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Abstract

This document gives a brief and concise overview of the various functionalities

of the package CoopGame and presents a few use cases. In particular, we introduce

the capabilities of CoopGame to create special families of cooperative games, to

check game properties and to compute set-valued and point-valued solutions. We

also introduce the usage of CoopGame for visualizing set-valued and point-valued

solutions in the case of three or four players. We end with a brief outlook to future

developments. This vignette accompanies version 0.2.2 of the package CoopGame.
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1 Introduction to Cooperative Games

Today, the term game theory is mostly interpreted as interactive decision theory, i.e. game
theorists wish to study how agents take strategic decisions interactively. Since the
publication of the seminal book “Theory of Games and Economic Behavior” by John von
Neumann and Oskar Morgenstern [1] in 1944, modern game theory developed into two
main branches. These two branches are most frequently referred to as noncooperative
game theory and cooperative game theory, respectively. In our understanding of the
field we side with the views expressed by Nobel laureate Robert Aumann in his famous
interview [2] with Eric van Damme that a better name for noncooperative game theory
would be “strategically oriented game theory” whereas cooperative game might be
characterized more precisely as “coalitional game theory” or “outcome oriented game
theory”.

In the introduction of this vignette we wish to borrow a thought from the first chapter
of the book by Peleg and Sudhölter [3]. In the seminal papers [4] and [5] Bezalel Peleg
pointed out that Nash’s program could not be implemented, i.e. that it is not possible to
express each and every cooperative game as a noncooperative game in extensive form
with the solution of the cooperative game being defined in terms of equilibrium points of
the corresponding noncooperative game.

In other words: Peleg’s results from [4] and [5] removed any doubts that cooperative
game theory was truly a theory of its own right. So, to quote Robert Aumann (see [2],
p. 195) again

... It is not only strategic interaction.

In this spirit our R-package CoopGame is devoted to the study of coalitional games with
transferable utility and aims to provide a comprehensive set of methods.

1.1 What this package provides and what it does not provide

The package CoopGame focusses on a cost-savings approach to cooperative games.

We are studying a transferable utility game (TU game) v in characteristic function form
consisting of the player set N = {1, . . . , n} and the characteristic function v : 2N → R

with v(∅) = 0. We specify such a TU game with n players as a (game) vector of length
2n − 1.

1.1.1 Vignette for version 0.2.2 of CoopGame

This is the place to emphasize once again that this vignette accompanies version 0.2.2
of the R package CoopGame. Future releases of CoopGame might incorporate additional
functionality and will be accompanied by an update of this vignette.

1.1.2 Specifying a TU game

Let us look at an introductory example of a three-player TU game. Let N = {1, 2, 3}
and v : P(N) → R be specified as
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v(∅) = 0,

v({1}) = 0,

v({2}) = 0,

v({3}) = 0,

v({1, 2}) = 100,

v({1, 3}) = 115,

v({2, 3}) = 125,

v({1, 2, 3}) = 220.

We may interpret the values of the individual coalitions in various ways, e.g. as the
worth of a coalition or the cost-savings of a coalition. In our above example the singleton
coalitions have worth zero whereas the grand coalition N = {1, 2, 3} makes a total of
220 (monetary units). In brief, the basic question in coalitional games with transferable
utility is how we can share the worth of 220 among our three players. In R we can simply
specify the above game as a vector v of lenght 7, i.e.

library(CoopGame)

## Loading required package: geometry

## Loading required package: rcdd

## If you want correct answers, use rational arithmetic.

## See the Warnings sections added to help pages for

## functions that do computational geometry.

(v <- c(0,0,0,100,115,125,220))

## [1] 0 0 0 100 115 125 220

Sometimes it is convenient to use the shorthand notations

vi = v({i}) for i = 1, . . . , n,

for the singleton coalitions.

1.1.3 A popular example: The Maschler game

Throughout this vignette we will frequently employ the following three-player example

v(C) =

{ 0, |C| = 1

60, |C| = 2

72, |C| = 3

It appears in the article [6] where the authors attribute it to the famous Israeli game
theorist Michael Maschler. The above game has thus frequently been referred to as the
Maschler game in the literature since.

library(CoopGame)

(Maschler <- c(0,0,0,60,60,60,72))

## [1] 0 0 0 60 60 60 72

1.1.4 Functionality and structure of the package CoopGame

The package CoopGame provides functions for

• generating TU games with special structure (see chapter 2 of this vignette), like
e.g. bankruptcy games, cost games, weighted voting games and unanimity games
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• checking game properties (see chapter 3 of this vignette), like e.g. superadditivity,
convexity and balancedness

• computing a number of set-valued solution concepts for TU games (see chapter 4
of this vignette), including the core and various core catchers

• computing a large array of point-valued solution concepts for TU games (see chapter
5 of this vignette), including the Shapley value, the nucleolus as well as various
nucleolus derivatives and numerous power indices

• drawing both set- and point-valued solution concepts for the 3- and 4-player cases
(see chapter 6 of this vignette)

• some general functionality useful in the context of TU games (see section 1.2 of this
vignette), like e.g. computing the unanimity coefficients for a given game vector

1.1.5 Models and questions beyond the scope of CoopGame

Coalitional games can be turned into more realistic models if, in addition one allows
for partitions of the player set (see e.g. the original paper by Thrall and Lucas [7]) or
for specifying an undirected graph connecting the players. The latter case is frequently
referred to as a communication game (see e.g. the book by Slikker and van den Nouweland
[8]). The authors are currently developing additional R packages for both games with
partitions of the player set as well as communication games. These additional software
packages will make use of CoopGame, but CoopGame itself will allow for neither partitions
or communication structures.

Since CoopGame can neither handle partitions nor other more general coalition structures
(see e.g. the paper by Aumann and Dreze [9] from 1974), the package neither provides
methods for computing bargaining sets (see e.g. the original paper by Aumann and
Maschler [10] from 1964) nor methods for computing the kernel (see e.g. the original
article by Aumann, Peleg and Rabinowitz [11] from 1965).

Another feature this first release of CoopGame also lacks is functionality for general market
games (see e.g. the original paper by Aumann [12] on markets with a continuum of
traders from 1964).

Also, NTU games, i.e. cooperative games with non-transferable utility (see e.g. the article
by Aumann and Maschler [13] from 1960), are beyond the scope of this R package.

1.1.6 This is not a book on cooperative game theory and these are not
lecture notes

This text is a CRAN vignette only and it is supposed to give users of CoopGame a concise
overview of the package. Users looking for an introduction to the fascinating field of
cooperative game theory will be disappointed by this text. We strictly adhere to the
CRAN policy that CRAN vignettes are not to be misused as lecture notes.

For excellent introductions to cooperative game theory we refer to the books by Peleg
and Sudhölter [3], by Driessen [14], by Branzei, Dimitrov and Tijs [15], by Chakravarty,
Mitra and Sarkar [16] and by Gilles [17].

Excellent introductions to cooperative game theory can also be found in the game theory
books by Maschler, Solan and Zamir [18], by Peters [19] by Osborne and Rubinstein [20],
the recent book by Narahari [21] and the classic textbook by Straffin [22].

We finally wish to acknowledge that beyond the aforementioned excellent books the
development of CoopGame also benefitted greatly from two excellent German textbooks,
i.e. the books by Wiese [23] and by Holler and Illing [24].
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1.2 Some general functionality for cooperative games

In this section we introduce some useful functionality for cooperative games which we
will use later when we discuss games with special structure, game properties as well as
set-valued and point-valued solution concepts for cooperative games.

1.2.1 Zero-normalized and zero-one-normalized games

We call a cooperative game v zero-normalized if

vi = 0 for i = 1, . . . , n,

i.e. the values of all singleton coalitions are zero (see e.g. Peleg and Sudhölter [3], p. 11).

We can easily zero-normalize a given game vector v into a corresponding zero-normalized
game vector w via

w(C) = v(C) −
∑

i∈C

vi

for every coalition C ∈ P(N) (see e.g. Branzei, Dimitrov and Tijs [15], p. 9). In CoopGame

we provide a corresponding function getZeroNormalizedGameVector:

library(CoopGame)

v <- c(30,40,50,90,100,110,180)

(w <- getZeroNormalizedGameVector(v))

## [1] 0 0 0 20 20 20 60

We call a cooperative game v zero-one-normalized if it is zero-normalized and for
the grand coalition N there holds v(N) = 1. We can easily zero-one-normalize a
given game vector v by dividing the zero-normalized game vector w by the value
of the grand coalition v(N). In CoopGame we provide a corresponding function
getZeroOneNormalizedGameVector:

library(CoopGame)

v <- c(30,40,50,90,100,110,180)

(w01 <- getZeroOneNormalizedGameVector(v))

## [1] 0.0000000 0.0000000 0.0000000 0.3333333 0.3333333

## [6] 0.3333333 1.0000000

For a detailed discussion on the importance of zero-one-normalized games and strategic
equivalence we refer the reader to the book by Maschler, Solan and Zamir [18], p. 670.

