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INTRODUCTION

Identifying structural innovations from Structural Vector Autoregression (SVAR) models re-
quires the researcher to make assumptions about the structural parameters in the model.
Recursively identifying structural innovations with the Cholesky decomposition of the resid-
ual covariance matrix requires the researcher to assume a recursive order of the endogenous
variables in the model and exclusion or information lag restrictions for structural parameters.
Identifying structural innovations with sign restrictions prevents researchers from having to
make zero restrictions for structural parameters but it does implicitly require researchers to
assume a prior distribution for structural parameters they may not agree with. The method
developed by Baumeister and Hamilton (2015/2017/2018) for estimating the parameters of
a Structural Bayesian Vector Autoregression (SBVAR) model is an alternative method that
allows the researcher to explicitly include prior information about the parameters of the
model. Their method does not require the researcher to assume a recursive order of the
endogenous variables in the model or a prior distribution about structural parameters the
researcher does not agree with. For detailed information about their method see Baumeister
and Hamilton (2015/2017/2018).

MODEL

Let Y be an (n × T ) matrix of endogenous variables. X is a (k × T ) matrix containing
L lags of the endogenous variables and a constant. A is an (n × n) matrix containing the
short-run elasticities or the structural relationships between the endogenous variables in Y
from an SVAR model. B is an (n × k) matrix containing lagged structural coe�cients. U
is an (n × T ) matrix of structural innovations. D is an (n × n) diagonal covariance matrix
of the innovations from the structural model. n is the number of endogenous variables or
equations. T is the number of observations and k = nL+ 1.

Structural Vector Autoregression Model:

AY = BX + U U ∼ N(0, D) (1)
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B = AΦ (2)

U = Aϵ (3)

D = UU⊤

T
= AΩA⊤ (4)

Φ is an (n × k) matrix containing the lagged coe�cients from the reduced form Vector
Autoregression (VAR) model. ϵ is an (n × T ) matrix of the VAR model residuals. Ω is an
(n× n) symmetric covariance matrix of the residuals from the VAR model.

Reduced Form Vector Autoregression Model:

Y = ΦX + ϵ ϵ ∼ N(0,Ω) (5)

Φ = (Y X⊤)(XX⊤)−1 (6)

ϵ = Y − ΦX (7)

Ω = ϵϵ⊤

T
(8)

Let yi be a (1× T ) matrix containing a single endogenous variable from Y for i = 1, 2, ..., n.
Let xi be an ((L + 1) × T ) matrix of L lags of yi and a constant for i = 1, 2, ..., n. ϕi is
a (1 × (L + 1)) matrix containing the lagged coe�cients from the reduced form univariate
Autoregression (AR) model for i = 1, 2, ..., n. ei is a (1 × T ) matrix of the residuals from
the univariate AR model for i = 1, 2, ..., n. e is an (n × T ) matrix of residuals from the
univariate AR models. Σ is an (n × n) symmetric covariance matrix of the residuals from
the univariate AR models. Σi is the (i, i) element of Σ for i = 1, 2, ..., n.

Reduced Form Univariate Autoregression Model:

yi = ϕixi + ei ei ∼ N(0,Σi) (9)

ϕi = (yix
⊤
i )(xix

⊤
i )

−1 (10)

ei = yi − ϕixi (11)

Σ = ee⊤

T
(12)
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Let P be an (n× k) matrix containing the prior position values for the reduced form lagged
coe�cient matrix, Φ. M−1 is a (k × k) symmetric matrix indicating con�dence in P . R
is an (n × k) matrix containing the prior position values for long-run restrictions on the
lagged structural coe�cient matrix B. Ri,∗ is row i of R. V −1

i is a (k× k) symmetric matrix
indicating con�dence in R, one matrix for each equation i = 1, 2, ..., n. βi is a (1 × k)
lagged structural coe�cient matrix, one matrix for each equation i = 1, 2, ..., n. Bi,∗ is row
i of the lagged structural coe�cients matrix B for i = 1, 2, ..., n. Z is an (n × n) diagonal
matrix. Zi is the (i, i) element of the diagonal matrix Z for i = 1, 2, ..., n. diag(AΣA⊤) is
an (n × n) diagonal matrix whose main diagonal elements are the main diagonal elements
from the matrix AΣA⊤. κ is an (n × n) diagonal matrix whose elements along the main
diagonal represent con�dence in the priors for the structural variances in D. κi and τi refers
to element (i, i) of κ and τ , respectively for i = 1, 2, ..., n. The prior for Di ∼ 1

Γ(κi,τi)
where

Di refers to element (i, i) of D for i = 1, 2, ..., n.

