R/SSElik.R

Defines functions checkweights make.SSElik mat

Documented in checkweights make.SSElik mat

############ squared measurement error ##############

#  This file defines functions for evaluating the total SSE for data
#  and its derivative values:

#    fn      = SSE
#    dfdx    = dSSE.dx
#    dfdy    = dSSE.dy
#    dfdp    = dSSE.dp
#    d2fdx2  = d2SSE.dx2
#    d2fdxdy = d2SSE.dxdy
#    d2fdy2  = d2SSE.dy2
#    d2fdxdp = d2SSE.dxdp
#    d2fdydp = d2SSE.dydp

# as well as function checkweights

mat <- function(x){
  if(!is.matrix(x)) x = matrix(x,ncol=1)
  x}

################################################################################
make.SSElik <- function()
{

##############################################################################
SSE <- function(data,times,devals,pars,more)
{
    # evaluate the fit to the data:
    #    if more$fn is id$fn, devals is returned
    #     if more$fn is exp$fn, exp(devals) is returned
    
        fdevals = more$fn(times, devals, pars, more$more)
        difs = data - fdevals
        difs[is.na(difs)] = 0     
        weights = checkweights(more$weights, more$whichobs, mat(difs))
        weights = mat(weights) 
        f = apply(weights * difs^2, 1, sum)
        return(f)

}

  ##############################################################################

dSSE.dx <- function(data,times,devals,pars,more)
{
    fdevals = more$fn(times,devals,pars,more$more)
    difs = data-fdevals
    difs[is.na(difs)] = 0 
    
    weights = checkweights(more$weights,more$whichobs,mat(difs))
    weights = mat(weights)  
    difs = weights*difs

    dfdx = more$dfdx(times,devals,pars,more$more)
    
    g = c()
    for(i in 1:dim(dfdx)[3]){               
        g = cbind(g,apply(difs*dfdx[,,i],1,sum))
    }   
    return(-2*g)
}

  ##############################################################################
  
dSSE.dy <- function(data,times,devals,pars,more)
{
    fdevals = more$fn(times,devals,pars,more$more)
    difs = data-fdevals
    difs[is.na(difs)] = 0
    weights = checkweights(more$weights,more$whichobs,mat(difs))
    weights = mat(weights)  
    difs = weights*difs

    return(2*difs)
}

  ##############################################################################
  
dSSE.dp <- function(data,times,devals,pars,more)
{
    fdevals = more$fn(times,devals,pars,more$more)
    difs = data-fdevals
    difs[is.na(difs)] = 0
    weights = checkweights(more$weights,more$whichobs,mat(difs))
    weights = mat(weights)   
    difs = weights*difs

    dfdp = more$dfdp(times,devals,pars,more$more)

    g = c()
    for(i in 1:dim(dfdp)[3]){           
        g  = cbind(g,apply(difs*dfdp[,,i],1,sum))
    }   
    return(-2*g)
}

  ##############################################################################

d2SSE.dx2 <- function(data,times,devals,pars,more)
{
    fdevals = more$fn(times,devals,pars,more$more)
    difs = data-fdevals


    dfdx = more$dfdx(times,devals,pars,more$more)
    d2fdx2 = more$d2fdx2(times,devals,pars,more$more)   

    difs[is.na(difs)] = 0
    weights = checkweights(more$weights,more$whichobs,mat(difs))
    weights = mat(weights)   
    difs = weights*difs


    H = array(0,c(dim(devals),dim(devals)[2]))

    for(i in 1:dim(d2fdx2)[3]){
        for(j in 1:dim(d2fdx2)[4]){
            H[,i,j] = apply(-difs*d2fdx2[,,i,j] +  weights*dfdx[,,j]*dfdx[,,i],1,sum)
       }
    }

    return(2*H)
}

  ##############################################################################

d2SSE.dxdy <- function(data,times,devals,pars,more)
{
    dfdx = more$dfdx(times,devals,pars,more$more)                 
    weights = checkweights(more$weights,more$whichobs,mat(dfdx[,,1]))
    weights = mat(weights)   
    weights[is.na(data)] = 0
    
    for(i in 1:dim(dfdx)[3]){
        dfdx[,,i] = weights*dfdx[,,i]
    }
    
    return(-2*aperm(dfdx,c(1,3,2)))
    
