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Abstract
ATbounds is an R package that provides estimation and inference methods for bounding average

treatment effects (on the treated) that are valid under an unconfoundedness assumption. The bounds are
designed to be robust in challenging situations, for example, when the the conditioning variables take on
a large number of different values in the observed sample, or when the overlap condition is violated. This
robustness is achieved by only using limited “pooling” of information across observations.

Introduction

ATbounds is an R package that provides estimation and inference methods for bounding average treatment
effects (on the treated) that are valid under an unconfoundedness assumption. The bounds are designed to be
robust in challenging situations, for example, when the the conditioning variables take on a large number of
different values in the observed sample, or when the overlap condition is violated. This robustness is achieved
by only using limited “pooling” of information across observations. Namely, the bounds are constructed
as sample averages over functions of the observed outcomes such that the contribution of each outcome
only depends on the treatment status of a limited number of observations. No information pooling across
observations leads to so-called “Manski bounds” (Manski 1989, 1990), while unlimited information pooling
leads to standard inverse propensity score weighting. The ATbounds package provides inference methods for
exploring the intermediate range between these two extremes.

The methodology used in the ATbounds package is described in detail in Lee and Weidner (2021), “Bounding
Treatment Effects by Pooling Limited Information across Observations,” “Bounding Treatment Effects by
Pooling Limited Information across Observations,” available at https://arxiv.org/abs/2111.05243.

We begin by calling the ATbounds package.
library(ATbounds)

Case Study 1: Bounding the Effects of a Job Training Program

To illustrate the usefulness of the package, we first use the well-known LaLonde (1986) dataset available on
Rajeev Dehejia’s web page at http://users.nber.org/~rdehejia/nswdata2.html.

LaLonde’s Experimental Sample

We fist look at LaLonde’s original experimental sample.
nsw_treated <- read.table("http://users.nber.org/~rdehejia/data/nsw_treated.txt")
colnames(nsw_treated) <- c("treat","age","edu","black","hispanic",

"married","nodegree","RE75","RE78")

nsw_control <- read.table("http://users.nber.org/~rdehejia/data/nsw_control.txt")
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colnames(nsw_control) <- c("treat","age","edu","black","hispanic",
"married","nodegree","RE75","RE78")

The outcome variable is RE78 (earnings in 1978). The binary treatment indicator is treat (1 if treated, 0 if
not treated). We now combine the treatment and control samples and define the variables.

nsw <- rbind(nsw_treated,nsw_control)
attach(nsw)
D <- treat
Y <- (RE78 > 0)

In this vignette, we define the outcome to be whether employed in 1978 (that is, earnings in 1978 are positive).

The LaLonde dataset is from the National Supported Work Demonstration (NSW), which is a randomized
controlled temporary employment program. In view of that, we set the reference propensity score to be
independent of covariates.

rps <- rep(mean(D),length(D))

The average treatment effect is obtained by
ate_nsw <- mean(D*Y)/mean(D)-mean((1-D)*Y)/mean(1-D)
print(ate_nsw)

#> [1] 0.07794019

Alternatively, we run simple regression
model <- lm(Y ~ D)
summary(model)

#>
#> Call:
#> lm(formula = Y ~ D)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.7744 -0.6965 0.2256 0.3035 0.3035
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.69647 0.02152 32.362 <2e-16 ***
#> D 0.07794 0.03356 2.323 0.0205 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.4437 on 720 degrees of freedom
#> Multiple R-squared: 0.007437, Adjusted R-squared: 0.006059
#> F-statistic: 5.395 on 1 and 720 DF, p-value: 0.02047

confint(model)
#> 2.5 % 97.5 %
#> (Intercept) 0.6542184 0.7387228
#> D 0.0120623 0.1438181

The 95% confidence interval [0.01, 0.14] is rather wide but excludes zero.
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Dehejia-Wahba Sample

Dehejia and Wahba (1999) and Dehejia and Wahba (2002) extract a further subset of LaLonde’s NSW
experimental data to obtain a subset containing information on RE74 (earnings in 1974).