Structural Bayesian Vector Autoregression Model:

AY = BX + U U ∼ N(0, D) (13)

βi = (Ai,∗(Y X⊤ + PM−1) +Ri,∗V
−1
i )(XX⊤ +M−1 + V −1

i )−1 (14)

Bi,∗ = βi (15)

Zi = (Ai,∗(Y Y ⊤ + PM−1P⊤)A⊤
i,∗ +Ri,∗V

−1
i R⊤

i,∗)− [(Ai,∗(Y X⊤ + PM−1) +Ri,∗V
−1
i )

(XX⊤ +M−1 + V −1
i )−1(Ai,∗(Y X⊤ + PM−1) +Ri,∗V

−1
i )⊤] (16)

τ = κdiag(AΣA⊤) (17)

τ ∗ = τ + 1
2
Z (18)

Baumeister and Hamilton (2015/2017/2018) developed an algorithm that estimates the pa-
rameters of an SVAR model using Bayesian methods (SBVAR). Their algorithm applies a
random-walk Metropolis-Hastings algorithm to seek elasticity values for A, considering prior
information, that diagonalizes the covariance matrix of the reduced form errors. For detailed
information about their algorithm see Baumeister and Hamilton (2015/2017/2018).

Posterior Distribution:

p(A|Y ) ∝ p(A)[det(AΩA⊤)]
T
2

n∏
i=1

(τi)
κi( 2

T
τ ∗i )

−(κi+
T
2
) (19)
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p(A|Y ) is the posterior density of A|Y . The products of p(det(A)) and/or p(H) are multiplied
by p(A|Y ) when priors are chosen for det(A) and/or H (A−1), respectively. p(A), p(det(A)),
and p(H) are products of the prior densities for A, det(A), and H (A−1), respectively. det(A)
and det(AΩA⊤) are the determinants of the matrices A and AΩA⊤, respectively.

Algorithm:

Step 1)
Generate draws for A|Y (Ã(c+1)). Ã(c) are the starting values for A when c = 1. Compute
p(Ã(c)|Y ) and p(Ã(c+1)|Y ). If p(Ã(c+1)|Y ) < p(Ã(c)|Y ) set Ã(c+1) = Ã(c) with probability

1− p(Ã(c+1)|Y )

p(Ã(c)|Y )
.

Step 2)

Generate draws for D|A, Y (D̃(c+1)). D̃i
(c+1) ∼ 1

Γ(κi+
T
2
,τ̃i

∗(c+1)
)
. D̃i

(c+1)
, κi, and τ̃i

∗(c+1)

refers

to element (i, i) of D̃(c+1), κ, and τ̃ ∗
(c+1)

, respectively for i = 1, 2, ..., n. τ̃ ∗
(c+1)

are estimates
of τ ∗, replacing A with Ã(c+1).

Step 3)

Generate draws for B|D,A, Y (B̃(c+1)). B̃
(c+1)
i,∗ = β̂

(c+1)
i for i = 1, 2, ..., n. β̂

(c+1)
i ∼ N(β̃

(c+1)
i ,

Ψ̃
(c+1)
i ) for i = 1, 2, ..., n. β̃

(c+1)
i are estimates of βi, replacing A with Ã(c+1) for i = 1, 2, ..., n.

Ψ̃
(c+1)
i = D̃(c+1)(XX⊤ +M−1 + V −1

i )−1 for i = 1, 2, ..., n.

Step 4)
Increase c by 1 and repeat Steps 1-4 for c = 1, 2, ..., C. C is the total number of iterations.

EXAMPLE

The BHSBVAR package provides a function for estimating the parameters of SBVAR mod-
els and several functions for plotting results. The BH_SBVAR() function estimates the pa-
rameters of an SBVAR model with the method developed by Baumeister and Hamilton
(2015/2017/2018). The IRF_Plots() function creates plots of impulse responses. The
FEVD_Plots() function creates plots of forecast error variance decompositions. The HD_Plots()
function creates plots of historical decompositions. The Dist_Plots() function creates pos-
terior density plots of the model parameters in A, det(A), and H overlaid with prior densities
to illustrate the di�erence between posterior and prior distributions. The following example
illustrates how these functions can be applied to reproduce the results from Baumeister and
Hamilton (2015).

