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Abstract

BayesRGMM has the functionality to deal with the incomplete longitudinal studies
on binary and ordinal outcomes that are measured repeatedly on subjects over time with
drop-outs. Here, we briefly describe the background of methodology and provide an
overview of the contents in BayesRGMM.
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1. Main Methodology

Denote the response vector for the ith subject by yi = (yi1, · · · , yit, · · · , yini
)′ where yit is a

response at time period t (i = 1, · · · , N ; t = 1, · · · , ni). Note that the model and associated
methodology can be applicable to the unequally spaced times and the distinct number of
observations from subject to subject.We assume that the responses on different subjects are
independent. Also, we assume that yit’s are conditionally independent given a random vector
bi, and that yit’s. For categorical responses, we assume that yit has an exponential family
distribution so that generalized linear models (GLMs) can be specified by

g {E(yit)} = xT
itβ + zT

itbi, (1)

bi = (bi1, . . . , biq)T indep.
∼ N(0, v−1

i Σ),

vi
indep.

∼ Γ (ν/2, ν/2) ,

where β is a p × 1 unknown mean parameter vectors, xit is a p × 1 corresponding vector of
covariates, zit is a q×1 vector, 0 is a ni ×1 zero vector, Σ is a q×q covariance matrix reflecting
the subject variations, and Γ(a, b) denotes the gamma distribution with shape parameter a
and scale parameter b. In this paper, we consider the normal and binary responses and the
corresponding links are identity and probit, respectively.

To employ Markov Chain Monte Carlo algorithm techniques for Bayesian estimates and reduce
the computational complexity, we introduce a latent variable latent variable y∗

it to associate
with the binary or ordinal outcome yit as follows, respectively.
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Binary outcome: The unobservable latent variable y∗
it and the observed binary outcome yit

are connected by:
yit = I(y∗

it
>0), t = 1, . . . , ni,

where IA is the indicator of event A. Note that yit is 1 or 0 according to the sign
of y∗

it. We assume that the latent variable is associated with explanatory variable xit

and random effect zit with two different approaches to explaining the correlation of the
repeated measures within a subject in next two sections.

Ordinal outcome The atent variable y∗
it is associated with each ordinal response yit. Hence,

the probaility of yit = k is modeled through the probability of y∗
it falling into the interval

of (αk−1, αk], that is, given the random effect bi,

yit = k if αk−1 < y∗
it ≤ αk for k = 1, . . . ,K, (2)

where −∞ = α0 < α1 < · · · < αK = ∞. As consequence, we have the following result:

p(yit = k|bi) = p(αk−1 < y∗
it ≤ αk|bi),

for k = 1, . . . ,K.

We assume that the latent variable is associated with explanatory variable xit and random
effect zit with two different approaches to explaining the correlation of the repeated measures
within a subject in next two sections.

1.1. Modified Cholesky Decomposition with Hypersphere Decomposition

We assume
y∗

it = xT
itβ + zT

itbi + ǫit,

where ǫit’s are prediction error and are assumed as

ǫi = (ǫi1, . . . , ǫini
)T indep.

∼ N(0, Ri)

with a correlation matrix Ri. Then the model (1) is equivalent to, for i = 1, . . . , N and
t = 1, . . . , ni,

yit =

{

1, y∗
it > 0;

0 otherwhise.
(3)

Let y∗
i = (yi1, . . . , yini

)′ and rewrite (3) in matrix form as

y∗
i = Xiβ + Zibi + ǫi,

where Xi and Zi are ni × p and ni × q matrices and defined as follows, respectively,

Xi =







xT
i1
...

xT
ini






, Zi =







zT
i1
...
zT

ini






.

