples

on two groups: universal reference and brain. The remaining packages offer additional

functionality, like tools for filtering, plotting and visualization.
R> library(oligo)

R> library(maqcExpression4plex)

R> library(genefilter)

R> library(limma)

Once the package is loaded, we can easily get the location of the XYS files that contain

the intensities by calling list.xysfiles, which takes the same arguments as list.files.

To minimize the chance of problems, we strongly recommend the use of full.names=TRUE.
R> extdata <- system.file("extdata",

package="maqcExpression4plex")

R> xys.files <- list.xysfiles(extdata,

full.names=TRUE)

R> basename(xys.files)

[1] "9868701_532.xys" "9868901_532.xys" "9869001_532.xys"

[4] "9870301_532.xys" "9870401_532.xys" "9870601_532.xys"

To read the XYS files, we provide the read.xysfiles function, which also takes phen-

oData, experimentData and featureData objects and returns an appropriate subclass of

FeatureSet .
R> theData <- data.frame(Key=rep(c("brain", "universal reference"), each=3))

R> rownames(theData) <- basename(xys.files)

R> lvls <- c("channel1", "channel2", "_ALL_")

R> vMtData <- data.frame(channel=factor("_ALL_", levels=lvls),

labelDescription="Sample type")

R> pd <- new("AnnotatedDataFrame", data=theData, varMetadata=vMtData)

R> maqc <- read.xysfiles(xys.files, phenoData=pd)
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Checking designs for each XYS file... Done.

Allocating memory... Done.

Reading /Users/carval03/Rlibs/2.15/maqcExpression4plex/extdata/9868701_532.xys.

Reading /Users/carval03/Rlibs/2.15/maqcExpression4plex/extdata/9868901_532.xys.

Reading /Users/carval03/Rlibs/2.15/maqcExpression4plex/extdata/9869001_532.xys.

Reading /Users/carval03/Rlibs/2.15/maqcExpression4plex/extdata/9870301_532.xys.

Reading /Users/carval03/Rlibs/2.15/maqcExpression4plex/extdata/9870401_532.xys.

Reading /Users/carval03/Rlibs/2.15/maqcExpression4plex/extdata/9870601_532.xys.

R> class(maqc)

[1] "ExpressionFeatureSet"

attr(,"package")

[1] "oligoClasses"

2.2.2 Exploring the feature-level data

The read.xysfiles function returns, in this case, an instance of ExpressionFeatureSet and

the intensities of these files are stored in its exprs slot, which can be accessed with a method

with the same name.
R> exprs(maqc)[10001:10010, 1:2]

9868701_532.xys 9868901_532.xys

10001 734.67 742.22

10002 4786.11 4434.67

10003 25600.33 26154.89

10004 1078.56 1092.78

10005 3056.44 3128.33

10006 310.22 385.00

10007 NA NA

10008 NA NA

10009 599.44 713.00

10010 28711.67 29794.67

The boxplot method can be used to produce boxplots for the feature-level data.
R> boxplot(maqc, main="MAQC Sample Data")

Similarly, a smoothed histogram for the feature-level data can be obtained with the hist

method.
R> hist(maqc, main="MAQC Sample Data")
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Figure 7: Distribution of log2-intensities of samples on the MAQC dataset.

6 8 10 12 14 16

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

MAQC Sample Data

log−intensity

de
ns

ity

Figure 8: Smoothed histogram of log2-intensities of samples on the MAQC dataset.
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2.2.3 RMA algorithm

The RMA algorithm can be applied to the raw data of expression arrays. It is available via the

rma method. The algorithm will perform background subtraction, quantile normalization

and summarization via median polish. The result of rma is an instance of ExpressionSet

class, which also contains an exprs slot and method.
R> eset <- rma(maqc)

Background correcting

Normalizing

Calculating Expression

R> class(eset)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

R> show(eset)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 24000 features, 6 samples

element names: exprs

protocolData

rowNames: 9868701_532.xys 9868901_532.xys ...

9870601_532.xys (6 total)

varLabels: exprs dates

varMetadata: labelDescription channel

phenoData

rowNames: 9868701_532.xys 9868901_532.xys ...