Code Chunk 1

> rm(list = ls())

> library(BHSBVAR)

> set.seed(123)
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> data(USLMData)

> y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)

> y <- y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%

+ diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))

> colnames(y) <- c("Wage", "Employment")

The �rst line from Code Chunk 1 clears the workspace. The second line loads the BHSBVAR
package namespace. The third line sets the seed for random number generation. The fourth
line imports the data used in this example. The �fth through seventh line creates a matrix
(y) containing quarter over quarter percent change of U.S. real wage and employment data
used by Baumeister and Hamilton (2015).

Code Chunk 2

> nlags <- 8

> itr <- 200000

> burn <- 0

> thin <- 20

> acc <- TRUE

> h <- 20

> cri <- 0.95

nlags from Code Chunk 2 sets the lag length used in the SBVAR model. itr sets the number
of iterations for the algorithm. burn is the number of draws to throw out at the beginning
of the algorithm. thin sets the thinning parameter which will thin the Markov chains.
acc indicates whether accumulated impulse responses are to be computed and returned. h

indicates the time horizon for computing impulse responses. cri indicates the credibility
intervals to be returned. A cri value of 0.95 will return 95% credibility intervals.

Code Chunk 3

> pA <- array(data = NA, dim = c(ncol(y), ncol(y), 8))

> pA[, , 1] <- c(0, NA, 0, NA)

> pA[, , 2] <- c(1, NA, -1, NA)

> pA[, , 3] <- c(0.6, 1, -0.6, 1)

> pA[, , 4] <- c(0.6, NA, 0.6, NA)

> pA[, , 5] <- c(3, NA, 3, NA)

> pA[, , 6] <- c(NA, NA, NA, NA)

> pA[, , 7] <- c(NA, NA, 1, NA)

> pA[, , 8] <- c(2, NA, 2, NA)

The lines from Code Chunk 3 create an array containing all the information needed to set
priors for each element in A. Each column contains the prior information for the parameters
in each equation. The third dimension of pA should always have a length of 8. The �rst slice
of the third dimension of pA indicates the prior distribution (NA - no prior, 0 - symmetric
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t-distribution, 1 - non-central t-distribution, 2 - inverted beta distribution, 3 - beta distribu-
tion). The second slice indicates sign restrictions (NA - no restriction, 1 - positive restriction,
-1 - negative restriction). The third slice indicates the position of the prior. The fourth slice
indicates the scale or con�dence in the prior for t-distributions and shape1 (α) parameter
for inverted beta and beta distributions. The �fth slice indicates the degrees of freedom for
t-distributions and shape2 (β) parameter for the inverted beta and beta distributions. The
sixth slice indicates skew for non-central t-distributions. The seventh slice indicates priors
for long-run restrictions (NA - no long-run restriction, 1 - long-run restriction). The eighth
slice indicates the random-walk proposal scale parameters which adjust the algorithm's ac-
ceptance rate and the ability of the algorithm to adequately cover the model's parameter
space. For information about priors for A see Baumeister and Hamilton (2015/2017/2018).
The functions used to compute the density of the prior distributions for A, det(A), and
H(A−1) are listed in the Appendix.

Code Chunk 4

> pP <- matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))

> pP[1:nrow(pA), 1:ncol(pA)] <-

+ diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))

> x1 <-

+ matrix(data = NA, nrow = (nrow(y) - nlags),

+ ncol = (ncol(y) * nlags))

> for (k in 1:nlags) {

+ x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-

+ y[(nlags - k + 1):(nrow(y) - k),]

+ }

> x1 <- cbind(x1, 1)

> colnames(x1) <-

+ c(paste(rep(colnames(y), nlags),

+ "_L",

+ sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),

+ decreasing = FALSE),

+ sep = ""),

+ "cons")

> y1 <- y[(nlags + 1):nrow(y),]

> ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))

> for (i in 1:ncol(y1)) {

+ xx <- cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)

+ yy <- matrix(data = y1[, i], ncol = 1)

+ phi <- solve(t(xx) %*% xx, t(xx) %*% yy)

+ ee[, i] <- yy - (xx %*% phi)

+ }

> somega <- (t(ee) %*% ee) / nrow(ee)

> lambda0 <- 0.2

> lambda1 <- 1
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> lambda3 <- 100