On account of identifiability, Ri is restricted as a correlation matrix. In addition to the
diagonal elements equal to 1 and off-diagonal elements between -1 and 1, Ri is required to
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be a positive definite matrix. Moreover, the number of parameters to be estimated increases
quadratically with the dimension of the matrix. In order to model Ri being positive definite,
while alleviating the computational expensive, we propose a modeling of the correlation matrix
using the hypersphere decomposition (HD) approach (Zhang, Leng, and Tang 2015). The
correlation matrix Ri is reparameterized via hyperspherical coordinates (Zhang et al. 2015)
by the following decomposition:

Ri = FiF
T
i ,

where Fi is a lower triangular matrix with the (t, j)th element fitj given by

fitj =















1, for t = j = 1;
cos(ωitj), for j = 1, t = 2, · · · , ni;

cos(ωitj)
∏j−1

r=1
sin(ωitr), for 2 ≤ j < t ≤ ni;

∏j−1

r=1
sin(ωitr), for t = j; j = 2, · · · , ni.

Here ωitj ’s (∈ (0, π)) are angle parameters for trigonometric functions, and the angle param-
eters are referred to hypersphere (HS) parameters.

As in Zhang et al. (2015), we consider the modeling of the angles ωitj ’s instead of the direct
modeling of the correlation matrix, and the modeling can be directly interpreted for the
correlation (Zhang et al. 2015). In order to obtain the unconstrained estimation of ωitj and
to reduce the number of parameters for facilitating the computation, we model the correlation
structures of the responses in terms of the generalized linear models which are given by:

log

(

ωitj

π − ωitj

)

= uT
itjδ, (4)

where δ is a×1 vector of unknown parameter vector to model the HS parameters. Importantly,
the proposed method reduces the model complexity and obtain fast-to-execute models without
loss of accuracy. In addition, note that the design vector uitj in (4) is used to model the HS
parameters as functions of subject-specific covariates (Zhang et al. 2015; Pan and Mackenzie
2015). As a result, the design vector is specified in a manners similar to those used in
heteroscedastic regression models. For example, time lag, |t − j|, in the design vector uitj

specifies higher lag models. We will introduce the priors of parameters in the model in
Section 1.3.

1.2. Generalized Autoregressive and Moving-Averaging Model

In order to give the complete specification of the joint distribution, the latent random vectors
y∗

i = (y∗
i1, . . . , y

∗
ini

)T are jointly normally distributed given by:

y∗
i1 = xT

i1β + ǫi1,

y∗
it = xT

itβ + zT
itbi +

u−1
∑

j=1

φij(y∗
i,t−j − xT

i,t−jβ) +
v−1
∑

s=1

ψi,t−sǫi,t−s + ǫit, t = 1, . . . , ni,
(5)

where φij ’s are generalized autoregressive parameters (GARPs) and ψis’s are generalized
moving-average parameters (GMAPs). In addition, ǫit’s are prediction error and are assumed
as

ǫi = (ǫi1, . . . , ǫini
)T indep.

∼ N(0, Ii),
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where Ii is an ni × ni identity matrix. We can rewrite (5) in matrix form as

Φi(y
∗
i −Xiβ) = Zibi + Ψiǫi,

where Xi, ni × p, Zi, ni × q, Φi, ni × ni, Ψi, ni × ni, are matrices and defined as follows,
respectively,

Xi =







xT
i1
...

xT
ini






, Zi =







zT
i1
...
zT

ini







Φi =





















1 0 0 . . . 0 0
−φi1 1 0 . . . 0 0
−φi2 −φi1 1 . . . 0 0

...
...

...
. . .

...
...

0 . . . −φi,u−2 . . . 1 0
0 . . . −φi,u−1 . . . −φi1 1





















, Ψi =





















1 0 0 . . . 0 0
ψi1 1 0 . . . 0 0
ψi2 ψi1 1 . . . 0 0
...

...
...

. . .
...

...
0 . . . ψi,v−2 . . . 1 0
0 . . . ψi,v−1 . . . ψi1 1





















Note that Φi and Ψi uniquely exist and are respectively called the generalized autoregressive
parameter matrix (GARPM) and moving-average parameter matrix (GMAPM).

The density of the latent variable y∗ conditional on the random effect b = (b1, . . . , bq) is given
by

p(y∗|b, θ) =
N
∏

i=1

ni
∏

t=1

f(y∗
it;µit, Ii),

where θ = (β, ν,Σ, φ, ψ) denote the collection of model parameters, µit = xT
itβ+zT

itbi and f(·)
is the multivariate normal density function.