1.2.2 Why bit matrices are helpful in cooperative game theory

We introduce the concept of a bit matrix as we find it extremely useful for working with
cooperative games. Bit matrices unambigously map the values of coalitions to the players
in that coalition. We again make use of the Maschler game for our example.

library(CoopGame)

(Maschler <- c(0,0,0,60,60,60,72))

## [1] 0 0 0 60 60 60 72

createBitMatrix(n=3,Maschler)

## cVal

## [1,] 1 0 0 0

## [2,] 0 1 0 0

## [3,] 0 0 1 0

## [4,] 1 1 0 60
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## [5,] 1 0 1 60

## [6,] 0 1 1 60

## [7,] 1 1 1 72

For a TU game with n players the function createBitMatrix creates a bit matrix with
n + 1 columns and 2n − 1 rows which contains all possible coalitions of the players (apart
from the null coalition). Each player is represented by a column which states if this
player is participating in a coalition (value 1) or not (value 0). The last column (named
cVal) contains the values of each coalition. Accordingly, each row of the bit matrix
expresses a coalition as a subset of all players.

However, we need to admit that our usage of bit matrices in CoopGame also consumes
plenty of storage space.

1.2.3 Marginal contributions

Let our TU game be specified by its characteristic function v. Then for every player
j ∈ N and for every coalition C ∈ P(N) with j ∈ C we can define the so-called marginal
contribution of player j to coalition C as

v(C) − v(C\{j}),

see e.g. the book by Branzei, Dimitrov and Tijs [15], pp. 6, or the book by Peters [19],
pp. 156. For some point- and set-valued solution concepts we need to know the marginal
contributions of every player for every permutation of the set of players. Our function
getMarginalContributions provides the user with a list of all combinations, i.e. per-
mutations of the players, used and a corresponding matrix of marginal contributions:

library(CoopGame)

v <- c(3,4,5,9,10,11,18)

(MC <- getMarginalContributions(v))

## $A

## [1] 3 4 5 9 10 11 18

##

## $combinations

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 1 3 2

## [3,] 2 1 3

## [4,] 2 3 1

## [5,] 3 1 2

## [6,] 3 2 1

##

## $marginal_values

## [,1] [,2] [,3]

## [1,] 3 6 9

## [2,] 3 8 7

## [3,] 5 4 9

## [4,] 7 4 7

## [5,] 5 8 5

## [6,] 7 6 5

# Look at all the permutations computed

MC$combinations

## [,1] [,2] [,3]

8



## [1,] 1 2 3

## [2,] 1 3 2

## [3,] 2 1 3

## [4,] 2 3 1

## [5,] 3 1 2

## [6,] 3 2 1

# Look at the matrix of marginal values

# corresponding to these permutations

MC$marginal_values

## [,1] [,2] [,3]

## [1,] 3 6 9

## [2,] 3 8 7

## [3,] 5 4 9

## [4,] 7 4 7

## [5,] 5 8 5

## [6,] 7 6 5

It appears worthwhile to interpret the second line of the marginal values we just computed

MC$marginal_values[2,]

## [1] 3 8 7

along the lines of the book by Peters [19], pp. 156. The above results corresponds to the
permutation (1, 3, 2).

• Player 1 enters first and contributes 3.
• Player 3 enters second and contributes 11 − 3 = 8.
• Player 2 enters last and contributes 18 − 11 = 7.

1.2.4 The dual game

Let our TU game be specified by its characteristic function v. Then we can specify the
so-called dual game v∗ corresponding to v via

v∗(C) = v(N) − v(N\C)

for every coalition C ∈ P(N) (see e.g. the book by Peleg and Sudhölter [3], p. 125, or the
book by Branzei, Dimitrov and Tijs [15], p.7, for more details). The package CoopGame

provides a function getDualGameVector:

library(CoopGame)

v <- c(3,4,5,9,10,11,18)

# Compute dual game vector

(vStar <- getDualGameVector(v))

## [1] 7 8 9 13 14 15 18

1.2.5 The utopia payoff vector

In cooperative game theory the so-called utopia payoff of player j is defined as

Mj = v(N) − v(N\{j}) for j = 1, . . . , n,

i.e. the utopia payoff Mj is the marginal contribution of player j to the grand coalition
N (see e.g. the book by Branzei, Dimitrov and Tijs [15], p. 20). The package CoopGame

provides a function getUtopiaPayoff for computing a vector of utopia payoffs for all
players:
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library(CoopGame)

v <- c(3,4,5,9,10,11,18)

# Compute utopia payoff vector for specified game v

(M <- getUtopiaPayoff(v))

## [1] 7 8 9

It is clear that player j can not ask for more than Mj in the grand coalition. The utopia
payoff vector will lateron play a role in defining game properties as well as point- and
set-valued solution concepts.

1.2.6 The minimal rights vector

The so-called remainder R(C, j) of player j in coalition C ∈ P(N) is the amount which
remains for player j if the coalition C forms and the rest of the players in coalition C all
obtain their individual utopia payoffs, i.e.

R(C, j) = v(C) −
∑

k∈C,k 6=j

Mk.

We can define a vector of minimal rights with components

mj = max
C:j∈C

R(C, j), for j = 1, . . . , n,

since player j has a justification to demand at least mj in the grand coalition, see e.g. the
book by Branzei, Dimitrov and Tijs [15], p. 20.
The package CoopGame provides a function getMinimalRights for computing a vector
of minimal rights for every player:

library(CoopGame)

v <- c(2,3,4,8,9,10,13)

# Compute minimal rights vector for specified game v

(m <- getMinimalRights(v))

## [1] 4 5 6

1.2.7 The excess coefficients

The excess e(C, x) of a coalition C with respect to a vector x measures the gain or loss
of the members of C in case they decide to abandon the grand coalition N in favour of
their own coalition C, see e.g. the book by Driessen [14], p. 12:

e(C, x) = v(C) −
∑

j∈C

xj = v(C) − x(C)

In the above formula we use the shorthand notation x(C) =
∑

j∈C xj .

The package CoopGame provides a function getExcessCoefficients for computing a
vector of excess coefficients for every coalition:

library(CoopGame)

A <-c(3,4,5,9,10,11,18)

x <-c(5,6,7)

# Compute vector of excess coefficients for specified game v

(ec <- getExcessCoefficients(A,x))

## [1] -2 -2 -2 -2 -2 -2 0
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Note that the last component of a vector of excess coefficients is always 0 as long as x is
efficient, i.e.

∑

j∈C xj = v(N).

The concept of excesses is important in various solution concepts, like e.g. the nucleolus
(see e.g. the original paper by Schmeidler [25] which appeared in 1969). Computing a
vector of excesses comes in handy for checking the correctness of nucleolus or prenucleolus
computations, see the article by Guajardo and Jörnsten [26].

1.2.8 The gap function

The gap function is the additive inverse of the vector of excesses with respect to the
utopia payoff vector, see the book by Driessen [14], p. 57, for more details.

The package CoopGame provides a function getGapFunctionCoefficients for computing
the vector of gap function coefficients for every coalition:

library(CoopGame)

A <-c(3,4,5,9,10,11,18)

# Compute vector of gap function coefficients for specified game v

(gap <- getGapFunctionCoefficients(A))

## [1] 4 4 4 6 6 6 6

1.2.9 The per capita excess coefficients

Per capita excess coefficients replace excess coefficients in the computation of
the per capita nucleolus (see the original paper by Young [27]). The function
getPerCapitaExcessCoefficients computes a vector of per capita excess coefficients
for every coalition and a vector x, i.e. the excess coefficients are divided by the number
of players in each coalition:

library(CoopGame)

A <-c(3,4,5,9,10,11,18)

x <-c(5,6,7)

# Compute vector of per capita excess coefficients for specified game v

(ecpc <- getPerCapitaExcessCoefficients(A,x))

## [1] -2 -2 -2 -1 -1 -1 0

Computing a vector of per capita excess coefficients comes in handy for checking the
correctness of computations of the per capita nucleolus, see [26].

1.2.10 Propensities to disrupt

For a cooperative game v and a payoff vector x with
∑n

j=1
xj = v(N) player i’s

propensity to disrupt (see e.g. the article by Littlechild and Vaidya [28]) is defined as

d(i, x) =

∑n

j=1,j 6=i xj − v(N\{i})

xi − vi

The above expression quantifies the disruption caused if player i breaks away from the
grand coalition. Within this expression the denominator stands for the loss incurred
by player i for breaking away from the grand coalition, whereas the numerator stands
for the joint loss of the rest of the players due to the breakup caused by player i. This
concept is important in solution concepts like the Gately point (see e.g. the original
paper by Gately [29] from 1974, the paper by Littlechild and Vaidya [28] or the recent
article [30] by the authors) and the disruption nucleolus (see [28]).
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The function getVectorOfPropensitiesToDisrupt computes a vector of propensities
to disrupt for every coalition and a vector x:

library(CoopGame)

A <-c(3,4,5,9,10,11,18)

x <-c(5,6,7)

# Compute vector of propensities to disrupt for specified game v

(propVec <- getVectorOfPropensitiesToDisrupt(A,x))

## [1] 1 1 1 1 1 1 0

Note that the last component of a vector of propensities to disrupt is always set to 0.
Computing a vector of coefficients of propensities to disrupt comes in handy for checking
the correctness of computations of the disruption nucleolus, see [26].