> v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)

> v1 <- v1^((-2) * lambda1)

> v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)

> v3 <- kronecker(v1, v2)

> v3 <- (lambda0^2) * rbind(v3, (lambda3^2))

> v3 <- 1 / v3

> pP_sig <- diag(x = c(v3), nrow = nrow(v3), ncol = nrow(v3))

The lines from Code Chunk 4 create matrices containing prior position (pP) and scale or
con�dence (pP_sig) information for the reduced form lagged coe�cient matrix Φ. pP and
pP_sig correspond to the P and M−1 matrices from Equation 14, respectively. Variance
estimates from univariate Autoregression models, lambda0, lambda1, and lambda3 are used
to construct pP_sig in this example. lambda0 controls the overall con�dence in the priors,
lambda1 controls the con�dence in higher order lags, and lambda3 controls the con�dence in
the constant term. For information about priors for Φ and B see Baumeister and Hamilton
(2015/2017/2018), Doan, Sims, and Zha (1984), Doan (2018), Litterman (1986), and Sims
and Zha (1998).

Code Chunk 5

> pR_sig <-

+ array(data = 0,

+ dim = c(((nlags * ncol(y)) + 1),

+ ((nlags * ncol(y)) + 1),

+ ncol(y)))

> Ri <-

+ cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),

+ matrix(data = c(1, 0), nrow = 1)),

+ 0)

> pR_sig[, , 2] <- (t(Ri) %*% Ri) / 0.1

> kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))

The lines from Code Chunk 5 create an array (pR_sig) containing values indicating con-
�dence in the priors for the long-run restrictions. pR_sig corresponds to the V −1

i matrix
from Equation 14. The matrix R from Equation 14 will be created automatically by the
BH_SBVAR() function. The length of the third dimension of pR_sig is equal to the number
of endogenous variables or the number of equations in the model. The �rst slice of the third
dimension contains all zeros since there are no long-run restrictions in the �rst equation of
the SBVAR model for this example. The second slice contains values indicating the con�-
dence in the prior for the long-run restriction assigned to the lagged parameters in the second
equation of the SBVAR model for this example. For information about long-run restrictions
see Baumeister and Hamilton (2015/2018) and Blanchard and Quah (1989). kappa1 is a
(1 × n) matrix whose values correspond to the elements along the main diagonal of κ from
Equation 17 and indicates the con�dence in prior information about the structural variances
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in D. Additional information required to set priors for D (τ) will be created automatically
by the BH_SBVAR() function following Baumeister and Hamilton (2015/2017/2018).

Code Chunk 6

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)

> results1 <-

+ BH_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP_sig = pP_sig,

+ pR_sig = pR_sig, kappa1 = kappa1, itr = itr,

+ burn = burn, thin = thin, cri = cri)

Figure 1
Line and Autocorrelation Diagnostic Plots of the Posterior Estimates
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The �rst line in Code Chunk 6 sets the parameters used to display plots that will be created
by the BH_SBVAR() function. The BH_SBVAR() function allows the user to include prior
information for A, det(A), H (A−1), Φ, and D directly when estimating the parameters of
an SBVAR model. The pdetA and pH arguments are arrays containing prior information for
det(A) and the elements ofH but are not included in this example. The BH_SBVAR() function
returns a list that includes the acceptance rate (accept_rate) of the algorithm, a matrix
containing the endogenous variables (y), a matrix containing lags of the endogenous variables
(x), a numeric value indicating the number of lags, and the prior information provided
directly or indirectly to the function (pA, pdetA, pH, pP, pP_sig, pR_sig, tau1, and kappa1).
A matrix containing the starting values of the model parameters in A from an optimization
routine is returned (A_start). Arrays containing estimates of the model parameters are
returned (A, detA, H, B, Phi). The �rst, second, and third slices of the third dimension
of these arrays are lower, median, and upper bounds of the estimates, respectively. Lists
containing horizontal and vertical axis coordinates of posterior densities, for the estimates of
the parameters in A, det(A), and H with priors, are returned (A_den, detA_den, and H_den).
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Raw estimates of the elements of A, B, D, detA, and H are returned (A_chain, B_chain,
D_chain, detA_chain, H_chain). In addition, line and autocorrelation plots of the Markov
chains of A are returned for diagnostic purposes. The line and autocorrelation plots provide
an indication of how well the algorithm covers the model's parameter space. The line plots
in Figure 1 display the Markov chains of the estimates from the algorithm with the estimate
values shown on the vertical axis and the iteration number shown on the horizontal axis.
The autocorrelation plots in Figure 1 displays the autocorrelation of the Markov chains of
the estimates from the algorithm with the correlation estimates on the vertical axis and the
lag length shown on the horizontal axis.
The titles of the plots in Figure 1 indicate the element of the coe�cient matrix that is plotted.
The plots of the estimated parameters in A are automatically multiplied by -1 to illustrate
elasticity values and/or isolate the dependent variable for each equation. These elements
correspond to those found in the results from running the BH_SBVAR() function and the
transpose of those from the mathematical representation from Equation 13. In other words,
each column of the coe�cient matrix arrays in the resulting list object from running the
BH_SBVAR() function contain coe�cient estimates for each equation. However, each row
of the coe�cient matrices from the mathematical representation described in Equation 13
represent the parameters of each equation.