1.3. Bayesian Methods

The density of the latent variable y∗ conditional on the random effect b = (b1, . . . , bq) is given
by

p(y∗|b, θ) =
N
∏

i=1

ni
∏

t=1

f(y∗
it;µit, Ii),

where θ denote the collection of model parameters, µit = xT
itβ + zT

itbi and f(·) is the multi-
variate normal density function.

To complete the Bayesian specification of the model, we use proper prior distributions instead
of noninformative priors, in order to guarantee the propriety of posterior distribution. The
prior distributions for β, Σ, and δ in the model for binary outcome are given by:

β ∼ Np(0, σ2
βI),

Σ ∼ IW(νb,Λ
−1),

where σ2
β and σ2

δ are large to be noninformative (Daniels and Zhao 2003), I is the identity
matrix corresponding to the dimension of the parameter, and Λ is the positive definite scale
matrix. Here Nm(µ,Ω) denotes the m-variate multivariate normal distribution with a mean
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vector µ and a covariance matrix Ω, and IW(ν,Λ−1) denotes the inverse Wishart distribtion
with degrees of freedom ν and a symmetric positive definite q × q scale matrix.

The prior of the parameters in correlation matrix for two different correlation structures are

MCD In the the case of modified Cholesky decomposition with hypersphere decomposition,
we assume δ ∼ Na(0, σ2

δ I).

ARMA In ARMA correlation structure, the non-informative priors is assumed for temporal
parameters in GARPM φ’s and GAMPM ψ’s with constraints on them to ensure the
stationary.

Furthermore, in the ordinal outcome a prior for α is provided

α ∼ NK−1(0, σ2
αI)I(−∞<α1<···<αK−1<∞),

where σ2
α is prespecified.

2. Implementation

The aim of this section is to provide a detailed step-by-step R in simulation studies to highlight
the most important features of package BayesRGMM, and to show how to extract the most
important results. This section can also be considered as a user manual which allows the
readers to run their own similar analyses involving only a mild modification of the example
code.

The BayesRGMM package contains four core functions. The main function BayesRobustProbit

carries out the entire MCMC procedure, and outputs the posterior samples and estimates for
model parameters along with several useful estimated information criterion statistics. Inter-
nally, most of the calculation is provided by a compiled C++ code to reduce the computational
time.User-friendly summary function BayesRobustProbitSummary that summarizes model es-
timation outcomes is equipped with BayesRobustProbit and BayesCumulativeProbitHSD. It
provides basic posterior summary statistics such as the posterior point and confidence interval
estimates of parameters and the values of information criterion statistics for model compari-
son. The function SimulatedDataGenerator and SimulatedDataGenerator.CumulativeProbit

are used to generate simulated binary and ordinal data, respectively, for simulation studies.
CorrMat.HSD is applied to calculate the correlation matrix in MCD model structure. In this
section, we focus primarily on introducing the those functions, and demonstrate their usage
with numerical experiments.

2.1. Simulation Studies

In the simulation, we demonstrate the use of functions in the BayesRGMM package.We
consider a simple random intercept model q = 1 with the regression coefficient vector of size
p = 4 given by

β = (−0.2,−0.3, 0.8,−0.4)′,

where xit’s are independently generated from N(0, 1). In addition, vi is independently simu-
lated from Γ(3, 3), bi is from N(0, vi×0.5), and zit = 1 for i = 1, . . . , n. That is, b’s correspond
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to a Student’s t-distribution with the degrees of freedom equal to 6. We then generate the
responses based on (1).

In addition to the different correlation structures, we also consider a data that is missing
completely at random (MCAR). We set the missing machines as follows

ηit = −1.5 × yt−1,i + 1.2 × yt−2,i;

Then the missing probability depends on ηit’s defined as

pmiss
it =

eηit

1 + eηit

.

The data for subject i at time point t is missing according to three observed responses for the
subject.