9870601_532.xys (6 total)

varLabels: Key

varMetadata: channel labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: pd.hg18.60mer.expr

R> exprs(eset)[1:10, 1:2]

9868701_532.xys 9868901_532.xys

NM_000014 12.286393 12.272719

NM_000015 4.455020 4.625539

NM_000016 12.386405 12.203391

NM_000017 8.516991 8.541788

NM_000018 12.578168 12.414070

NM_000019 11.698035 11.636985

NM_000020 8.910401 9.209599
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NM_000021 11.763186 11.810772

NM_000022 8.918243 8.445262

NM_000023 8.937284 9.075812

The boxplot and hist methods are also implemented for ExpressionSet objects. Note that

rma’s output is in the log2 scale, so we call such methods using the argument transfo=identity,

so the data are not transformed in any way.
R> boxplot(eset, transfo=identity, main="After RMA")

R> hist(eset, transfo=identity, main="After RMA")
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Figure 9: Boxplot and smoothed histogram for MAQC data after preprocessing.

2.2.4 Assessing differential expression

One simple approach to assess differential expression is to flag units with log-ratios greater (in

absolute value) than 1, i.e. a change greater than 2-fold when comparing brain vs. universal

reference.
R> e <- exprs(eset)

R> index <- which(eset[["Key"]] == "brain")

R> d <- rowMeans(e[, index])-rowMeans(e[, -index])

R> a <- rowMeans(e)

R> sum(abs(d)>1)

[1] 10043

Another approach is to use t-tests to infer whether or not there is differential expression.
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R> tt <- rowttests(e, factor(eset[["Key"]]))

R> lod <- -log10(tt[["p.value"]])

The MA plot can be used to visualize the behavior of the log-ratio as a function of average

log-intensity. Features with log-ratios greater (in absolute value) than 1 are candidates for

being classified as differentially expressed.
R> smoothScatter(a, d, xlab="Average Intensity", ylab="Log-ratio", main="MAQC Sample Data")

R> abline(h=c(-1, 1), col=2)
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Figure 10: MA plot for Brain vs. Universal Reference. The red lines show the threshold for
fold-change of 2, up or down, which correspond to log- fold-change of 1 and −1, respectively.

The use of t-tests allows us to use the volcano plot to visualize candidates for differential

expression. Below, we highlight, in blue, the top 25 in log-ratio and, in red, the top 25 in

effect size.

The limma Package can also be used to assess difference in expression between the two

groups.
R> design <- model.matrix(~factor(eset[["Key"]]))

R> fit <- lmFit(eset, design)

R> ebayes <- eBayes(fit)

R> lod <- -log10(ebayes[["p.value"]][,2])

R> mtstat<- ebayes[["t"]][,2]

The Empirical Bayes approach implemented in limma provides moderated t-statistic,

shown to have a better performance when compared to the standard t-statistic. Below, we
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Figure 11: Volcano plot for Brain vs. Universal Reference. The vertical red lines show the
threshold for fold-change of 2 (up or down), while the horizontal red line shows the threshold
for p-values at the 10−2 level. The probesets shown in solid blue diamonds are the top-25
probesets for log-ratio. The probesets highlighted in red are the top-25 in p-value.

reconstruct the volcano plot, but using the moderated t-statisic.
R> o1 <- order(abs(d), decreasing=TRUE)[1:25]

R> o2 <- order(abs(mtstat), decreasing=TRUE)[1:25]

R> o <- union(o1, o2)

R> smoothScatter(d, lod, main="Moderated t", xlab="Log-ratio", ylab="LOD")

R> points(d[o1], lod[o1], pch=18,col="blue")

R> points(d[o2], lod[o2], pch=1,col="red")

R> abline(h=2, v=c(-1, 1))

The topTable command provides us a way of ranking genes for further evaluation. In the

case below, we adjust for multiple testing by FDR and look at the Top-10 genes.
R> tab <- topTable(ebayes, coef=2, adjust="fdr", n=10)

R> tab

ID logFC AveExpr t P.Value

13761 NM_021871 8.513289 8.690249 118.41418 6.065725e-13

746 NM_000806 -8.476382 8.601508 -111.28880 9.413509e-13

169 NM_000184 8.563324 9.195145 110.72598 9.757636e-13

13760 NM_021870 9.084375 9.194213 108.86015 1.100550e-12

10465 NM_014841 -9.077481 10.074374 -106.82013 1.258312e-12

7467 NM_005277 -10.090787 9.892753 -104.77864 1.442549e-12

3286 NM_001034 8.318295 8.903851 102.58414 1.675802e-12

4919 NM_002421 7.271857 8.368350 96.45235 2.592701e-12

9238 NM_007325 -7.997233 9.064384 -96.40369 2.601981e-12
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Figure 12: Volcano plot for Brain vs. Universal Reference using moderated t-tests. The
vertical red lines show the threshold for fold-change of 2 (up or down), while the horizontal
red line shows the threshold for p-values at the 10−2 level. The probesets shown in solid blue
diamonds are the top-25 probesets for log-ratio. The probesets highlighted in red are the
top-25 in p-value (for the moderated t-test). Note that there is more overlap between the
top-25 for both log-ratio and p-value.