Code Chunk 7

> irf <- IRF(results = results1, h = h, acc = acc, cri = cri)

> varnames <- colnames(USLMData)[2:3]

> shocknames <- c("Labor Demand","Labor Supply")

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)

> irf_results <-

+ IRF_Plots(results = irf, varnames = varnames,

+ shocknames = shocknames)

The �rst line in Code Chunk 7 provides the impulse response estimates. Lines two and
three in Code Chunk 7 store the names of endogenous variables and structural shocks. The
IRF_Plots() function creates plots of impulse responses. This function can be used to
display the response of the endogenous variables following a structural shock. The results
argument is a list object containing the unaltered results from the BH_SBVAR() function. The
varnames and shocknames argument are character vectors containing the variable names and
shock names, respectively. The xlab and ylab arguments are not included in this example,
but they allow the user to include labels for the horizontal and vertical axes, respectively.
Figure 2 displays the cumulative response of U.S. real wage growth and employment growth
to U.S. labor demand and supply shocks. The units along the horizontal axis in the plots
from Figure 2 represent time periods following an initial shock. The units along the vertical
axis in the plots from Figure 2 represent percent change following an initial shock since the
endogenous variables included in the model are mean centered quarter over quarter percent
change of U.S. real wage and employment. In addition, this function returns a list containing
the data used to produce the plots in Figure 2.
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Figure 2
Impulse Responses
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indicate the posterior median. Red dashed lines indicate credibility intervals.

Code Chunk 8

> fevd <- FEVD(results = results1, h = h, acc = acc, cri = cri)

> varnames <- colnames(USLMData)[2:3]

> shocknames <- c("Labor Demand","Labor Supply")

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)

> fevd_results <-

+ FEVD_Plots(results = fevd, varnames = varnames,

+ shocknames = shocknames)

The �rst line in Code Chunk 8 provides the forecast error variance decomposition estimates.
The FEVD_Plots() function from Code Chunk 8 creates plots of forecast error variance
decompositions. This function can be used to display the forecast error variance that is
explained by the structural shocks. The results, varnames, shocknames, xlab, ylab argu-
ments for the FEVD_Plots() function are the same as those from the IRF_Plots() function.
The rel argument is used to display forecast error variance explained by shocks as a percent
of total forecast error variance. The units along the horizontal axis in the plots from Fig-
ure 3 represent time periods following an initial shock. The units along the vertical axis in
the plots from Figure 3 represent forecast error variance explained by the structural shock
as a percent of total forecast error variance since rel = TRUE. This function returns a list
containing the data used to produce the plots in Figure 3.

Code Chunk 9

> hd <- HD(results = results1, cri = cri)

> varnames <- colnames(USLMData)[2:3]

> shocknames <- c("Labor Demand","Labor Supply")
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Figure 3
Forecast Error Variance Decompositions
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> freq <- 4

> start_date <-

+ c(floor(USLMData[(nlags + 1), 1]),

+ (floor(((USLMData[(nlags + 1), 1] %% 1) * freq)) + 1))

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)

> hd_results <-

+ HD_Plots(results = hd, varnames = varnames,

+ shocknames = shocknames,

+ freq = freq, start_date = start_date)