2.2. Simulation 1: MCD Correlation Structure

The correlation matrix Ri is created based on the given values

δ = (−0.5,−0.3)′ and uitj = (I {|t− s| = 1} , I {|t− s| = 2})′ (6)

R> # Simulation study for MCD correlation structure

R> library(BayesRGMM)

R> rm(list=ls(all=TRUE))

R> Fixed.Effs = c(-0.2, -0.3, 0.8, -0.4)

R> P = length(Fixed.Effs)

R> q = 1

R> T = 5

R> N = 100

R> num.of.iter = 100

R> HSD.para = c(-0.5, -0.3)

R> a = length(HSD.para)

R> w = array(runif(T*T*a), c(T, T, a))

R> for(time.diff in 1:a)

+ w[, , time.diff]=1*(as.matrix(dist(1:T, 1:T, method="manhattan"))

+ ==time.diff)

R> HSD.sim.data = SimulatedDataGenerator(Num.of.Obs = N, Num.of.TimePoints = T,

+ Fixed.Effs = Fixed.Effs, Random.Effs = list(Sigma = 0.5*diag(1), df=3),

+ Cor.in.DesignMat = 0., Missing = list(Missing.Mechanism = 2,

+ RegCoefs = c(-1.5, 1.2)), Cor.Str = "HSD",

+ HSD.DesignMat.para = list(HSD.para = HSD.para, DesignMat = w))

R> hyper.params = list(

+ sigma2.beta = 1,

+ sigma2.delta = 1,

+ v.gamma = 5,

+ InvWishart.df = 5,

+ InvWishart.Lambda = diag(q) )

R> HSD.output = BayesRobustProbit(fixed = as.formula(paste("y~-1+",

+ paste0("x", 1:P, collapse="+"))), data=HSD.sim.data$sim.data,
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+ random = ~ 1, HS.model = ~IndTime1+IndTime2, Robustness=TRUE, subset = NULL,

+ na.action='na.exclude', hyper.params = hyper.params,

+ num.of.iter = num.of.iter, Interactive = FALSE)

Start running MCMC procedure:

Finish MCMC Procedure.

Data Descriptives:

Longitudinal Data Information:

Number of Observations: 363 Number of Covariates: 3

Number of subjects: 100

R> original = options(digits = 4)

R> Model.Estimation = BayesRobustProbitSummary(HSD.output)

R> cat("\nCoefficients:\n")

Coefficients:

R> print(Model.Estimation$beta.est.CI)

PostMean StErr 2.5% 97.5%

x1 -0.3 0.04 -0.6 0.1

x2 -0.3 0.05 -0.7 0.2

x3 0.9 0.03 0.5 1.1

x4 -0.3 0.02 -0.5 -0.1

R> cat("\nParameters in HSD model:\n")

Parameters in HSD model:

R> print(Model.Estimation$delta.est.CI)

PostMean StErr 2.5% 97.5%

IndTime1 -0.3 0.07 -0.5 0.07

IndTime2 0.1 0.04 -0.1 0.33

R> cat("\nRandom effect: \n")

Random effect:

R> print(Model.Estimation$random.cov)

Variance

(Intercept) 0.6
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R> cat("\nModel Information:\n")

Model Information:

R> print(Model.Estimation$model.info)

logL AIC BIC CIC DIC MPL RJR ACC

-122 457 733 0.3 358 5 1 0.9

R> cat("\nEstimate of Ri: \n")

Estimate of Ri:

R> print(Model.Estimation$Ri, quote = FALSE)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0.2 -0.1 0.0 0.0

[2,] 0.2 1.0 0.2 -0.1 0.0

[3,] -0.1 0.2 1.0 0.2 -0.1

[4,] 0.0 -0.1 0.2 1.0 0.2

[5,] 0.0 0.0 -0.1 0.2 1.0

R> options(original)

R>

2.3. Simulation 2: ARMA Correlation Structure

To model the serial dependence for the repeated measurement, we consider an ARMA(1, 1)
correlation structure with

φ = 0.4, and ψ = 0.2.