detach(nsw)
nswre_treated <- read.table("http://users.nber.org/~rdehejia/data/nswre74_treated.txt")
colnames(nswre_treated) <- c("treat","age","edu","black","hispanic",

"married","nodegree","RE74","RE75","RE78")

nswre_control <- read.table("http://users.nber.org/~rdehejia/data/nswre74_control.txt")
colnames(nswre_control) <- c("treat","age","edu","black","hispanic",

"married","nodegree","RE74","RE75","RE78")
nswre <- rbind(nswre_treated,nswre_control)
attach(nswre)
D <- treat
Y <- (RE78 > 0)
X <- cbind(age,edu,black,hispanic,married,nodegree,RE74/1000,RE75/1000)

The covariates are as follows:

• age: age in years,
• edu: years of education,
• black: 1 if black, 0 otherwise,
• hispanic: 1 if Hispanic, 0 otherwise,
• married: 1 if married, 0 otherwise,
• nodegree: 1 if no degree, 0 otherwise,
• RE74: earnings in 1974,
• RE75: earnings in 1975.

If we assume that the Dehejia-Wahba sample still preserves initial randomization, we can set the reference
propensity score to be independent of covariates. However, it may not be the case and therefore, our approach
can provide a robust method to check whether the Dehejia-Wahba sample can be viewed as as a random
sample from a randomized controlled experiment.

We first define the the reference propensity score.
rps <- rep(mean(D),length(D))

Using this reference propensity score, the average treatment effect is obtained by
ate_nswre <- mean(D*Y)/mean(D)-mean((1-D)*Y)/mean(1-D)
print(ate_nswre)

#> [1] 0.1106029

Alternatively, we run simple regression
model <- lm(Y ~ D)
summary(model)

#>
#> Call:
#> lm(formula = Y ~ D)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.7568 -0.6462 0.2432 0.3538 0.3538
#>
#> Coefficients:
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#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.64615 0.02849 22.679 <2e-16 ***
#> D 0.11060 0.04419 2.503 0.0127 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.4594 on 443 degrees of freedom
#> Multiple R-squared: 0.01394, Adjusted R-squared: 0.01172
#> F-statistic: 6.265 on 1 and 443 DF, p-value: 0.01267

confint(model)
#> 2.5 % 97.5 %
#> (Intercept) 0.59015824 0.7021495
#> D 0.02375725 0.1974486

The resulting 95% confidence interval [0.02, 0.20] is wide but again excludes zero.

Bounds on ATE

We now introduce our bounds on the average treatment effect (ATE).
bns_nsw <- atebounds(Y, D, X, rps)

In implementing atebounds, there are several options:

• Q: bandwidth parameter that determines the maximum number of observations for pooling information
(default: Q = 3)

• studentize: TRUE if X is studentized elementwise and FALSE if not (default: TRUE)

• alpha: (1 − α) nominal coverage probability for the confidence interval of ATE (default: 0.05)

• discrete: TRUE if X includes only discrete covariates and FALSE if not (default: FALSE)

• n_hc: number of hierarchical clusters to discretize non-discrete covariates; relevant only if x_discrete is
FALSE. The default choice is n_hc = ceiling(length(Y)/10), so that there are 10 observations in
each cluster on average.

The clusters are constructed via hierarchical, agglomerative clustering with complete linkage, where the
distance is measured by the Euclidean distance after studentizing each of the covariates. As mentioned above,
the number m of clusters is set by

m =
⌈n
L

⌉
for L = 10.

We show the summary results saved in bns_nsw.
summary(bns_nsw)

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.105289 0.077649
#> Confidence Interval -0.010448 0.194602

Note that the estimate of the lower bound is larger than that of the upper bound. This crossing problem
can occur in finite samples due to random sampling errors. While statistical theory guarantees that this
problem cannot occur asymptotically, it is desirable to have a non-empty confidence interval in applications.
We therefore use the method in Stoye (2020) to obtain a valid confidence interval that is never empty.
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The 95% confidence interval [−0.01, 0.19] obtained here is similar to the previous interval [0.02, 0.20], which
was obtained under the assumption that the Dehejia-Wahba sample is a random sample from NSW. This
suggests that first, there is no evidence against violation of the random sampling assumption in the Dehejia-
Wahba sample and second, our inference method does not suffer from unduly enlargement of the confidence
interval to achieve robustness, although a null effect is now included in our confidence interval.