4201 NM_001622 9.710443 9.857097 95.50024 2.781356e-12

adj.P.Val B

13761 3.827849e-09 19.04051

746 3.827849e-09 18.81631

169 3.827849e-09 18.79731

13760 3.827849e-09 18.73289

10465 3.827849e-09 18.65980

7467 3.827849e-09 18.58377

3286 3.827849e-09 18.49864

4919 3.827849e-09 18.24048

9238 3.827849e-09 18.23831

4201 3.827849e-09 18.19750

3 Obtaining Genotype Calls from SNP Arrays

The oligo package can genotype, using the CRLMM algorithm, several Affymetrix SNP

arrays. To do so, the user will need, in addition to the oligo package, an annotation data

package specific to the designed used in the experiment. Although these annotation packages
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are created using the pdInfoBuilder package, the CRLMM algorithm requires additional hand-

curated data, which are included in the packages made available through the BioConductor

website. Table 2 describes the supported designs and the respective annotation packages.

Design Annotation Package
Mapping 50K XBA pd.mapping50k.xba240
Mapping 50K HIND pd.mapping50k.hind240
Mapping 250K NSP pd.mapping250k.nsp
Mapping 250K STY pd.mapping250k.sty

Genomewide SNP 5.0 pd.genomewidesnp.5
Genomewide SNP 6.0 pd.genomewidesnp.6

Table 2: SNP array designs currently supported by the oligo package and their respective an-
notation packages. These annotation packages are made available through the BioConductor
website and contain hand-curated data, required by the CRLMM algorithm.

As an example, we will use the 269 CEL files, on the XBA array, available on the HapMap

website2, which were downloaded and saved, uncompressed, to a subdirectory called snpData.

Therefore, we need to instruct the software to look for the files at the correct location. An

output directory should also be defined and that is the place where the summary files,

including genotype calls and confidences are stored. This output directory, which we chose

to call crlmmResults, must not exist prior to the CRLMM call, the software will take care

of this task.
R> library("oligo")

R> fullFilenames <- list.celfiles("snpData", full.names=TRUE)

R> outputDir <- file.path(getwd(), "crlmmResults")

Given the always increasing density of the SNP arrays, we developed efficient methods to

process these chips, reducing the required amount of memory even for large studies. Using

this approach, we process batches of SNPs at a time, saving partial results to disk. We

refer the interested reader to ? for detailed information on the CRLMM algorithm. The

genotyping strategy, in summary, has three steps: A) quantile normalizes against a known

reference distribution; B) summarizes the data to the SNP-allele level using median polish;

C) uses estimated parameters to classify the samples in genotype groups using Mahalanobis

2http://www.hapmap.org
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distance.

The summaries are average intensities and log-ratios, defined as across allele and within

strand, ie:

As =
θA,s + θB,s

2
(1)

Ms = θA,s − θB,s, (2)

where s defines the strand (antisense or sense). On the genomewide designs, SNP 5.0 and

6.0, the strand information is dropped. These summaries can be obtained via getA and getM

methods, which return arrays with dimensions corresponding to SNPs, samples and strands

(if applicable), respectively. These measures are later used for genotyping.

CRLMM involves running an EM algorithm to adjust for average intensity and fragment

length in the log-ratio scale. These adjustments may take long time to run, depending on

the combination of number of samples and computer resources available. Below, we show

the simplest way to call CRLMM, which requires only the file names and output directory.
R> if (!file.exists(outputDir))

crlmm(fullFilenames, outputDir)

The crlmm method does not return an object to the R session. Instead, it saves the

objects to disk, as not all systems are guaranteed to meet the memory requirements that

SnpSuperSet objects might need. For the user’s convenience, the getCrlmmSummaries will

read the information from disk and make a SnpCallSetPlus or SnpCnvCallSetPlus object

available to the user.