1.2.11 The equal propensity to disrupt

CoopGame also provides a function for computing the so-called equal propensity to disrupt.
This concept originates from the paper [29] by Gately for three-person games and was
generalized to n-person games by Littlechild and Vaidya (see [28], p. 152). The goal is
to find an imputation x with minimal propensity to disrupt. It can be shown that this
minimal propensity to disrupt can be found by equating the propensity to disrupt over
all players, i.e.

d(i, x) = d∗ for i = 1, . . . , n.

As pointed out by Littlechild and Vaidya (see [28], p. 153) using the above approach one
can easily find the following closed-form expression

d∗ =
(n − 1)v(N) −

∑n

j=1
v(N\{j})

v(N) −
∑n

j=1
vj

=

∑n

j=1
Mj − v(N)

v(N) −
∑n

j=1
vj

for the equal propensity to disrupt d∗ of a TU game with n players. Our recent paper
[30] provides some insight and interpretation for the cases d∗ = 0 and d∗ < 0.

1.2.12 Minimum winning coalitions and real gaining coalitions

In a simple game v we call a player j critical for a coalition C if the departure of player
j turns C from a winning coalition into a losing coalition, i.e. v(C) = 1 and v(C\j) = 0.
A minimum winning coalition in a simple game is a coalition where every member of
the coalition is critical, see e.g. the paper by Deegan and Packel [31], the paper by
Holler [32] or the article by Bertini [33]. The function getMinimumWinningCoalitions

identifies all minimal winning coalitions in a simple game v and returns a corresponding
data frame. The function getCriticalCoalitionsOfPlayer identifies all coalitions for
which a given player is critical.

library(CoopGame)

# Define a simple game

A <-c(0,0,0,1,1,0,1)

# Find the minimum winning coalitions

getMinimumWinningCoalitions(A)

## V1 V2 V3 cVal

## 4 1 1 0 1

## 5 1 0 1 1

# Find the coalitions where player 2 is critical

getCriticalCoalitionsOfPlayer(2,A)
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## V1 V2 V3 cVal bmRow

## 4 1 1 0 1 4

The concept of minimum winning coalitions can be generalized to general cooperative
games v via the concept of real gaining coalitions (see e.g. the original paper by Holler and
Li [34] or the article by Bertini and Stach [35]). C is called a real gaining coalition (RGC)
iff for any true subset T ⊂ C there holds v(C) − v(T ) > 0. We provide a corresponding
function getRealGainingCoalitions.

library(CoopGame)

A <-c(0,0,0,0.8,0.9,0,0.9)

# Find the real gaining coalitions

getRealGainingCoalitions(A)

## V1 V2 V3 cVal

## 4 1 1 0 0.8

## 5 1 0 1 0.9

We provide corresponding functions getWinningCoalitions and getGainingCoalitions

for computing the winning coalitions in simple games (see e.g. the original paper by
Bertini, Gambarelli and Stach [36]) and the gaining coalitions in general TU games (see
e.g. the original paper by Bertini and Stach [35] from 2015), respectively.

1.2.13 The unanimity coefficients

The unanimity coefficients represent a cooperative game in an alternative basis, the
so-called unanimity basis. They were introduced in the seminal paper by Shapley [37]
and are also called Harsanyi dividends (see also the books by Peleg and Sudhölter [3],
p. 153, or by Gilles [17], pp. 15–17, for more details).

Our package provides a function getUnanimityCoefficients.

library(CoopGame)

# The Maschler game

Maschler <-c(0,0,0,60,60,60,72)

# Find the unanimity coefficients for the Maschler game

(unCoeff <- getUnanimityCoefficients(Maschler))

## [1] 0 0 0 60 60 60 -108

1.2.14 The k-cover

In [14], p. 173, Driessen defines an associated cover vk that majorizes the original game
v for a given integer k.

vk(C) =
{

v(C) if |C| < k,
v(N) −

∑

j∈N\C Mj else,

with M denoting the utopia payoff vector. In case the gap function g of original game v
satisfies

0 ≤ g(N) ≤ g(C)

for all coalitions C ⊆ N with k or more elements, then vk is called the k-cover of the
game v. In CoopGame we provide a function getkCover computing vk according to the
previous formula. In case v does satisfy the above condition, getkCover will return NULL.

library(CoopGame)

# Example from book by T. Driessen, p. 75
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A=c(0,0,0,9,9,15,18)

# Compute 1-cover of this 1-convex game

(A1 <- getkCover(A,k=1))

## [1] 0 6 6 9 9 15 18

1.3 Cooperative game theory in the R Ecosystem

There already exist two small R packages offering functionality for cooperative game theory
on CRAN, i.e. GameTheoryAllocation [38] and GameTheory [39]. Both packages are
very limited in scope, e.g. according to its documentation [39] the package GameTheory

only computes the nucleolus for a maximum of four players. However, GameTheory

provides some very nice insight into conflicting claims problems and is also employed
in the R package coopProductGame [40] for computing linear production games (see the
original paper by Owen [41] from 1975 for more details on linear production games).

Still, we found it very sensible to develop CoopGame. Our goal was to provide a compre-
hensive package for cooperative game theory that goes beyond providing routines for the
Shapley value or the nucleolus. One of our goals was to provide reference implementations
for lesser-known and lesser-used solution concepts. Another was to be able to visualize
solution concepts in the case of three or four players.

1.4 A few general remarks on CoopGame

We wish to end this first chapter of our vignette with four general remarks on CoopGame.

1.4.1 Package maintainer

This is supposed to be the second R package on CRAN maintained by the first au-
thor after the publication of the significantly smaller package EvolutionaryGames

[42] in November 2017. Please feel free to email questions regarding CoopGame to
jochen.staudacher@hs-kempten.de.

1.4.2 No formal maximum number of players

CoopGame does not enforce a maximum number of players. Still, realistically for most
concepts provided in CoopGame users should limit their studies to at most 20 players if
they expect quick answers on modern computers. The authors have employed CoopGame

for up to n = 24 players, but R normally ran out of storage for n > 24.

1.4.3 Minimum: 2 Players

In CoopGame a minimum of two players is needed in order to define a TU game.

1.4.4 No null games allowed

In case the user specifies a null game, i.e. a trivial TU game with each coalition generating
zero value, CoopGame will stop with an error message.

2 Cooperative Games with Special Structure

For the convenience of the users we provide the possibility to generate special families
of games. Our approach is to generate the game function as a list. The corresponding
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game vector can either be generated directly or extracted as the corresponding element
of the list. Still, for each special family of cooperative game there is

• a function for the game object (as a list)
• a function for the corresponding game vector and
• a function for the value of a coalition specified by the user.

This chapter gives an overview of the special families of games available in CoopGame

and their usage.

2.1 Bankruptcy games

Bankruptcy games are studied frequently in game cooperative game theory, see e.g. the
book by Gura and Maschler [43], the seminal paper by Aumann and Maschler [44] from
1985, the article by Aumann [45] from 2002 or the original paper by O’Neill [46] on a
problem of rights arbitration from the Talmud from 1982.

Imagine a person dies leaving debts d1, . . . , dn to n creditors. However, the sum
∑n

i=1
di

of the debts is greater than the value of the estate E of the deceased. Now we face the
problem that the debts are mutually inconsistent as the estate is too small in order to
meet all of the debts of the n creditors. The game theoretic approach to bankruptcy
problems started in 1982 with the article by O’Neill [46] where O’Neill defines a TU game
v for a set of creditors N = {1, . . . , n}, a debt vector d of lenght n and an estate E as

v(C) = max(0, E −
∑

i∈N\C

di)

for any coalition C of creditors.

CoopGame provides the function bankruptcyGame. It creates a list containing all infor-
mation about a bankruptcy game specified by the user, i.e. the list contains the number
of players n, the vector of claims d, the estate E, plus the bankruptcy game vector v.
Employing the function bankruptcyGameVector users can alternatively generate the
corresponding game vector directly specifying the number n of players, the value of
the estate E and a vector of claims d of length n. CoopGame will check whether the
specification of the bankruptcy game is consistent in the sense that E ≤

∑

i∈N di.

We look into the usage of bankruptcyGame and bankruptcyGameVector by studying an
important example from the Babylonian Talmud frequently employed in the game theory
literature.

2.1.1 A problem from the Babylonian Talmud

This important example from the Babylonian Talmud deals with a man who married
three women. In their marriage contracts the three women were promised the sums of
100, 200 and 300 units of money after the death of their husband. The man dies and his
estate amounts to less than 600 units. In the following we will not study this important
example in more detail, but simply focus on an estate E worth 300 units of money.