With Q = 2, the bounds for ATE are
summary(atebounds(Y, D, X, rps, Q = 2))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 2)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.083059 0.10125
#> Confidence Interval -0.014176 0.21192

With Q = 4, the bounds for ATE are
summary(atebounds(Y, D, X, rps, Q = 4))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 4)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.132590 0.041889
#> Confidence Interval -0.032998 0.202929

Recall that the point estimate of ATE under the random sampling assumption was
print(ate_nswre)
#> [1] 0.1106029

Thus, the ATE estimate based on the simple mean difference well within the 95% confidence intervals across
Q = 2, 3, 4.

Recall that covariates X include non-discrete variables: RE74 and RE75. As a default option, atebounds
chooses the number of hierarchical clusters to be n_hc = ceiling(length(Y)/10). To check sensitivity to
n_hc, we now run the following:
summary(atebounds(Y, D, X, rps))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.105289 0.077649
#> Confidence Interval -0.010448 0.194602
summary(atebounds(Y, D, X, rps, n_hc = ceiling(length(Y)/5)))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, n_hc = ceiling(length(Y)/5))
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.108089 0.002946
#> Confidence Interval -0.047948 0.168398
summary(atebounds(Y, D, X, rps, n_hc = ceiling(length(Y)/20)))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, n_hc = ceiling(length(Y)/20))
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.101290 0.079023
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#> Confidence Interval 0.001227 0.181013

It can be seen that the alternative estimation result is more similar to the default one with n_hc =
ceiling(length(Y)/20) than with n_hc = ceiling(length(Y)/5). Overall, the results are qualitatively
similar across the three different specifications of n_hc.

Finally, to see what is saved in bns_nsw, we now print it out.
print(bns_nsw)

#> $call
#> atebounds(Y = Y, D = D, X = X, rps = rps)
#>
#> $type
#> [1] "ATE"
#>
#> $cov_prob
#> [1] 0.95
#>
#> $y1_lb
#> [1] 0.7214833
#>
#> $y1_ub
#> [1] 0.7145048
#>
#> $y0_lb
#> [1] 0.6368557
#>
#> $y0_ub
#> [1] 0.6161944
#>
#> $est_lb
#> [1] 0.105289
#>
#> $est_ub
#> [1] 0.07764911
#>
#> $est_rps
#> [1] 0.1106029
#>
#> $se_lb
#> [1] 0.05010572
#>
#> $se_ub
#> [1] 0.05471636
#>
#> $ci_lb
#> [1] -0.0104481
#>
#> $ci_ub
#> [1] 0.1946019
#>
#> attr(,"class")
#> [1] "ATbounds"

The output list contains:
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• call: a call in which all of the specified arguments are specified by their full names
• type: ATE
• cov_prob: confidence level (1 − α)
• y1_lb: estimate of the lower bound on the average of Y (1), i.e. E[Y (1)],
• y1_ub: estimate of the upper bound on the average of Y (1), i.e. E[Y (1)],
• y0_lb: estimate of the lower bound on the average of Y (0), i.e. E[Y (0)],
• y0_ub: estimate of the upper bound on the average of Y (0), i.e. E[Y (0)],
• est_lb: estimate of the lower bound on ATE, i.e. E[Y (1) − Y (0)],
• est_ub: estimate of the upper bound on ATE, i.e. E[Y (1) − Y (0)],
• est_rps: the point estimate of ATE using the reference propensity score,
• se_lb: standard error for the estimate on the lower bound on ATE,
• se_ub: standard error for the estimate of the upper bound on ATE,
• ci_lb: the lower end point of the confidence interval for ATE,
• ci_ub: the upper end point of the confidence interval for ATE.