R> crlmmOut <- getCrlmmSummaries(outputDir)

R> calls(crlmmOut[1:5,1:2])

CEU_NA06985_XBA.CEL CEU_NA06991_XBA.CEL

SNP_A-1507972 3 3

SNP_A-1510136 3 3

SNP_A-1511055 3 3

SNP_A-1518245 2 3

SNP_A-1641749 3 3

R> confs(crlmmOut[1:5,1:2])
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CEU_NA06985_XBA.CEL CEU_NA06991_XBA.CEL

SNP_A-1507972 0.0009994257 0.0009994068

SNP_A-1510136 0.0009993051 0.0009993733

SNP_A-1511055 0.0009994257 0.0009994257

SNP_A-1518245 0.0009990180 0.0009994257

SNP_A-1641749 0.0009984225 0.0009970547

The genotype calls are represented by 1 (AA), 2 (AB) and 3 (BB). The confidence is the

predicted probability that the algorithm made the right call.

Summaries generated by the algorithm can also be accessed from the R session. The

options for summaries are ”alleleA”, ”alleleB”, ”alleleA-sense”, ”alleleA-antisense”, ”alleleB-

sense”, ”alleleB-antisense”. The options ”alleleA” and ”alleleB” are only available for SNP

5.0 and SNP 6.0 platforms. The other options are to be used with 50K and 250K arrays.

Below, we choose two SNPs to show the different configurations of the genotype groups.
R> snps <- paste("SNP_A-", c(1703121, 1725330), sep="")

R> LIM <- c(-4, 4)

Figure 13(a) represents a SNP for which genotyping is simplified by the good discrim-

ination of both strands. Figure 13(b) shows a SNP for which features on the antisense

strand have very good discrimination power, while no information (for classification) can be

extracted from the sense strand.

R> gtypes <- as.integer(calls(crlmmOut[snps[1],]))

R> plotM(crlmmOut, snps[1], ylim=LIM, xlim=LIM, col=gtypes)

R> gtypes <- as.integer(calls(crlmmOut[snps[2],]))

R> plotM(crlmmOut, snps[2], ylim=LIM, xlim=LIM, col=gtypes)

CRLMM was shown to outperform competing genotyping tools. We refer the reader to ?

for further details on this subject. The genotypes provided by CRLMM, and in this example

stored in crlmmOut, can be easily used with other BioConductor tools, like the snpStats

package, for downstream analyses.
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(b) SNP A-1725330 presents poor discrimination
on the sense strand. Because CRLMM does not
average across strands, it can perfectly predict the
genotype cluster each sample belongs to. On sim-
ilar scenarios, competing algorithms are known to
fail. Color scheme follows Figure 13(a).

4 Preprocessing Exon Arrays

On this section, we use colon cancer sample data for exon arrays, available on the Affymetrix

website3, to demonstrate the use of the oligo package to preprocess these data. The inter-

ested reader can download the CEL files and use read.celfiles to import the data. Here,

however, we will use the oligoData package to load this dataset, as shown below.
R> library(oligoData)

R> data(affyExonFS)

As already noted, oligo implements different classes depending on the nature of the data.

Therefore, a quick inspection, as in the snippet below, shows that affyExonFS is an Exon-

FeatureSet object. This is a especially interesting feature, as it allows methods to behave

differently depending on the object class.

R> affyExonFS

3http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx
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Generally, RMA will background correct, quantile normalize and summarize to the probe-

set level, as defined in the annotation packages. When working with an ExonFeatureSet

object, processing to the probeset level provides expression summaries at the exon level and

can be obtained by setting the argument target to "probeset", as presented below.
R> probesetSummaries <- rma(affyExonFS, target="probeset")

For Exon arrays, Affymetrix provides additional annotation files that define meta-probesets

(MPSs), used to summarize the data to the gene level. These MPSs are classified in three

groups – core, extended and full – depending on the level of confidence of the sources used

to generate such annotations. Additional values allowed for the target argument are "core",

"extended" and "full". The example below shows how gene level summaries can be ob-

tained through oligo.
R> geneSummaries <- rma(affyExonFS, target="core")

The results obtained from analyses performed with oligo can be easily combined with fea-

tures offered by other packages. As an example, we use the biomaRt package to obtain IDs of

probesets on the Human Exon array that map to Entrez Gene ID 10948 (ENSG00000131748).
R> library(biomaRt)

R> ensembl <- useMart("ensembl", dataset="hsapiens_gene_ensembl")

R> theIDs <- getBM(attributes="affy_huex_1_0_st_v2", filters="entrezgene",

values=10948, mart=ensembl)

R> names(theIDs) <- 'psets'

Combining this information with the annotation package associated to the data in affyEx-

onFS, we can get detailed facts on the probesets found to map to Entrez Gene ID 10948.