R> library(BayesRGMM)

R> rm(list=ls(all=TRUE))

R> Fixed.Effs = c(-0.2,-0.8, 1.0, -1.2)

R> P = length(Fixed.Effs)

R> q = 1

R> T = 10

R> N = 100

R> num.of.iter = 100

R> ARMA.sim.data = SimulatedDataGenerator(Num.of.Obs = N, Num.of.TimePoints = T,

+ Fixed.Effs = Fixed.Effs, Random.Effs = list(Sigma = 0.5*diag(1), df=3),

+ Cor.in.DesignMat = 0., list(Missing.Mechanism = 2, RegCoefs = c(-1.5, 1.2)),

+ Cor.Str = "ARMA", ARMA.para=list(AR.para = 0.4, MA.para=0.2))

R> ARMA.output = BayesRobustProbit(fixed = as.formula(paste("y~-1+",

+ paste0("x", 1:P, collapse="+"))), data=ARMA.sim.data$sim.data, random = ~ 1,

+ Robustness=TRUE, subset = NULL, na.action='na.exclude', arma.order = c(1, 1),

+ num.of.iter = num.of.iter, Interactive = FALSE)
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Data Descriptives:

Longitudinal Data Information:

Number of Observations: 802 Number of Covariates: 3

Number of subjects: 100

Start running MCMC procedure:

Finish MCMC Procedure.

R> original = options(digits = 4)

R> Model.Estimation = BayesRobustProbitSummary(ARMA.output)

R> cat("\nCoefficients:\n")

Coefficients:

R> print(Model.Estimation$beta.est.CI)

PostMean StErr 2.5% 97.5%

x1 -0.2 0.10 -0.7 0.6

x2 -0.2 0.18 -1.2 1.0

x3 0.8 0.07 0.3 1.1

x4 -1.1 0.08 -1.3 -0.4

R> cat("\nAMRA parameters:\n\n")

AMRA parameters:

R> print(Model.Estimation$arma.est)

PostMean StErr 2.5% 97.5%

phi 1 0.009 0.009 -0.06 0.04

psi 1 0.253 0.016 0.12 0.35

R> cat("\nRandom effect: \n")

Random effect:

R> print(Model.Estimation$random.cov)

Variance

(Intercept) 0.8

R> cat("\nModel Information:\n")

Model Information:
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R> print(Model.Estimation$model.info)

logL AIC BIC CIC DIC MPL RJR ACC

-194 601 877 5e-08 545 12 1 0.9

R> options(original)

2.4. Ordinal Outcome

We consider a simple random intercept model (q = 1). For k = 1, 2, 3 and t = 1, . . . , ni, the
model is given by:

y∗
it = β1Timeit + β2Groupi + β3Timeit ×Groupi + bi0 + ǫit, (7)

bi0 ∼ N(0, σ2
b ), (8)

ǫi = (ǫi1, . . . , ǫini
)T ∼ N(0, Ri), (9)

where Timeit ∼ N(0, 1) and Groupi equals 0 or 1 with approximately the same sample size
for each group. The true parameters in the simulations are as below:

(β01, β02) = (−0.5, 0.5); (β1, β2, β3) = (−0.1, 0.1,−0.1); σ2
b = 0.2.

The model for correlation matrix Ri is given by

log

(

ωitj

π − ωitj

)

= δ11(|t−j|=1) + δ21(|t−j|=2), (10)

where (δ1, δ2) = (−0.9,−0.6).

We consider a data that is missing completely at random (MCAR) with a machine defined
by

ηit = −0.7 × yt−1,i − 0.2 × yt−2,i − 0.1 × yt−3,i;

Then the missing probability depends on ηit’s defined as

pmiss
it =

eηit

1 + eηit

.

The data for subject i at time point t is missing according to three observed responses for the
subject.