Bounds on ATT

We now look at bounds on the average treatment effect on the treated (ATT).
bns_nsw_att <- attbounds(Y, D, X, rps)
summary(bns_nsw_att)

#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.146992 0.097293
#> Confidence Interval -0.010469 0.256875

We experiment with Q.
summary(attbounds(Y, D, X, rps, Q = 2))

#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps, Q = 2)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.133659 0.12899
#> Confidence Interval 0.000365 0.27285

summary(attbounds(Y, D, X, rps, Q = 4))
#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps, Q = 4)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.181554 0.061652
#> Confidence Interval -0.021856 0.263347

We also experiment with n_hc.
summary(attbounds(Y, D, X, rps))
#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.146992 0.097293
#> Confidence Interval -0.010469 0.256875
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summary(attbounds(Y, D, X, rps, n_hc = ceiling(length(Y)/5)))
#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps, n_hc = ceiling(length(Y)/5))
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.221885 0.13724
#> Confidence Interval 0.028392 0.32925
summary(attbounds(Y, D, X, rps, n_hc = ceiling(length(Y)/20)))
#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps, n_hc = ceiling(length(Y)/20))
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.124074 0.10252
#> Confidence Interval -0.009527 0.23778

Bound estimates cross (that is, the lower bound is larger than the upper bound) and furthermore sensitive to
the choice of Q and n_hc. This is likely to be driven by the relatively small sample size. However, once we
factor into sampling uncertainty and look at the confidence intervals, all the results are more or less similar.

NSW treated and PSID control

The Dehejia-Wahba sample can be regarded as a data scenario where the propensity score is known and
satisfies the overlap condition. We now turn to a different data scenario where it is likely that the propensity
score is unknown and may not satisfy the overlap condition.

psid2_control <- read.table("http://users.nber.org/~rdehejia/data/psid2_controls.txt")
colnames(psid2_control) <- c("treat","age","edu","black","hispanic",

"married","nodegree","RE74","RE75","RE78")
psid <- rbind(nswre_treated,psid2_control)
detach(nswre)
attach(psid)
D <- treat
Y <- (RE78 > 0)
X <- cbind(age,edu,black,hispanic,married,nodegree,RE74/1000,RE75/1000)

Here, we use one of non-experimental comparison groups constructed by LaLonde from the Population Survey
of Income Dynamics, namely PSID2 controls. We now estimate the reference propensity score using the
sample proportion and obtain the new bound estimates:

rps_sp <- rep(mean(D),length(D))
bns_psid <- atebounds(Y, D, X, rps_sp)
summary(bns_psid)

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps_sp)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.17799 0.076754
#> Confidence Interval -0.34628 0.310176

The confidence interval [−0.35, 0.31] here is much larger than the confidence interval [−0.01, 0.19] with the
Dehejia-Wahba sample. It is worth noting that the sample proportion is unlikely to be correctly specified in
the NSW-treated/PSID-control sample. Thus, it seems that our inference method produces a wider confidence
interval in order to be robust against misspecification of the propensity scores.

We now consider the Manski bounds, which can be obtained by setting Q = 1.
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summary(atebounds(Y, D, X, rps_sp, Q=1))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps_sp, Q = 1)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.47945 0.46347
#> Confidence Interval -0.66847 0.77042

We can see that the Manski bounds are even larger and the same regardless of the specification of the reference
propensity scores. Recall the Manski bounds do not impose the unconfoundedness assumption and do not
rely on any pooling information (hence, it does not matter how to specify the reference propensity score).

Finally, we obtain the bounds for the average treatment effect on the treated (ATT).
summary(attbounds(Y, D, X, rps_sp))

#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps_sp)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.10085 0.28040
#> Confidence Interval -0.27838 0.67865

detach(psid)

We find that the bounds on ATT are wide, as in ATE.

Case Study 2: Bounding the Effect of Right Heart Catheterization

As a second empirical example, we revisit the well-known Right Heart Catheterization Dataset. In particular,
we apply our methods to Connors et al. (1996)’s study of the efficacy of right heart catheterization (RHC),
which is a diagnostic procedure for directly measuring cardiac function in critically ill patients. This dataset
has been subsequently used in the context of limited overlap by Crump et al. (2009), Rothe (2017), and Li,
Morgan, and Zaslavsky (2018) among others. The dataset is publicly available on the Vanderbilt Biostatistics
website at https://hbiostat.org/data.