CoopGame allows us to create the corresponding bankruptcy game.

library(CoopGame)

bankruptcyGame(n=3,d=c(100,200,300),E=300)

## $n

## [1] 3

##
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## $d

## [1] 100 200 300

##

## $E

## [1] 300

##

## $v

## [1] 0 0 0 0 100 200 300

As stated we provide the user with various ways to extract the corresponding game
vector. One is to use bankruptcyGameVector, another to access the element $v from
the bankruptcyGame object.

library(CoopGame)

# First approach

bankruptcyGameVector(n=3,d=c(100,200,300),E=300)

## [1] 0 0 0 0 100 200 300

#

# Alternative approach

bankruptcyGame(n=3,d=c(100,200,300),E=300)$v

## [1] 0 0 0 0 100 200 300

In addition, the user can also compute the value of any individual coalition using the
function bankruptcyGameValue. For example, let us extract the value of the coalition of
the second and third widow:

library(CoopGame)

bankruptcyGameValue(S=c(2,3),d=c(100,200,300),E=300)

## [1] 200

We will briefly revisit bankruptcy games in section 5.3.2 of this vignette. For more
information on bankruptcy games and the contested-garment principle (as well as it
physical interpretation via hydraulic rationing) we refer the reader to the book by Gura
and Maschler [43], the paper by Aumann and Maschler [44] from 1985, the paper by
Aumann [45] from 2002 and the original paper by O’Neill [46] from 1982.

2.2 Cost allocation games

We can look at cost allocation games in characteristic function form consisting of the
set N = {1, . . . , n} of agents (or purposes, projects or services) and the characteristic
function c : P(N) → R with c(∅) = 0. We are introducing the shorthand notation

ci = c({i}) for i = 1, . . . , n,

for the costs of single agents. The connection between cost games and TU games is given
by the associated savings game v for N = {1, . . . , n} defined by

v(C) =
∑

i∈C

ci − c(C)

for every coalition C. Note that the associated savings game v is automatically 0-
normalized. For more information on cost games see e.g. the article by Otten [47], the
article by Young [48], the overview paper by Parrachino, Zara and Patrone [49], the
paper by Tijs and Driessen [50] and the paper by Straffin and Heaney [51].
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CoopGame will perform computations on the corresponding cost-savings game. Note that
if xi, i = 1, . . . , n, is the solution of the cost-savings game provided by CoopGame then
the actual costs for player i will be yi = ci − xi.

CoopGame provides the function costSharingGame. The user needs to specify the number
of players n and a vector of costs of length n. We look into the usage of costSharingGame

by briefly studying an important example from the literature.

2.2.1 The TVA problem

The TVA (Tennessee Valley Authority) problem is a classic example of a cost-sharing
problem. We refer to the original article by Ransmeier [52] on the Tennessee Valley
Authority from 1942 and the book by Driessen [14], pp. 1–3, for more details and the
history of this problem.

The following code example shows how to specify the TVA problem in CoopGame:

library(CoopGame)

TVACosts=c(163520,140826,250096,301607,378821,367370,412584)

(tvaCostGame <- costSharingGame(n=3, TVACosts))

## $n

## [1] 3

##

## $Costs

## [1] 163520 140826 250096 301607 378821 367370 412584

##

## $v

## [1] 0 0 0 2739 34795 23552 141858

#

# Alternatively, generate and output only the corresponding game vector

(v <- costSharingGameVector(n=3, TVACosts))

## [1] 0 0 0 2739 34795 23552 141858

We will revisit the TVA problem in section 5.3.3 of this vignette.

2.3 Glove games

In glove games we have a set N = {1, . . . , n} of n players and a disjoint union N = L ∪ R.
L is the set of players owning one left-hand glove each and R is the set of players owning
one right-hand glove each. The worth of a coalition C equals the number of pairs of
gloves that the members of C can provide. In short: For every coalition C there holds:
v(C) = min(|S ∩ L|, |S ∩ R|). For more details on glove games we refer to the book by
Peters [19], p. 155–156.

CoopGame provides the function gloveGame. The user needs to specify the number of
players n, the set L of players owning one left-hand glove each and the set R of players
owning one right-hand glove each.

In the following example we compute the game vector for a glove game with three players
and players 1 and 3 owning one left-hand glove each whereas player 2 owns the only
right-hand glove.

library(CoopGame)

gloveGame(n=3,L=c(1,3),R=2)$v

## [1] 0 0 0 1 0 1 1

#
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# Equivalent alternative approach

gloveGameVector(n=3,L=c(1,3),R=2)

## [1] 0 0 0 1 0 1 1

2.4 Cardinality games

For a cardinality game the value of each coalition is simply the number of the members
of the coalition, i.e. v(C) = |C| for every coalition C. In our opinion cardinality games
make very good test cases.

CoopGame provides the function cardinalityGame. The user only needs to specify the
number of players n in the cardinality game.

library(CoopGame)

cardinalityGame(4)$v

## [1] 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

#

# Equivalent alternative approach

cardinalityGameVector(4)

## [1] 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

2.5 Weighted voting games

We now look into decision-making and voting in committees and define a so-called
weighted majority game (aka quota game, aka weighted voting game) for n players as
follows. Each player j is assigned a weight wj (which in some situations we may also
interpret the number of votes of a group). A law or motion gets passed in the committee
if the quota q is reached or exceeded, i.e.

v(C) =

{1 if
∑

j∈C

wj ≥ q

0 else.

We refer to the book by Maschler, Solan and Zamir [18], pp. 825 – 831, for more details
and examples.

By definition weighted voting games are always simple games. Along the lines of the
book by Peleg and Sudhölter [3], p. 16, we call a TU game v simple if v is monotonic
and the values of all coalitions are 0 or 1, see also subsection 3.2.5 of this vignette.

CoopGame provides the function weightedVotingGame. The user needs to specify the
number of players n, a numeric vector of weights w of length n with the weights of the
individual players and the quota q in the weighted voting game. We provide a simple
example with the three players.

library(CoopGame)

weightedVotingGame(n=3, w=c(3,5,4), q=8)$v

## [1] 0 0 0 1 0 1 1

#

# Equivalent alternative approach

weightedVotingGameVector(n=3, w=c(3,5,4), q=8)

## [1] 0 0 0 1 0 1 1
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For a deeper analysis and a broader view on voting in committees we recommended the
article by Peleg [53] from 2002.

2.6 Weighted majority games with a single veto player

Weighted majority games with a single veto player are a special case of quota games.
We take our definition of a weighted majority game with a single veto player game from
the book by Matthew O. Jackson [54], p. 415. The only winning coalitions are those
containing the veto player i and at least one other player.

v(C) =

{

1 if |C| ≥ 2 and i ∈ C

0 else.

CoopGame provides the function majoritySingleVetoGame. The user needs to specify
the number of players n and the number of the veto player in the weighted majority
game.

The following example produces the game vector for a majority game with four players
and player 2 in the role of the veto player.

library(CoopGame)

majoritySingleVetoGame(n=4, vetoPlayer=2)$v

## [1] 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1

#

# Equivalent alternative approach

majoritySingleVetoGameVector(n=4, vetoPlayer=2)

## [1] 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1

2.7 Unanimity games

Unanimity games are a special family of simple games. For a unanimity game the winning
coalitions are exactly those coalitions containing the set T ∈ P(N), i.e.

v(C) =

{

1 if T ⊆ C

0 else,

see Peleg and Sudhölter [3], p. 152. We can understand T as the powerful (or productive)
lot among the players. CoopGame provides the function unanimityGame. The user needs
to specify the number of players n and the set of powerful players T in the unanimity
game.

The following example produces the game vector for a unanimity game with four players
and T consisting of players 1 and 4.

library(CoopGame)

unanimityGame(n=4, T=c(1,4))$v

## [1] 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1

#

# Equivalent alternative approach

unanimityGameVector(n=4, T=c(1,4))

## [1] 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1
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2.8 Apex games

Apex games are a special family of simple games. For an apex game there are two types
of winning coalitions: The first type contains the so-called apex player plus at the least
one other player. The only winning coalition without the apex player is a coalition of
all the other players except the apex player, see in particular the book by Peters [19],
p. 164, for more details on apex games. CoopGame provides the function apexGame. The
user needs to specify the number of players n and the number of the apex player in the
apex game. The following lines construct the game vector for an apex game with four
players and player 2 in the role of the apex player.

library(CoopGame)

apexGame(n=4, apexPlayer=2)$v

## [1] 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1

#

# Equivalent alternative approach

apexGameVector(n=4, apexPlayer=2)

## [1] 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1

2.9 Dictator games

Dictator games are a special case of unanimity games, i.e. the set T in the unanimity
game consists of a single player i, the dictator.

v(C) =

{

1 if i ∈ C

0 else.

For more details on dictator games we refer to the book by Peters [19], p. 295, and
the book by Maschler, Solan and Zamir [18], p. 764. CoopGame provides the function
dictatorGame. The user needs to specify the number of players n and the number of
the dictator in the dictator game. The following lines generate the game vector for a
dictator game with four players and player 3 in the role of the dictator.

library(CoopGame)

dictatorGame(n=4, dictator=3)$v

## [1] 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

#

# Equivalent alternative approach

dictatorGameVector(n=4, dictator=3)

## [1] 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

2.10 Divide-the-dollar games

The divide-the-dollar games in CoopGame are a special family of simple games. We take
our definition of a divide-the-dollar game from the book by Matthew O. Jackson [54],
p. 413. For a divide-the-dollar game with n players the winning coalitions are exactly
those coalitions containing at least n/2 players, i.e.

v(C) =

{

1 if |C| ≥ n/2

0 else.