Below, we obtain, respectively, the MPS IDs, probeset IDs, probe IDs and start/stop posi-

tions for the probesets identified above.
R> library(AnnotationDbi)

R> conn <- db(affyExonFS)

R> fields <- 'meta_fsetid, pmfeature.fsetid, fid, start, stop'
R> tables <- 'featureSet, pmfeature, core_mps'
R> sql <- paste("SELECT", fields,

"FROM", tables,

"WHERE pmfeature.fsetid=featureSet.fsetid",

"AND featureSet.fsetid=core_mps.fsetid",

"AND pmfeature.fsetid=:psets")

R> probesetInfo <- dbGetPreparedQuery(conn, sql, theIDs)
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The availability of start and stop positions of the probesets improves the visualization of

the summaries at the exon level. If genomic coordinates were available for probes themselves,

visualization could be improved even more. To achieve this, we first obtain the sequences for

the probes identified above. We saw that the pmSequence method provides the sequences

for all PM probes identified on the chip but, instead, we directly load the Biostrings object

used to store the sequence information for these probes. This gives us access not only to the

sequences, but also to the probe IDs linked to them.
R> library(Biostrings)

R> data(pmSequence, package=annotation(affyExonFS))

Because probe IDs are available in the pmSequence object, we can easily restrict our

search to the probes listed in the probesetInfo object.
R> idx <- match(probesetInfo[["fid"]], pmSequence[["fid"]])

R> pmSequence <- pmSequence[idx,]

The pmSequence object behaves like a data.frame, but it is comprised of complex data

structures defined in Biostrings. Below, we modify its representation to make it a regular

data.frame object.
R> pmSequence <- data.frame(fid=pmSequence[["fid"]],

sequence = as.character(pmSequence[["sequence"]]),

stringsAsFactors=FALSE)

By joining the probesetInfo and pmSequence objects, we centralize the available probe

annotation.
R> probeInfo <- merge(probesetInfo, pmSequence)

The genomic coordinates in probeInfo refer to the probesets. To better visualize the

observed probe intensities, we would be better off if the coordinates were relative to the

probes. Below, we use the BSgenome.Hsapiens.UCSC.hg18 to obtain up-to-date genomic

coordinates. The coordinates are found by aligning the probe sequences to the reference

genome made available through the package. Because Entrez Gene ID 10948 is located on

chromosome 17, the search is limited to this region.
R> library("BSgenome.Hsapiens.UCSC.hg19")

R> chr17 <- Hsapiens[["chr17"]]

R> seqs <- complement(DNAStringSet(probeInfo[["sequence"]]))

R> seqs <- PDict(seqs)

24



R> matches <- matchPDict(seqs, chr17)

After matching the sequences, we update the genomic coordinates.
R> probeInfo[["start"]] <- unlist(startIndex(matches))

R> probeInfo[["stop"]] <- unlist(endIndex(matches))

With the updated coordinates, we reorder the probe information object, probeInfo, and

extract the probe intensities in the same order. The probe ID field, fid in probeInfo, pro-

vides direct access to the probes of interest. The exprs method is used to access the intensity

matrix of the affyExonFS object and immediately subsetted to the probes of interest. After

subsetting the observed intensities, we log2-transform the data.
R> probeInfo <- probeInfo[order(probeInfo[["start"]]),]

R> probeData <- exprs(affyExonFS)[probeInfo[["fid"]],]

R> probeData <- log2(probeData)

We use the updated genomic to estimate the probeset coverage. This information will be

used when plotting the data and will provide approximate delimiters of the probesets.
R> attach(probeInfo)

R> probesetStart <- aggregate(as.data.frame(start), list(fsetid=fsetid), min)

R> names(probesetStart) <- c("fsetid", "start")

R> probesetStop <- aggregate(as.data.frame(stop), list(fsetid=fsetid), max)