In this example, the dependent variable is 1 if a patient survived after 30 days of admission, and 0 if a patient
died within 30 days. The binary treatment variable is 1 if RHC was applied within 24 hours of admission,
and 0 otherwise. The sample size was n = 5735, and 2184 patients were treated with RHC. There are a large
number of covariates: Hirano and Imbens (2001) constructed 72 variables from the dataset and the same
number of covariates were considered in both Crump et al. (2009) and Li, Morgan, and Zaslavsky (2018) and
50 covariates were used in Rothe (2017). In our exercise, we constructed the same 72 covariates. A cleaned
version of the dataset is available in the package.

Y <- RHC[,"survival"]
D <- RHC[,"RHC"]
X <- as.matrix(RHC[,-c(1,2)])

As in the aforementioned papers, we estimated the propensity scores by a logit model with all 72 covariates
being added linearly.

# Logit estimation of propensity score
glm_ps <- stats::glm(D~X,family=binomial("logit"))
ps <- glm_ps$fitted.values
ps_treated <- ps[D==1]
ps_control <- ps[D==0]
# Plotting histograms of propensity scores
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df <- data.frame(cbind(D,ps))
colnames(df)<-c("RHC","PS")
df$RHC <- as.factor(df$RHC)
levels(df$RHC) <- c("No RHC (Control)", "RHC (Treated)")

ggplot2::ggplot(df, ggplot2::aes(x=PS, color=RHC, fill=RHC)) +
ggplot2::geom_histogram(breaks=seq(0,1,0.1),alpha=0.5,position="identity")
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The figure above shows the histograms of estimated propensity scores for treated and control groups. It is
very similar to Fig.1 in Crump et al. (2009) and to Figure 2 in Rothe (2017). The support of the estimated
propensity scores are almost on the unit interval for both treated and control units, although there is some
visual evidence on limited overlap (that is, control units have much fewer propensity scores close to 1).

Bounding the Average Treatment Effect on the Treated

In this section, we focus on ATT. We first estimate ATT by the normalized inverse probability weighted
estimator:

ÂTTPS :=
∑n

i=1 DiYi∑n
i=1 Di

−
∑n

i=1(1 −Di)WiYi∑n
i=1(1 −Di)Wi

,

where Wi := p̂(Xi)/[1 − p̂(Xi)] and p̂(Xi) is the estimated propensity score for observation i based on the
logit model described above. See, e.g., equation (3) and discussions in Busso, DiNardo, and McCrary (2014)
for details of the normalized inverse probability weighted ATT estimator. The estimator ÂTTPS requires
that the assumed propensity score model is correctly specified and the overlap condition is satisfied. The
resulting estimate is ÂTTPS = −0.0639.
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# ATT normalized estimation
y1_att <- mean(D*Y)/mean(D)
att_wgt <- ps/(1-ps)
y0_att_num <- mean((1-D)*att_wgt*Y)
y0_att_den <- mean((1-D)*att_wgt)
y0_att <- y0_att_num/y0_att_den
att_ps <- y1_att - y0_att
print(att_ps)

#> [1] -0.06388047

We now turn to our methods. As before, we take the reference propensity score to be p̂RPS(Xi) = n−1 ∑n
i=1 Di

for each observation i. That is, we assign the sample proportion of the treated to the reference propensity
scores uniformly for all observations. Of course, this is likely to be misspecified; however, it has the advantage
that 1/p̂RPS(Xi) is never close to 0 or 1.

rps <- rep(mean(D),length(D))

The resulting inverse reference-propensity-score weighted ATT estimator is

ÂTTRPS :=
∑n

i=1 DiYi∑n
i=1 Di

−
∑n

i=1(1 −Di)Yi∑n
i=1(1 −Di)

= −0.0507.

att_rps <- mean(D*Y)/mean(D) - mean((1-D)*Y)/mean(1-D)
print(att_rps)

#> [1] -0.05072115

When the sample proportion is used as the propensity score estimator, there is no difference between
unnormalized and normalized versions of ATT estimates. In fact, it is simply the mean difference between
treatment and control groups.