CoopGame provides the function divideTheDollarGame. The user only needs to specify
the number of players n in the divide-the-dollar game. We end this chapter with the
game vector for a divide-the-dollar game with three players.

20



library(CoopGame)

divideTheDollarGame(3)$v

## [1] 0 0 0 1 1 1 1

#

# Equivalent alternative approach

divideTheDollarGameVector(3)

## [1] 0 0 0 1 1 1 1

3 Game Properties

The package CoopGame provides users with the possibility to check a given game vector
v for a number of different game properties. In this chapter of our vignette we would
like to give a quick overview of these game properties and the precise definitions we use.

3.1 Checking a game property

Given that the 17 different functions for checking various game properties all come
with detailed examples in their individual documentations we will only specify the basic
principle for checking a game property. Users simply need to specify a game vector and
then check the corresponding game property (which always starts with is). The result
will be TRUE if the game shares the property in question, else it will be FALSE.

library(CoopGame)

A <-c(0,0,0,1,1,0,1)

isSuperadditiveGame(A)

## [1] TRUE

3.2 A quick overview of available game properties

3.2.1 Nonnegative games

We call a game vector A nonnegative if all of its entries are nonnegative. This game
property can be checked via the function isNonnegativeGame. We provide certain
solution concepts for nonnegative games only.

3.2.2 Essential games

We call a TU game v essential, if the value of the grand coalition v(N) is greater than
the sum of the values of the singleton coalitions v({i}), i.e.

v(N) >

n
∑

i=1

v({i}).

Our definition follows the books by Chakravarty, Mitra and Sarkar [16], p. 23, and
by Gilles [17], p. 18. We find it very convenient that according to this definition the
imputation set of an essential game is nonempty and consists of more than one point.
This game property can be checked via the function isEssentialGame.

3.2.3 Degenerate games

We call a TU game v degenerate (or inessential), if the value of the grand coalition
v(N) equals the sum of the values of the singleton coalitions v({i}), i.e.
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v(N) =
n

∑

i=1

v({i}).

We find it very convenient that according to this definition the imputation set of a
degenerate game consists of exactly one point (specified by the singleton coalitions). This
game property can be checked via the function isDegenerateGame.

3.2.4 Monotonic games

According to the book by Peleg and Sudhölter [3], p. 12, we call a TU game v monotonic
if

S ⊆ T ⊆ N ⇒ v(S) ≤ v(T ).

This game property can be checked via the function isMonotonicGame.

3.2.5 Simple games

Along the lines of the book by Peleg and Sudhölter [3], p. 16, we call a TU game v
simple if v is monotonic and the values of all coalitions are 0 or 1. This game property
can be checked via the function isSimpleGame.

3.2.6 Symmetric games

Following the book by Peleg and Sudhölter [3], p. 12, we call a TU game v symmetric
if the values of all coalitions containing the same number of players are identical, i.e.

|S| = |T | ⇒ v(S) = v(T )

for all coalitions S, T ⊆ N . This game property can be checked via the function
isSymmetricGame.

3.2.7 Constant-sum games

In a constant-sum game v for any coalition S the sums of v(S) and its complement
v(N\S) equal v(N), i.e.

v(S) + v(N\S) = v(N)

for all S ⊆ N , see e.g. the book by Peleg and Sudhölter [3], p. 11. This game property
can be checked via the function isConstantSumGame.

3.2.8 Weakly constant-sum games

We call a TU game v with n players weakly constant-sum as long as the constant-sum
condition holds for coalitions of sizes 1 and n − 1, i.e.

v({i}) + v(N\{i}) = v(N)

for all players i = 1, . . . , n. In other words: For weakly constant-sum games the vector of
singleton coalitions and the utopia payoff vector coincide. This game property comes
in handy when checking uniqueness conditions for the Gately point, see the paper
[30] by the authors of this vignette. Also note that any constant-sum game is weakly
constant-sum, but not vice versa. This game property can be checked via the function
isWeaklyConstantSumGame.
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3.2.9 Superadditive games

We call a TU game v superadditive if

v(S ∪ T ) ≥ v(S) + v(T )

for all coalitions S, T ⊆ N with S ∩ T = ∅, see e.g. the book by Peleg and Sudhölter [3],
p. 10, or the book by Maschler, Solan and Zamir [18], p. 671. The idea of superadditivity
is that disjoint groups of players are never punished for cooperating. This game property
can be checked via the function isSuperadditiveGame.

3.2.10 Additive games

We call a TU game v additive if

v(S ∪ T ) = v(S) + v(T )

for all coalitions S, T ⊆ N with S ∩ T = ∅, see e.g. the book by Peleg and Sudhölter [3],
p. 11, or the book by Maschler, Solan and Zamir [18], p. 792. Note that an additive game
is always superadditive, constant-sum, weakly constant-sum and degenerate whereas
none of these four game properties guarantee additivity in return. This game property
can be checked via the function isAdditiveGame.

3.2.11 Weakly superadditive games

We call a TU game v with n players weakly superadditive if

v(S ∪ {i}) ≥ v(S) + v({i})

for all coalitions S ⊆ N and all players i = 1, . . . , n with i /∈ S, see e.g. the book by Peleg
and Sudhölter [3], p. 10. Note that weak superadditivity is equivalent to 0-monotonicity,
i.e. the zero-normalization of the game is monotonic, see e.g. Maschler, Solan and Zamir
[18], p. 789, or Peleg and Sudhölter [3], p. 12. This game property can be checked via
the function isWeaklySuperadditiveGame.

3.2.12 Quasi-balanced games

Given a TU game v with n players let m denote the minimal rights vector and M the
utopia payoff vector. We call the TU game v quasi-balanced if m(i) ≤ M(i) for all
i = 1, . . . , n and

n
∑

i=1

mi ≤ v(N) ≤
n

∑

i=1

Mi,

see e.g. the book by Branzei, Dimitrov and Tijs [15], p. 31. Quasi-balanced games can
equivalently be characterized as the TU games with a non-empty core cover. Note also
that the τ -value, an important solution concept, is only defined for quasi-balanced games,
see e.g. the original paper by Tijs [55] from 1981. This game property can be checked
via the function isQuasiBalancedGame.

3.2.13 Balanced games

A TU game v is called balanced if and only if the core of v is non-empty. For the
sake of brevity we do not go into any details of the balancedness condition and the
Bondareva-Shapley theorem in this vignette. Instead, we only refer to the original papers
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by Bondareva [56] and by Shapley [57] as well as to section 3.1 of the book by Peleg and
Sudhölter [3] for further details. This game property can be checked via the function
isBalancedGame.

3.2.14 Convex games

We call a TU game v convex if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all S, T ⊆ N , see e.g. the book by Peleg and Sudhölter [3], p. 10, for more details.
Convex games are always balanced, i.e. the core of a convex game is never empty, and
they arise in various important application areas of cooperative game theory. This game
property can be checked via the function isConvexGame.

3.2.15 Semiconvex games

A TU game v with n players is called semiconvex if for its gap function g there holds

0 ≤ g(i) ≤ g(S)

for all players i = 1, . . . , n and all coalitions S ⊆ N with i ∈ S. Note that convex games
are always semiconvex but not vice versa. We refer to the book by Driessen [14], p. 76,
or the original paper by Driessen and Tijs [58] for more details. This game property can
be checked via the function isSemiConvexGame.

3.2.16 1-convex games

A TU game v with n players is called 1-convex if for its gap function g there holds

0 ≤ g(N) ≤ g(S)

for all coalitions S ⊆ N with S 6= ∅. Note that the 1-cover v1 of a 1-convex game v will
always be convex. We refer to the book by Driessen [14], p. 73, for more details. This
game property can be checked via the function is1ConvexGame.

3.2.17 k-convex games

k-convexity can be regarded as a generalization of 1-convexity. A TU game v with n
players is called k-convex if and only if its k-cover (see 1.2.14 of this vignette) exists
and is convex. We refer to section 7.1 of the book by Driessen [14] for more details on
k-convex games. This game property can be checked via the function iskConvexGame

by specifying both a game vector v and an integer k. We end this chapter with a small
example inspired by the book by Driessen [14], p. 175:

# The following game is 2-convex

library(CoopGame)

alpha = 0.48

v=c(0,0,0,alpha,alpha,0,1)

iskConvexGame(v,2)

## [1] TRUE

# The following game is not 2-convex

library(CoopGame)

alpha = 0.52

v=c(0,0,0,alpha,alpha,0,1)
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iskConvexGame(v,2)

## [1] FALSE

4 Set Solution Concepts and Allocation Properties

The package CoopGame provides the following five set-based solution concepts:

• the imputation set
• the core
• the core cover
• the reasonable set
• the Weber Set

For all five set-based solution concepts we provide

• a routine for computing the vertices of the corresponding set for an arbitrary
number n ≥ 2 of players

• a routine for checking whether an allocation x is part of the corresponding set
• a routine for drawing the corresponding set for 3 or 4 players (see chapter 6 of this

vignette)

Note that both for checking whether an allocation x belongs to a set solution concept or
not and for drawing the set solution (in the case of 3 or 4 players) the corresponding
vertices are internally always computed first.