R> library(BayesRGMM)

R> rm(list=ls(all=TRUE))

R> Fixed.Effs = c(-0.1, 0.1, -0.1) #c(-0.8, -0.3, 1.8, -0.4) #c(-0.2,-0.8, 1.0, -1.2)

R> P = length(Fixed.Effs)

R> q = 1 #number of random effects

R> T = 7 #time points

R> N = 100 #number of subjects

R> Num.of.Cats = 3 #in KBLEE simulation studies, please fix it.
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R> num.of.iter = 1000 #number of iterations

R> HSD.para = c(-0.9, -0.6) #the parameters in HSD model

R> a = length(HSD.para)

R> w = array(runif(T*T*a), c(T, T, a)) #design matrix in HSD model

R> for(time.diff in 1:a)

+ w[, , time.diff] = 1*(as.matrix(dist(1:T, 1:T, method="manhattan")) ==time.diff)

R> x = array(0, c(T, P, N))

R> for(i in 1:N){

+ #x[,, i] = t(rmvnorm(P, rep(0, T), AR1.cor(T, Cor.in.DesignMat)))

+ x[, 1, i] = 1:T

+ x[, 2, i] = rbinom(1, 1, 0.5)

+ x[, 3, i] = x[, 1, i]*x[, 2, i]

+ }

R> DesignMat = x

R> #Generate a data with HSD model

R>

R>

R> #MAR

R> CPREM.sim.data = SimulatedDataGenerator.CumulativeProbit(Num.of.Obs = N,

+ Num.of.TimePoints = T, Num.of.Cats = Num.of.Cats, Fixed.Effs = Fixed.Effs,

+ Random.Effs = list(Sigma = 0.5*diag(1), df=3), DesignMat = DesignMat,

+ Missing = list(Missing.Mechanism = 2, MissingRegCoefs=c(-0.7, -0.2, -0.1)),

+ HSD.DesignMat.para = list(HSD.para = HSD.para, DesignMat = w))

R> print(table(CPREM.sim.data$sim.data$y))

1 2 3

154 174 168

R> print(CPREM.sim.data$classes)

0% 33.33% 66.67% 100%

-7.29916 -1.08758 0.03335 5.83849

R> BCP.output = BayesRobustProbit(fixed = as.formula(paste("y~", paste0("x", 1:P, collapse="+"))),

+ data=CPREM.sim.data$sim.data, random = ~ 1, Robustness = TRUE,

+ subset = NULL, na.action='na.exclude', HS.model = ~IndTime1+IndTime2,

+ hyper.params=NULL, num.of.iter=num.of.iter, Interactive = FALSE)

Start reading Data

End reading Data

Read Hyperparameters.

Start running MCMC procedure:

Finish MCMC Procedure.

Finish Parameter Estimation.



12 BayesRGMM: Package Vignette

AIC = 1479.57 BIC = 1753.11 CIC = 3.00783 logL = -634.786

DIC = 1141.33 RJR = 0.231687 MPL = 0.327793 ACC = 0.691532

Data Descriptives:

Longitudinal Data Information:

Number of Observations: 496 Number of Covariates: 2

Number of subjects: 100

R> BCP.Est.output = BayesRobustProbitSummary(BCP.output)

R> BCP.Est.output

$beta.est.CI

PostMean StErr 2.5% 97.5%

x1 -0.14 0.005 -0.2 -0.06

x2 0.18 0.042 -0.5 0.92

x3 0.04 0.007 -0.1 0.20

alpha1 -1.05 0.043 -1.4 -0.83

alpha2 0.28 0.053 -0.2 1.02

$delta.est.CI

PostMean StErr 2.5% 97.5%

IndTime1 -0.8 0.03 -1.0 -0.4

IndTime2 -0.5 0.03 -0.7 0.1

$model.info

logL AIC BIC CIC DIC MPL RJR ACC

-635 1480 1753 3 1141 0.3 0.2 0.7

$random.cov

Variance

(Intercept) 0.7

$Ri

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] "1.0" "0.6" "0.4" "0.0" "0.0" "0.0" "0.0"

[2,] "0.6" "1.0" "0.6" "0.3" "0.0" "0.0" "0.0"

[3,] "0.4" "0.6" "1.0" "0.6" "0.3" "0.0" "0.0"

[4,] "0.0" "0.3" "0.6" "1.0" "0.6" "0.3" "0.0"

[5,] "0.0" "0.0" "0.3" "0.6" "1.0" "0.6" "0.3"

[6,] "0.0" "0.0" "0.0" "0.3" "0.6" "1.0" "0.6"

[7,] "0.0" "0.0" "0.0" "0.0" "0.3" "0.6" "1.0"
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