}

  ##############################################################################
  
d2SSE.dy2 <- function(data,times,devals,pars,more)
{
    r = array(0,c(dim(data),dim(data)[2]))
    
    ind = cbind(rep(1:dim(data)[1],dim(data)[2]),
        kronecker(cbind(1:dim(data)[2],1:dim(data)[2]),rep(1,dim(data)[1])))  
    weights = checkweights(more$weights,more$whichobs,mat(data))
    weights = mat(weights)  
    r[ind] = weights
    return(2*r)
}

  ##############################################################################

d2SSE.dxdp <- function(data,times,devals,pars,more)
{
    fdevals = more$fn(times,devals,pars,more$more)
    difs = data-fdevals
    difs[is.na(difs)] = 0   
    weights = checkweights(more$weights,more$whichobs,mat(difs))
    weights = mat(weights)    
    difs = weights*difs

    dfdx = more$dfdx(times,devals,pars,more$more)
    dfdp = more$dfdp(times,devals,pars,more$more)
    d2fdxdp = more$d2fdxdp(times,devals,pars,more$more) 


    H = array(0,c(dim(devals),length(pars)))

    for(i in 1:dim(d2fdxdp)[3]){
        for(j in 1:dim(d2fdxdp)[4]){
            H[,i,j] = apply(-difs*d2fdxdp[,,i,j] + weights*dfdx[,,i]*dfdp[,,j],1,sum)
       }
    }
    return(2*H)
}

  ##############################################################################

d2SSE.dydp <- function(data,times,devals,pars,more)
{
    dfdp = more$dfdp(times,devals,pars,more$more)    
    weights = checkweights(more$weights,more$whichobs,mat(dfdp[,,1]))
    weights = mat(weights)    
    weights[is.na(data)] = 0
    
    for(i in 1:dim(dfdp)[3]){
        dfdp[,,i] = weights*dfdp[,,i]
    }
    
    return(-2*dfdp)
}
  ##############################################################################
    return(
        list(
            fn = SSE,
            dfdx = dSSE.dx,
            dfdy = dSSE.dy,
            dfdp = dSSE.dp,
            d2fdx2 = d2SSE.dx2,
            d2fdxdy = d2SSE.dxdy,
            d2fdy2 = d2SSE.dy2,
            d2fdxdp = d2SSE.dxdp,
            d2fdydp = d2SSE.dydp
        )
    )
}
 
##############################################################################
 

checkweights <- function(weights,whichrows,diffs){
  if(is.null(whichrows)){ whichrows = 1:nrow(diffs) }
  if(is.null(weights)){ return(matrix(1,nrow(diffs),ncol(diffs))) } 
   
  # If we only get a vector of weights
  if( !is.matrix(weights) ){
    if( length(weights) == ncol(diffs)){ weights =  matrix(weights,nrow(diffs),ncol(diffs),byrow=TRUE) }
    else if( length(weights) == nrow(diffs)){ weights =  matrix(weights,nrow(diffs),ncol(diffs),byrow=FALSE) }
  }
  
  # Now if things make sense, return the weights 
  if( prod( dim(weights[whichrows,]) == dim(diffs)) ){ return(weights[whichrows,]) }
  
  # If weights is too big take an obvious subset
  if( ncol(weights[whichrows,]) > ncol(diffs) & nrow(weights) > nrow(diffs) ){
    warning('Dimension of weights does not match that of data')
    return( weights[whichrows[1:nrow(diffs)],1:ncol(diffs)] )
  }
  else{
     stop('Dimension of weights does not match that of data')
  }

}                  

Try the CollocInfer package in your browser

Any scripts or data that you put into this service are public.

CollocInfer documentation built on May 2, 2019, 4:03 a.m.