4.1 Available set solution concepts

4.1.1 The imputation set

Given a TU game v with n players we call a vector x ∈ R
n efficient if

n
∑

i=1

xi = v(N).

Frequently the set of efficient vectors is also called the set of preimputations, see e.g. the
book by Peleg and Sudhölter [3], p. 20. In case x ∈ R

n is also individually rational
(from the point of view of every player i), i.e.

v({i}) ≤ xi

for all i = 1, . . . , n, then we call x an imputation. Formally, we can specify the so-called
imputation set I(v) as

I(v) = {x ∈ R
n|

n
∑

i=1

xi = v(N) ∧ v({i}) ≤ xi}

According to our game property definitions from section 3 the imputation set is empty
unless v is either essential or degenerate. In the latter case I(v) consists of a single point.
For further details on imputations see e.g. the book by Peleg and Sudhölter [3], p.20,
the book by Maschler, Solan and Zamir [18], p. 674–677, or the book by Osborne and
Rubinstein [20], p. 278.

In order to computate the vertices of the imputation set we provide the function
imputationsetVertices. The rows of the matrix returned are the vertices of the imputa-
tion set. In case the imputation set is empty an empty matrix is returned. In order to check
whether an allocation x is an imputation there is the function belongsToImputationset.
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library(CoopGame)

v <-c(0,0,0,1,1,0,1)

imputationsetVertices(v)

## [,1] [,2] [,3]

## [1,] 0 0 1

## [2,] 0 1 0

## [3,] 1 0 0

belongsToImputationset(c(0.7,0.3,0),v)

## [1] TRUE

4.1.2 The core

Apart from the set of imputations the most prominent set solution concept is the core.
The concept was established in the Ph.D. thesis by Gillies [59] from 1953 and a seminal
article by Aumann [60] from 1961. The idea of the core is to consider only those
imputations x which are also coalitionally rational, i.e.

v(S) ≤
∑

i∈S

xi

for all nonempty coalitions S ⊆ N . More information on the core can e.g. be found in
the book by Maschler, Solan and Zamir [18], pp. 686–747, the book by Osborne and
Rubinstein [20], pp. 257–275, or the book by Peleg and Sudhölter [3], pp. 27–49.

The function coreVertices lists the vertices of the core as rows of a matrix. In case the
core is empty an empty matrix is returned. The function belongsToCore checks whether
an allocation x is contained in the core or not.

library(CoopGame)

v <-c(0,0,0,1,1,0,3)

coreVertices(v)

## [,1] [,2] [,3]

## [1,] 3 0 0

## [2,] 1 0 2

## [3,] 0 1 2

## [4,] 0 2 1

## [5,] 1 2 0

belongsToCore(c(1.7,1.3,0),v)

## [1] TRUE

4.1.3 The core cover

The core cover was originally suggested by Tijs and Lipperts in [61] as a core catcher.
Given a TU game v with n players let m denote the minimal rights vector and M the
utopia payoff vector. The core cover of the game v consists of all imputations x satisfying

m(i) ≤ xi ≤ M(i)

for all i = 1, . . . , n. One can show that the core is always a subset of the core cover, see
e.g. the book by Branzei, Dimitrov and Tijs [15], p. 21, or the book by Chakravarty,
Mitra and Sarkar [16], pp. 45–46, for more details. Also note that the core cover is
nonempty iff the game v is quasi-balanced (see chapter 3 of this vignette).

We provide functions coreCoreVertices listing the vertices of the core cover as rows of
a matrix and belongsToCoreCover for checking whether an allocation x is contained in
the core cover or not.
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4.1.4 The reasonable set

The reasonable set was originally suggested by Milnor in [62] as another core catcher.
The reasonable set of a TU game v consists of all imputations x satisfying

v({i}) ≤ xi ≤ max
i:i∈S

(v(S) − v(S\{i})

for all i = 1, . . . , n. One can show that the core cover is always a subset of the reasonable
set.
We refer to the book by Branzei, Dimitrov and Tijs [15], p. 21, the book by Chakravarty,
Mitra and Sarkar [16], pp. 43–46, and the article by Gerard-Varet and Zamir [63] for
more details concerning the reasonable set.

We provide functions reasonableSetVertices listing the vertices of the reasonable set
as rows of a matrix and belongsToReasonableSet for checking whether an allocation x
is contained in the reasonable set or not.

4.1.5 The Weber Set

The Weber Set was originally suggested by Weber in [64] as another core catcher. The
Weber Set is the convex hull of the marginal vectors. Thus one can easily see that the
Weber Set is contained in the imputation set for superadditive games. We provide the
Weber Set only for game vectors v which are both nonnegative and monotonic. One can
show that the core is always a subset of the Weber Set. We refer to the book by Peters
[19], chapter 18, for further details regarding the Weber Set.

We provide functions weberSetVertices listing the vertices of the Weber Set as rows of
a matrix and belongsToWeberSet for checking whether an allocation x is contained in
the Weber Set or not.

4.2 Using rcdd for computations

All five set-based solution concepts yield convex polyhedra as results. We wish to stress
that we never coded any vertex computations ourselves, but relied on the available R
packages rcdd [65] and geometry [66]. We wish to give particular praise to the library
cdd for polyhedral computations by Komei Fukuda [67]. In turn, the availability of a
package like rcdd [65] as an R-interface of the powerful library cdd underlines the power
of the R ecosystem.

The imputation set, the core, the core cover and the reasonable set are by their definitions
implicitly specified as so-called H-representations, i.e. intersections of halfspaces, of
convex polyhedra. Computing the so-called V-representations, i.e. representing the
polyhedron as the convex hull of its vertices, is done via the package rcdd. The Weber
set is already defined as the convex hull of the marginal vectors. Hence we only need
to use rcdd to remove any redundant points from a list of potential Weber set vertices.
This feature of removing redundant points is also used to determine whether a given
allocation x belongs to one of the five set solution concepts in question or not. For further
information on convex polyhedra we simply refer to the books by Rockafellar [68] and
Ziegler [69].

5 Point Solution Concepts

The package CoopGame prides itself with implementations of a very large amount of
point valued solution concepts. Calling a specific point valued solution concept always
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works the same way, i.e. nameOfPointValuedSolutionConcept(v) where v stands for
the game vector of a cooperative game.

This chapter is divided into two parts: In the first part we will give an extremely brief
and concise overview of the point valued solution concepts available. In the second part
we will guide the readers through three examples of point solutions of TU games and
another two examples of power index computations.

5.1 Overview of point solution concepts in CoopGame

We distinguish the point solution concepts we implemented by solution concepts for
general cooperative games and power indices for simple games. We tried to document
our implementations of these solution concepts in detail and give at least one reference
for each individual function. Every time there is more than one reference we checked
carefully that definitions were not contradictory.

5.1.1 Available point solution concepts for general cooperative games

The following 19 point solution concepts for general cooperative games are available in
CoopGame:

• the centroid of the core provided by the function centroidCore

• the centroid of the core cover provided by the function centroidCoreCover

• the centroid of the imputation set provided by the function centroidImputationSet

• the centroid of the reasonable set provided by the function centroidReasonableSet

• the centroid of the Weber set provided by the function centroidWeberSet

• the disruption nucleolus (see the article by Littlechild and Vaidya [28]) provided
by the function disruptionNucleolus

• the Gately point (see the original paper by Gately [29], our recent article [30] for
implementation details, the article by Littlechild and Vaidya [28] or the book by
Narahari [21], pp. 455–456) provided by the function gatelyValue

• the modiclus (aka modified nucleolus, see the one of the two original papers by
Sudhölter [70], [71] or the book by Peleg and Sudhölter [3], pp. 147–182) provided
by the function modiclus

• the normalized Banzhaf value (see e.g. one of the articles by Gambarelli [72]
or by Stach [73]) provided by the function normalizedBanzhafValue

• the nucleolus (see the papers by Schmeidler [25], by Kohlberg [74], by Kopelowitz
[75], by Megiddo [76] or the book by Peleg and Sudhölter [3], pp. 82–86) provided
by the function nucleolus

• the per capita nucleolus (see the original paper by Young [27]) provided by the
function perCapitaNucleolus

• the prenucleolus (see chapter 6 of the book by Peleg and Sudhölter [3]) provided
by the function prenucleolus

• the proportional nucleolus (see the original paper by Young, Okada and
Hashimoto [77]) provided by the function proportionalNucleolus

• the (normalized) Public Good value (see the original paper by Holler and Li
[34]) provided by the function publicGoodValue

• the (normalized) Public Help value Chi (see the original paper by Bertini and
Stach [35]) provided by the function publicHelpChiValue

• the (normalized) Public Help value Theta (see the original paper by Bertini
and Stach [35]) provided by the function publicHelpValue

• the Shapley value (see the original paper by Shapley [37], the article by Bertini
[78] or chapter 18 of the book by Maschler, Solan and Zamir [18]) provided by the
function shapleyValue
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• the simplified modiclus (see the original article by Tarashnina [79]) provided by
the function simplifiedModiclus

• the tau-value (aka Tijs value, see the original paper by Tijs [55], the article by
Stach [80] or the book by Branzei, Dimitrov and Tijs [15], p. 31) provided by the
function tauValue

Note that the above 19 solution concepts are all efficient, i.e. the sum of the components
of the solution equals the value of the grand coalition v(N).