R> names(probesetStop) <- c("fsetid", "stop")

R> detach(probeInfo)

The psInfo object will store the probeset information (probeset ID, start and stop po-

sitions), as shown below. After ordering appropriately the data, the psInfo probeset is

attached, to simplify its usage during the R session.
R> psInfo <- merge(probesetStart, probesetStop)

R> psInfo <- psInfo[order(psInfo[["start"]]),]

R> psInfo[["fsetid"]] <- as.character(psInfo[["fsetid"]])

R> attach(psInfo)

R> probesetData <- exprs(probesetSummaries[fsetid,])

R> detach(psInfo)

To visualize the data processed by oligo, we will use the GenomeGraphs package. To

match the genome build used to update the probe coordinates, an archived version of the

database will be queried.
R> library(GenomeGraphs)

R> probeids <- as.character(probeInfo[["fsetid"]])

R> ensembl = useMart("ensembl", dataset="hsapiens_gene_ensembl")
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R> geneid <- "ENSG00000131748"

R> title <- makeTitle(text=geneid, color="darkred")

The raw data, in the log2 scale, will be represented by the raw object below, created with

the makeExonArray constructor.
R> attach(probeInfo)

R> raw <- makeExonArray(intensity=probeData,

probeStart=start,

probeEnd=stop,

probeId=probeids,

nProbes=rep(1, nrow(probeInfo)),

dp=DisplayPars(color="blue", mapColor="dodgerblue2"),

displayProbesets=FALSE)

R> detach(probeInfo)

The summarized data is also represented through an object created by makeExonArray .

The structure is identical to the one used above.
R> attach(psInfo)

R> exon <- makeExonArray(intensity=probesetData,

probeStart=start,

probeEnd=stop,

probeId=fsetid,

nProbes=rep(1, nrow(psInfo)),

dp=DisplayPars(color="seagreen",

mapColor="seagreen"),

displayProbesets=FALSE)

To represent the probesets designed by Affymetrix, we use an AnnotationTrack object.
R> affyModel <- makeAnnotationTrack(start = start,

end = stop,

feature = "gene_model",

group = geneid,

dp = DisplayPars(gene_model="darkgreen"))

R> detach(psInfo)

The gene and transcripts representations are build as follows. Affymetrix probes will be

represented in green, while the gene will be in orange; transcripts are represented in blue.
R> gene <- makeGene(id=geneid, biomart=ensembl)

R> transcript <- makeTranscript(id=geneid, biomart=ensembl)

R> legend <- makeLegend(c("Affymetrix", "Gene"), fill=c("darkgreen", "orange"))

Figure 13, generated with the gdPlot function, shows the representation of the log2-

intensities and summaries at the exon level. It also shows probesets, gene and transcripts on
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the region of interest.
R> gdPlot(list(title, raw, exon, affyModel, gene, transcript, legend))
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Affymetrix Gene

Figure 13: Visual representation of observed log2-intensities and summarized data at the
exon level for gene ENSG00000131748. The probes, gene and transcript are also represented,
respectively, in green, orange and blue.

Below, we identify the meta-probeset ID associated to the probes used above. Once that

is known, we can extract the proper gene-level summaries stored in geneSummaries.
R> mps <- unique(probeInfo[["meta_fsetid"]])

R> mps <- as.character(mps)

R> mps

[1] "3720343" "3720383"

Therefore, the standard accessors can be used to obtain the gene summaries for the unit

above. Figure 14 shows the expressions for gene ENSG00000131748 across the 33 samples

available on this dataset.
R> gSummaries <- exprs(geneSummaries[mps,])

R> x <- 1:length(gSummaries)

R> plot(x, gSummaries, xlab="Sample", ylab="Expression", main=geneid)
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Figure 14: Expression levels estimated through RMA at the gene level.