The �rst line in Code Chunk 9 provides the historical decomposition estimates. The HD_Plots()
function from Code Chunk 9 creates plots of historical decompositions. This function can
be used to display the cumulative e�ect of speci�c shocks on an endogenous variable at
any given time period. The results, varnames, shocknames, xlab, ylab arguments for
the HD_Plots() function are the same as those from the IRF_Plots() function. Figure 4
displays the historical decompositions. The units along the horizontal axis in the plots from
Figure 4, produced by the HD_Plots function, represent actual time periods. The units
along the horizontal axis of each plot are created with the freq and start_date arguments.
The freq argument is set to 4 since the endogenous variables are measured at a quarterly
frequency in this example. The start_date argument represents the date of the �rst obser-
vation which is Q1 1970 in this example so start_date <- c(1970, 1). The units along
the vertical axis in the plots from Figure 2 represent percent change since the endogenous
variables included in the model are mean centered quarter over quarter percent change of
U.S. real wage and employment. This function also returns a list of the data used to produce
the plots in Figure 4.

Code Chunk 10
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Figure 4
Historical Decompositions
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Note: Horizontal axis indicates percent change. Vertical axis indicates actual dates. Black solid lines are mean centered

endogenous variables. Red solid lines indicate the posterior median. Red dashed lines indicate credibility intervals.

> A_titles <-

+ matrix(data = NA_character_, nrow = dim(pA)[1], ncol = dim(pA)[2])

> A_titles[1, 1] <- "Wage Elasticity of Labor Demand"

> A_titles[1, 2] <- "Wage Elasticity of Labor Supply"

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(1, 2), mar = c(2, 2.2, 2, 1), las = 1)

> Dist_Plots(results = results1, A_titles = A_titles)

Figure 5
Posterior and Prior Distribution Plots
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Note: Horizontal axis indicates percent change. Vertical axis indicates density. Blue solid regions indicate posterior density

evaluated at values along the horizontal axis. Red solid lines indicate prior density evaluated at values along the horizontal

axis.

The Dist_Plots() function from Code Chunk 10 creates posterior density plots for the
estimates for the parameters in A, H, and det(A). Prior densities are also plotted to illustrate
the di�erences between posterior and prior distributions. The results, xlab, and ylab

arguments for the Dist_Plots() function are the same as those from the IRF_Plots() and
HD_Plots() functions. A_titles and H_titles arguments are matrices that contain the
titles of the plots. The elements of the A_titles and H_titles matrices correspond to
the elements of the �rst and second dimensions of the A and H arrays from the results of
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the BH_SBVAR() function. The posterior and prior density plots for the estimates of the
parameters in A are multiplied by -1 to illustrate elasticity values and/or the value of the
coe�cient if the dependent variable for each equation were isolated.

13



APPENDIX

List of functions used to compute the density of the prior distributions at some proposal
value:
a1: is the proposal value.
p1: is the prior position parameter.
sigma1: is the prior con�dence in the position parameter, c1.
nu: is the degrees of freedom.
lam1: is the non-centrality or skew parameter.
sh1: is the shape1 (α) parameter.
sh2: is the shape2 (β) parameter.

Student t-distribution:

> density <-

+ dt(x = ((a1 - p1) / sigma1), df = nu, ncp = 0, log = FALSE) / sigma1

Non-central Student t-distribution:

> density <-

+ dt(x = ((a1 - p1) / sigma1), df = nu, ncp = lam1, log = FALSE) / sigma1

Student t-distribution truncated to be positive:

> density <-

+ dt(x = ((a1 - p1) / sigma1), df = nu, ncp = 0, log = FALSE) /

+ (sigma1 *

+ (1 - pt(q = ((-p1) / sigma1), df = nu, ncp = 0, lower.tail = TRUE,

+ log.p = FALSE)))

Student t-distribution truncated to be negative:

> density <- dt(x = ((a1 - p1) / sigma1), df = nu, ncp = 0, log = FALSE) /

+ (sigma1 * pt(q = ((-p1) / sigma1), df = nu, ncp = 0, lower.tail = TRUE,

+ log.p = FALSE))

Inverted Beta-distribution (multiply a1 by sign restriction):

> density <- 0

> if (a1 >= 1) {

+ density <- exp(

+ ((sh2 - 1) * log((a1 - 1))) +

+ (((-1) * (sh2 + sh1)) * log((1 + (a1 - 1)))) -

+ log(beta(sh2, sh1))

+ )

+ }

Beta-distribution (multiply a1 by sign restriction):

> density <- dbeta(x = a1, shape1 = sh1, shape2 = sh2, ncp = 0, log = FALSE)
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