In addition, CoopGame also provides five solution concepts for general cooperative games
which are not efficient:

• the absolute Public Good value (see the original paper by Holler and Li [34])
provided by the function absolutePublicGoodValue

• the absolute Public Help value Chi (see the original paper by Bertini and
Stach [35]) provided by the function absolutePublicHelpChiValue

• the absolute Public Help value Theta (see the original paper by Bertini and
Stach [35]) provided by the function absolutePublicHelpValue

• the Banzhaf value (see the book by Peters [19], pp. 367–370) provided by the
function banzhafValue

• the raw Banzhaf value (see the book by Chakravarty, Mitra and Sarkar [16],
pp. 118–119) provided by the function rawBanzhafValue

5.1.2 Available power indices for simple games

The following seven power indices for simple games are available in CoopGame:

• the Deegan-Packel index (see the original article by Deegan and Packel [31] or
the German book by Holler and Illing [24], pp. 323–324) provided by the function
deeganPackelIndex

• the Johnston index (see the original paper by Johnston [81] or the book
by Chakravarty, Mitra and Sarkar [16], p. 124) provided by the function
johnstonIndex

• the normalized Banzhaf value (see the article by Stach [82] or the book
by Chakravarty, Mitra and Sarkar [16], pp. 118–119) provided by the function
normalizedBanzhafIndex

• the Public Good index (see the original papers by Holler [32], by Holler and
Packel
[83] or the later article by Holler [84]) provided by the function publicGoodIndex

• the Public Help index Chi (see the original papers by Bertini and Stach [35]
and by Stach [85]) provided by the function publicHelpChiIndex

• the Public Help index Theta (see the original paper by Bertini, Gambarelli
and Stach [36] or one of the later articles by Bertini and Stach [35] or Stach [85])
provided by the function publicHelpIndex

• the Shapley-Shubik index (see the original paper by Shapley and Shubik [86],
the article by Stach [87] from 2011 or the book by Peters [19], pp. 156–159) provided
by the function shapleyShubikIndex

Note that the above seven power indices are all efficient, i.e. the sum of the components
of the solution equals 1.

In addition, CoopGame also provides nine power indices for simple games which are not
efficient:

• the Barua Chakravarty Sarkar index (see the original paper by Barua,
Chakravarty and Sarkar [88] or the book by Chakravarty, Mitra and Sarkar [16],
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pp. 120–123) provided by the function baruaChakravartySarkarIndex

• the Coleman Power index of a Collectivity to Act (see the original article
by Coleman [89], the paper by Stach [90] or the survey article by de Keijzer [91],
p. 18) provided by the function colemanCollectivityPowerIndex

• the Coleman Initiative Power index (see the original article by Coleman [89],
the paper by Stach [90], the survey article by de Keijzer [91], p. 18, or the book
by Chakravarty, Mitra and Sarkar [16], pp. 120–123) provided by the function
colemanInitiativePowerIndex

• the Coleman Preventive Power index (see the original article by Coleman [89],
the paper by Stach [90], the survey article by de Keijzer [91], p. 18, or the book
by Chakravarty, Mitra and Sarkar [16], pp. 120–123) provided by the function
colemanPreventivePowerIndex

• the König-Bräuninger index (see one of the original articles by König and
Bräuninger [92] and by Nevison, Zicht and Schöpke [93] or the later paper by
Bertini and Stach [35]) provided by the function koenigBraeuningerIndex

• the Nevison index (see the original paper by Nevison [94]) provided by the
function nevisonIndex

• the non-normalized Banzhaf index (see the paper by Stach [82] from 2011 or
the book by Chakravarty, Mitra and Sarkar [16], pp. 118–119) provided by the
function nonNormalizedBanzhafIndex

• the Rae index (see the original article by Rae [95] or the book by Chakravarty,
Mitra and Sarkar [16], p. 119–120) provided by the function raeIndex

• the raw Banzhaf index (see the book by Chakravarty, Mitra and Sarkar [16],
p. 118–119) provided by the function rawBanzhafIndex

In the context of power indices this vignette is not the place to discuss any details
concerning the concepts of I-Power and P-Power. Hence we simply wish to refer to the
original paper by Felsenthal, Machover and Zwicker [96] and the book by Felsenthal and
Machover [97] for details. The two small overview articles [98] and [99] by Felsenthal
and Machover from 2011 may serve as a very first introduction to these concepts.

5.2 A few remarks on the implementation of the nucleolus and

its derivatives

We wish to stress that in our implementations of the nucleolus and its various derivatives,
i.e. the prenucleolus, the per capita nucleolus, the proportional nucleolus, the disruption
nucleolus, the modiclus and the simplified modiclus, we followed the paper by Guajardo
and Jörnsten [26] very closely as to avoid the common mistakes in computing the nucleolus
described in this article. In particular, we made sure to incorporate the information
on the dual values in the solution process as described in the paper by Guajardo and
Jörnsten [26]. Our algorithmic approach for finding the nucleolus and its derivatives
is nothing particularly fancy. We simply solve a series of linear programs following
the technical report by Kopelowitz [75] from 1967. Our solver for the individual linear
programs is the revised dual simplex solver provided by the function lpcdd from the
package rcdd [65]. We finally note that an earlier yet unpublished version of CoopGame

employed the package glpkAPI [100], a low-level interface to the GLPK library [101]
by Makhorin, for the solution of linear programs. We refer to the M.Sc. thesis of the
second author [102] from 2017 for details of this unpublished approach. Later studies of
the first author showed that the revised dual simplex solver provided by the function
lpcdd from the package rcdd [65] was much better suited to compute the nucleolus and
its derivatives and lead to reimplementation before the first submission of CoopGame to
CRAN.
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5.3 Using the point solution concepts in CoopGame by example

We would now like to guide our readers through three classic examples of point solutions
for cooperative games.

5.3.1 The Shapley value for the inheritance problem due to Ibn Ezra (1146)

Our first example is taken from a paper by Robert Aumann from 2010 on “Some non-
superadditive games, and their Shapley values, in the Talmud” [103]. As the first in a
series of problems, Aumann investigates the inheritance problem due to Ibn Ezra (1146)
(see [104]), i.e. an inconsistent will, in that paper.

A man with four sons dies. He leaves an estate worth 120 units of money. He bequeathes
120 units of money to his first son, 60 units of money to his second son, 40 units of
money to his third sum and 30 units of money to his youngest son. In order to analyze
the problem of how to divide the estate, let us first introduce the estate E = 120 and
the four claims c1 = 120, c2 = 60, c3 = 40 and c4 = 30. We can now define a TU game v
as follows:

v =
{

min(E, maxi∈S ci) if |S| < 4,
E else,

library(CoopGame)

Aumann2010Example<-c(120,60,40,30,120,120,120,60,60,40,120,120,120,60,120)

shapleyValue(Aumann2010Example)

## [1] 80.83333 20.83333 10.83333 7.50000

We confirm that the Shapley value of v coincides with Ibn Ezra’s solution: The first son
get 80 5

6
, the second son 20 5

6
, the third son 10 5

6
and the youngest son 7 1

2
units of money.

For more details, we refer to the article by Aumann [103] and the 1982 paper by O’Neill
[46].

5.3.2 The nucleolus for bankruptcy problems from the Babylonian Talmud

Our second set of examples revisits bankruptcy problems from the Babylonian Talmud
from section 2.1, see the papers by Aumann and Maschler [44] and Aumann [45]. We
solve the problem of the three widows from the Babylonian Talmud for E = 100, 200,
and 300 using our function nucleolus:

library(CoopGame)

v100 = bankruptcyGameVector(n=3,d=c(100,200,300),E=100)

nucleolus(v100)

## [1] 33.33333 33.33333 33.33333

v200 = bankruptcyGameVector(n=3,d=c(100,200,300),E=200)

nucleolus(v200)

## [1] 50 75 75

v300 = bankruptcyGameVector(n=3,d=c(100,200,300),E=300)

nucleolus(v300)

## [1] 50 100 150

We confirm that the nucleolus coincides with the solutions from the Babylonian Talmud
in all three cases. For more details, e.g. on the principle of equal division of the contested
sum we refer to the article by Aumann and Maschler [44] and chapter 4 of the book by
Gura and Maschler [43].
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5.3.3 Solving the TVA problem

We investigate the classic TVA problem introduced in section 2 of this vignette (see
the original article by Ransmeier [52] on the Tennessee Valley Authority from 1942 for
the history of the problem and the article by Straffin and Heaney [51] and the book by
Driessen [14], p. 98, for computational results).

library(CoopGame)

TVACosts=c(163520,140826,250096,301607,378821,367370,412584)

(v <- costSharingGameVector(n=3, TVACosts))

## [1] 0 0 0 2739 34795 23552 141858

TVACosts[1:3] - gatelyValue(v)

## [1] 117475.54 99157.29 195951.16

TVACosts[1:3] - shapleyValue(v)

## [1] 117829.0 100756.5 193998.5

TVACosts[1:3] - nucleolus(v)

## [1] 116234 93540 202810

TVACosts[1:3] - tauValue(v)

## [1] 117475.54 99157.29 195951.16

We confirm the results from the literature. Note that for the TVA problem the results for
the tau-value and the Gately point need to coincide as the game is semiconvex, see [58].