5 Interfacing with ACME to Find Enriched Regions Us-

ing Tiling Arrays

On this Section, we demonstrate how oligo can be easily combined with tools that rely

on the structure implemented in the Biobase package. Using a sample ChIP-chip dataset

kindly provided by NimbleGen, we could use the getNgsColorsInfo function to obtain the

information regarding channels and sample names for the XYS files saved on disk. The

getNgsColorsInfo parses the file names and, using the _532 and _635 strings in the names,

suggests channels and sample names for each XYS file available.
R> library(oligo)

R> info <- getNgsColorsInfo("tilingData", full=TRUE)

Combining the results in info with read.xyfiles2, we read the XYS files using a data

structure that simplifies the data management across different channels.
R> nimbleTilingFS <- read.xysfiles2(info[,2], info[,1], sampleNames=info[,3])

However, on this example, we will load the aforementioned dataset from the oligoData

package, as described below:
R> library(oligoData)

R> data(nimbleTilingFS)

R> nimbleTilingFS
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The user can access the channel specific data by calling the channel method. The resulting

object is an ExpressionSet object that the user can use as required.
R> c1 <- channel(nimbleTilingFS, "channel1")

R> c2 <- channel(nimbleTilingFS, "channel2")

Detailed information on the PM probes available on the array can be obtained by directly

querying the annotation package. The call below will extract the fid, fsetid, chromosome

and start position of each probe from the annotation package and order the results by

chromosome and start position.
R> fields <- 'fid, fsetid, chrom as chromosome, position as start'
R> sql <- paste("SELECT", fields,

"FROM pmfeature INNER JOIN featureSet USING(fsetid)",

"ORDER BY chrom, position")

R> annotPM <- dbGetQuery(db(nimbleTilingFS), sql)

Using the probe sequence, the end position of the probe can be easily obtained. We load

the sequences directly, so the fid field can be used to order the sequences appropriately.
R> data(pmSequence, package=annotation(nimbleTilingFS))

R> idx <- match(annotPM[["fid"]], pmSequence[["fid"]])

R> pmSequence <- pmSequence[idx,]

To obtain the end position, we use width, defined in the Biostrings package.
R> attach(annotPM)

R> library(Biostrings)

R> annotPM[["end"]] <- start+width(pmSequence[["sequence"]])-1

R> head(annotPM)

fid fsetid chromosome start end

1 392369 1655 chr1 56753 56808

2 286872 1655 chr1 56853 56909

3 229027 1655 chr1 56953 57007

4 386658 1655 chr1 57053 57114

5 85534 1655 chr1 57153 57202

6 170025 1655 chr1 57253 57307

The fid field corresponds to the row number in the nimbleTilingFS object. When

applied to the raw data object, the getM function returns a matrix with the log2-ratio of the

intensities. Below, we get the log2-ratios corresponding to the PM probes described in the

annotPM object.
R> ratioPM <- getM(nimbleTilingFS)[fid,]

R> dimnames(ratioPM) <- NULL
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R> detach(annotPM)

R> class(ratioPM)

[1] "matrix"

By converting annotPM to an AnnotatedDataFrame, it can be used in the featureData

slot of eSet-like objects.
R> annotPM <- as(annotPM, "AnnotatedDataFrame")

We will use the ACME package to calculate enrichment, using algorithms that are insen-

sitive to normalization strategies and array noise. To work with this package, we need to

create, first, an ACMESet object, which contains chromosome, start and end positions in

the featureData slot.
R> library(ACME)

R> acme <- new("ACMESet", exprs=ratioPM, featureData=annotPM)

The do.aGFF.calc function processes the ACMESet object, using a window size and

threshold to identify the positive probes in the object.
R> calc <- do.aGFF.calc(acme, window=1000, thresh=0.95)

The calc object is then used to find enriched regions with the findRegions function, as

shown below.
R> regs <- findRegions(calc)

R> head(regs)

Length TF StartInd EndInd Sample Chromosome Start End

1.chr1.1 37 FALSE 1 37 1 chr1 56753 356721

1.chr1.2 7 TRUE 38 44 1 chr1 356821 357621

1.chr1.3 8 FALSE 45 52 1 chr1 357721 611797

1.chr1.4 2 TRUE 53 54 1 chr1 611897 611997

1.chr1.5 11 FALSE 55 65 1 chr1 612097 613097

1.chr1.6 7 TRUE 66 72 1 chr1 613197 613797

Median Mean

1.chr1.1 5.164068e-01 3.799430e-01

1.chr1.2 4.321883e-06 3.704507e-06

1.chr1.3 1.451644e-03 4.556099e-03

1.chr1.4 9.630698e-05 9.630698e-05

1.chr1.5 1.776574e-02 1.303595e-01

1.chr1.6 9.630698e-05 5.924166e-05
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6 High Performance Computing Features

Starting on series 1.12.x, the oligo package offers high performance computing features:

• Support to larger datasets; and

• Support to parallel computing.