Xunique <- mgcv::uniquecombs(X) # A matrix of unique rows from X
print(c("no. of unique rows:", nrow(Xunique)))

#> [1] "no. of unique rows:" "5735"
print(c("sample size :", nrow(X)))

#> [1] "sample size :" "5735"

Note that none of the covariates in the observed sample are identical. We therefore implement hierarchical,
agglomerative clustering with complete linkage.

We show empirical results using the default option.
summary(attbounds(Y, D, X, rps))

#> ATbounds: ATT
#> Call: attbounds(Y = Y, D = D, X = X, rps = rps)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.077412 -0.039280
#> Confidence Interval -0.116903 -0.006371

to check sensitivity with respect to tuning parameters, we vary L and Q.
# Bounding ATT: sensitivity analysis
# not run to save time
nhc_set <- c(5, 10, 20)
results_att <- {}

for (hc in nhc_set){
nhc <- ceiling(length(Y)/hc)
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for (q in c(1,2,3,4)){
res <- attbounds(Y, D, X, rps, Q = q, n_hc = nhc)
results_att <- rbind(results_att,c(hc,q,res$est_lb,res$est_ub,res$ci_lb,res$ci_ub))

}
}
colnames(results_att) = c("L","Q","LB","UB","CI-LB","CI-UB")
print(results_att, digits = 3)

The table below reports estimation results of ATT bounds for extended values of L and Q. When Q = 1, our
estimated bounds correspond to Manski bounds, which includes zero and is wide with the interval length of
almost one in all cases of L. Our bounds with Q = 1 are different across L because we apply hierarchical
clustering before obtaining Manski bounds. With Q = 2, the bounds shrink so that the estimated upper
bound is zero for all cases of L; with Q = 3, they shrink even further so that the upper end point of the 95%
confidence interval excludes zero. Among three different values of L, the case of L = 5 gives the tightest
confidence interval but in this case, the lower bound is larger than the upper bound, indicating that the
estimates might be biased. In view of that, we take the bound estimates with L = 10 as our preferred
estimates [−0.077,−0.039] with the 95% confidence interval [−0.117, 0.006]. When Q = 4, the lower bound
estimates exceed the upper bound estimates with L = 5, 10. However, the estimates with L = 20 give almost
identical results to our preferred estimates. It seems that the pairs of (L,Q) = (10, 3) or (L,Q) = (20, 4)
provide reasonable estimates.

Table 1: ATT Bounds: Right Heart Catheterization Study

L Q LB UB CI-LB CI-UB
5 1 -0.638 0.282 -0.700 0.330

2 -0.131 -0.000 -0.174 0.033
3 -0.034 -0.048 -0.076 -0.007
4 -0.006 -0.073 -0.079 -0.006

10 1 -0.664 0.307 -0.766 0.376
2 -0.169 0.004 -0.216 0.039
3 -0.077 -0.039 -0.117 -0.006
4 -0.049 -0.057 -0.090 -0.016

20 1 -0.675 0.316 -0.843 0.430
2 -0.178 -0.005 -0.238 0.034
3 -0.099 -0.046 -0.149 -0.007
4 -0.065 -0.060 -0.112 -0.017

The study of Connors et al. (1996) offered a conclusion that RHC could cause an increase in patient mortality.
Based on our preferred estimates, we can exclude positive effects with confidence. This conclusion is based
solely on the unconfoundedness condition, but not on the overlap condition, nor on the correct specification
of the logit model. Overall, our estimates seem to be consistent with the qualitative findings in Connors et al.
(1996).

Bounding the Average Treatment Effect

We now turn to bounds on ATE. Using again the sample proportion of the treated as the reference propensity
score, we bound the ATE.