These features are initially available for RMA methods on Expression/Gene/Exon arrays

and will be implemented in other methods as necessity arrives.

The use of such features is as simple as loading the required packages (and registering a

parallel backend, if parallel computing is desired). The methods themselves are able to detect

if these experimental features are enabled and use them if possible, without any modification

of the method call.

6.1 Support to large datasets

The oligopackage uses the features implemented by the ff package to provide a better support

to large datasets. If the user prefers not to use the ff package, then regular R objects are

used and the usual memory restrictions apply.

The support to large datasets is enabled by simply loading the ff package. Once that is

done, oligo saves ff files to the directory pointed by ldPath().

R> library(oligo)

R> library(ff)

R> ldPath()

Methods (rma) uses batches to process data. When possible (eg., background correction),

it uses at most ocSamples() samples simultaneously at processing. For procedures that

process probes (like summarization), a maximum of ocProbesets() are used simultaneously.

Therefore, the user should tune these parameters for a better performance.

R> ocSamples()

R> ocSamples(50) ## changing default to 50

R> ocProbesets()

R> ocProbesets(100) ## changing default to 100
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R> library(oligo)

R> library(ff)

R> rawData <- read.celfiles(list.celfiles())

R> rmaRes <- rma(rawData)

R> exprs(rmaRes)[1:10,]

6.2 Parallel computing

The oligopackage can make use of a parallel environment (with rma in the meantime) set via

foreach package, as long as the user:

• enables support to large datasets (load ff);

• loads the foreach package;

• register a parallel backend (for example, through one of the doMPI, doMC, doSNOW

packages).

A simple example is shown below:

R> library(ff)

R> library(foreach)

R> library(doMC)

R> registerDoMC(2)

R> library(oligo)

R> rawData <- read.celfiles(list.celfiles())

R> rmaRes <- rma(rawData)

R> rmaRes

6.3 Parallel Computing on Multicore Machines

On multicore machines, one alternative for parallel preprocessing is shown below. It assumes

that the machine has enough RAM to deal with the dataset and that the ff package is

NOT loaded. The snippet compares the performance between a single-threaded run of rma,

although fitProbeLevelModel would also benefit from it, and a run using 4 threads (which is

enabled by setting the R_THREADS environment variable).
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R> library(oligoData)

R> data(affyExonFS)

R> t0 <- system.time(res0 <- rma(affyExonFS))

Background correcting

Normalizing

Calculating Expression

R> Sys.setenv(R_THREADS=4)

R> t1 <- system.time(res1 <- rma(affyExonFS))

Background correcting

Normalizing

Calculating Expression

R> all.equal(res0, res1)

[1] TRUE

R> t0

user system elapsed

23.145 1.105 24.251

R> t1

user system elapsed

23.704 1.710 14.249

7 Session Info

• R version 2.15.0 beta (2012-03-20 r58793), x86_64-apple-darwin9.8.0

• Locale: C

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

• Other packages: ACME 2.11.1, AnnotationDbi 1.17.27, BSgenome 1.23.4,

BSgenome.Hsapiens.UCSC.hg19 1.3.17, Biobase 2.15.4, BiocGenerics 0.1.14,

BiocInstaller 1.1.28, Biostrings 2.23.6, DBI 0.2-5, GenomeGraphs 1.15.1,

GenomicRanges 1.7.42, IRanges 1.13.35, RColorBrewer 1.0-5, RSQLite 0.11.1,

biomaRt 2.11.2, genefilter 1.37.1, limma 3.11.19, maqcExpression4plex 1.4.1,

oligo 1.19.26, oligoClasses 1.17.39, oligoData 1.6.0,
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pd.2006.07.18.hg18.refseq.promoter 1.6.0, pd.hg.u95av2 1.6.0,

pd.hg18.60mer.expr 3.0.0, pd.huex.1.0.st.v2 3.6.0

• Loaded via a namespace (and not attached): KernSmooth 2.23-7, RCurl 1.91-1,

XML 3.9-4, affxparser 1.27.5, affyio 1.23.2, annotate 1.33.8, bit 1.1-9, codetools 0.2-8,

ff 2.2-5, foreach 1.3.5, iterators 1.0.5, preprocessCore 1.17.7, splines 2.15.0,

stats4 2.15.0, survival 2.36-12, tools 2.15.0, xtable 1.7-0, zlibbioc 1.1.2
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