We start with Q = 1.
summary(atebounds(Y, D, X, rps, Q = 1))

#> ATbounds: ATE
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#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 1)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.47742 0.48753
#> Confidence Interval -0.54972 0.55664

We now consider Q = 2
summary(atebounds(Y, D, X, rps, Q = 2))

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 2)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.17275 0.018032
#> Confidence Interval -0.21518 0.063421

and Q = 3.
summary(atebounds(Y, D, X, rps, Q = 3))

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 3)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.11213 -0.058280
#> Confidence Interval -0.14658 -0.022432

Finally, we take Q = 4.
summary(atebounds(Y, D, X, rps, Q = 4))

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 4)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.083816 -0.122172
#> Confidence Interval -0.143475 -0.057158

Overall, the results are similar to ATT.

Case Study 3: EFM

The electronic fetal monitoring (EFM) and cesarean section (CS) dataset from Neutra, Greenland, and
Friedman (1980) consists of observations on 14,484 women who delivered at Beth Israel Hospital, Boston from
January 1970 to December 1975. The purpose of the study is to evaluate the impact of EFM on cesarean
section (CS) rates. Neutra, Greenland, and Friedman (1980) report that relevant confounding factors are:
nulliparity (nullipar), arrest of labor progression (arrest), malpresentation (breech), and year of study (year).
The dataset included in the R package is from the supplementary materials of Richardson, Robins, and Wang
(2017), who used this dataset to illustrate their proposed methods for modeling and estimating relative risk
and risk difference. In this dataset, all covariates are discrete.

Y <- EFM[,"cesarean"]
D <- EFM[,"monitor"]
X <- as.matrix(EFM[,c("arrest", "breech", "nullipar", "year")])
year <- EFM[,"year"]
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ate_rps <- mean(D*Y)/mean(D) - mean((1-D)*Y)/mean(1-D)
print(ate_rps)

#> [1] 0.05005644

We take the reference propensity score to be the sample proportion of the treatment.
rps <- rep(mean(D),length(D))
print(rps[1])

#> [1] 0.5040044

Bounding the Average Treatment Effect

Using again the sample proportion of the treated as the reference propensity score, we bound the ATE.

We start with Q = 1.
summary(atebounds(Y, D, X, rps, Q = 1, x_discrete = TRUE))

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 1, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.47811 0.52168
#> Confidence Interval -0.67020 0.77400

We now consider Q = 2
summary(atebounds(Y, D, X, rps, Q = 2, x_discrete = TRUE))

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 2, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.16105 0.15856
#> Confidence Interval -0.26486 0.26448

and Q = 3.
summary(atebounds(Y, D, X, rps, Q = 3, x_discrete = TRUE))

#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 3, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.067808 0.091566
#> Confidence Interval -0.107024 0.174704

In this example, the reference propensity score is close to 0.5, thus implying that the results will be robust
even if we take a very large Q. In view of that, we take Q = 5, 10, 20, 50, 100.

summary(atebounds(Y, D, X, rps, Q = 5, x_discrete = TRUE))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 5, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.021842 0.034158
#> Confidence Interval -0.043975 0.075407

summary(atebounds(Y, D, X, rps, Q = 10, x_discrete = TRUE))
#> ATbounds: ATE
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#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 10, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate -0.0027345 0.0051908
#> Confidence Interval -0.0208590 0.0228555

summary(atebounds(Y, D, X, rps, Q = 20, x_discrete = TRUE))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 20, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.0019348 -0.000096
#> Confidence Interval -0.0169394 0.018765

summary(atebounds(Y, D, X, rps, Q = 50, x_discrete = TRUE))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 50, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.017103 -0.0028133
#> Confidence Interval -0.016110 0.0290373

summary(atebounds(Y, D, X, rps, Q = 100, x_discrete = TRUE))
#> ATbounds: ATE
#> Call: atebounds(Y = Y, D = D, X = X, rps = rps, Q = 100, x_discrete = TRUE)
#> Confidence Level: 0.95
#> Lower_Bound Upper_Bound
#> Bound Estimate 0.046554 -0.013941
#> Confidence Interval -0.023382 0.041148

Overall, the empirical results suggest that there is no significant effect of EFM on cesarean section rates.
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