5.4 Using the power indices in CoopGame by example

We would now like to guide our readers through two examples of applications of power
indices.

5.4.1 Examples on the failure of the donation property

Bertini, Freixas, Gambarelli and Stach point out in their article [105] that the normalized
Banzhaf index, the Deegan-Packel index, the Public Good index, the Johnston index
and the Public Help index Theta lack the so-called donation property. We revisit the
examples from table 1 on page 9 of that paper and along the way point out that the
donation property also does not hold for the Public Help index Chi. We start with the
5-player game from the article by Bertini, Freixas, Gambarelli and Stach [105]:

library(CoopGame)

v<-weightedVotingGameVector(n=5, w=c(6,4,1,1,1), q=9)

normalizedBanzhafIndex(v)

## [1] 0.47368421 0.36842105 0.05263158 0.05263158 0.05263158

deeganPackelIndex(v)

## [1] 0.375 0.250 0.125 0.125 0.125

publicGoodIndex(v)

## [1] 0.3333333 0.1666667 0.1666667 0.1666667 0.1666667

johnstonIndex(v)

## [1] 0.52777778 0.38888889 0.02777778 0.02777778 0.02777778

publicHelpIndex(v)

## [1] 0.28125 0.25000 0.15625 0.15625 0.15625

publicHelpChiIndex(v)

## [1] 0.3234568 0.3003086 0.1254115 0.1254115 0.1254115

#

# Now player 1 donates one vote to player 2

v<-weightedVotingGameVector(n=5, w=c(5,5,1,1,1), q=9)
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normalizedBanzhafIndex(v)

## [1] 0.5 0.5 0.0 0.0 0.0

deeganPackelIndex(v)

## [1] 0.5 0.5 0.0 0.0 0.0

publicGoodIndex(v)

## [1] 0.5 0.5 0.0 0.0 0.0

johnstonIndex(v)

## [1] 0.5 0.5 0.0 0.0 0.0

publicHelpIndex(v)

## [1] 0.2857143 0.2857143 0.1428571 0.1428571 0.1428571

publicHelpChiIndex(v)

## [1] 0.3309524 0.3309524 0.1126984 0.1126984 0.1126984

Now for the example with 10 players from the article by Bertini, Freixas, Gambarelli
and Stach [105]:

library(CoopGame)

v<-weightedVotingGameVector(n=10, w=c(9,8,7,0,1,1,1,1,1,1), q=23)

normalizedBanzhafIndex(v)

## [1] 0.326633166 0.326633166 0.316582915 0.000000000 0.005025126

## [6] 0.005025126 0.005025126 0.005025126 0.005025126 0.005025126

deeganPackelIndex(v)

## [1] 0.2291667 0.2291667 0.1666667 0.0000000 0.0625000 0.0625000

## [7] 0.0625000 0.0625000 0.0625000 0.0625000

publicGoodIndex(v)

## [1] 0.18181818 0.18181818 0.09090909 0.00000000 0.09090909

## [6] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909

johnstonIndex(v)

## [1] 0.332692308 0.332692308 0.323076923 0.000000000 0.001923077

## [6] 0.001923077 0.001923077 0.001923077 0.001923077 0.001923077

publicHelpIndex(v)

## [1] 0.15312132 0.15312132 0.15076561 0.07656066 0.07773852

## [6] 0.07773852 0.07773852 0.07773852 0.07773852 0.07773852

publicHelpChiIndex(v)

## [1] 0.16914603 0.16914603 0.16780487 0.06991541 0.07066461

## [6] 0.07066461 0.07066461 0.07066461 0.07066461 0.07066461

#

# Now player 1 donates one vote to player 4

v<-weightedVotingGameVector(n=10, w=c(8,8,7,1,1,1,1,1,1,1), q=23)

normalizedBanzhafIndex(v)

## [1] 0.32908163 0.32908163 0.32397959 0.00255102 0.00255102

## [6] 0.00255102 0.00255102 0.00255102 0.00255102 0.00255102

deeganPackelIndex(v)

## [1] 0.22222222 0.22222222 0.16666667 0.05555556 0.05555556

## [6] 0.05555556 0.05555556 0.05555556 0.05555556 0.05555556

publicGoodIndex(v)

## [1] 0.16666667 0.16666667 0.08333333 0.08333333 0.08333333

## [6] 0.08333333 0.08333333 0.08333333 0.08333333 0.08333333

johnstonIndex(v)

## [1] 0.3329026701 0.3329026701 0.3281653747 0.0008613264 0.0008613264

## [6] 0.0008613264 0.0008613264 0.0008613264 0.0008613264 0.0008613264

publicHelpIndex(v)
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## [1] 0.15338882 0.15338882 0.15219976 0.07728894 0.07728894 0.07728894

## [7] 0.07728894 0.07728894 0.07728894 0.07728894

publicHelpChiIndex(v)

## [1] 0.16941222 0.16941222 0.16881669 0.07033698 0.07033698 0.07033698

## [7] 0.07033698 0.07033698 0.07033698 0.07033698

5.4.2 Voting power in the European Parliament (2004 – 2009)

The article by Aguirre and Quintas [106] provides an example of voting power in the
European Parliament as of the election of June 2004. In the following analysis the
seats are allocated to eight supranational political groups. There were 732 members
in that parliament, i.e. a majority of 367 votes was needed in order to pass a law.
According to Aguirre and Quintas [106] the European Democrats (EPP-ED) had 277
members, the Party of European Socialists (PES) 198 members, the European Liberal
Demcrat and Reform Party (ELDR) 68 members, the European Greens / European
Free Alliance (Greens/EFA) 40 members, the European United Left / Nordic Green Left
(EUL/NGL) 39 members, the Union for a Europe of Nations (UEN) 27 members, Europe
of Democracies and Diversities (EDD) 15 members, whereas the rest of 68 parliamentary
members were not part of any of the seven aforementioned supranational political groups.

In the following we confirm the results from table 3 of the paper by Aguirre and Quintas
[106]:

library(CoopGame)

v<-weightedVotingGameVector(n=8, w=c(277,198,68,40,39,27,15,68), q=367)

shapleyShubikIndex(v)

## [1] 0.426190476 0.178571429 0.111904762 0.059523810 0.059523810

## [6] 0.045238095 0.007142857 0.111904762

normalizedBanzhafIndex(v)

## [1] 0.427272727 0.154545455 0.118181818 0.063636364 0.063636364

## [6] 0.045454545 0.009090909 0.118181818

johnstonIndex(v)

## [1] 0.621621622 0.129129129 0.077477477 0.033483483 0.033483483

## [6] 0.023273273 0.004054054 0.077477477

deeganPackelIndex(v)

## [1] 0.2222222 0.1066667 0.1488889 0.1211111 0.1211111 0.1011111

## [7] 0.0300000 0.1488889

publicGoodIndex(v)

## [1] 0.18518519 0.11111111 0.14814815 0.12962963 0.12962963 0.11111111

## [7] 0.03703704 0.14814815

6 Visualization of Solution Concepts for Games with

3 and 4 Players

The package CoopGame offers the possibility to visualize both set valued and point valued
solution concepts for cooperative games with 3 or 4 players using barycentric coordinates.
We strongly hope that our visualization routines will be helpful for colleagues teaching
cooperative game theory and wish to acknowledge that for the conversion of Cartesian
coordinates to barycentric coordinates CoopGame makes use of the package geometry

[66].
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6.1 An example: Generating the CoopGame Logo

Running the following lines of R Code users can generate the CoopGame Logo on the first
page of this vignette. It draws the reasonable set of the given game (in blue) as a subset
of the imputation set and the core of the game (in red) as a subset of the reasonable set.
The modiclus is displayed in black as a point in the core.

library(CoopGame)

v0=c(6,8,10,18,20,22,31)

drawImputationset(v0, label=FALSE)

drawReasonableSet(v0, colour="blue", holdOn=TRUE)

drawCore(v0, holdOn=TRUE, colour="red")

drawModiclus(v0, holdOn=TRUE, colour="black")

Modiclus

6.2 Some general remarks on the drawing routines in CoopGame

The package CoopGame provides drawing routines for all set solution concepts from chapter
4 for the case of 3 or 4 players. In particular, there are routines drawImputationSet,
drawCore, drawCoreCover, drawReasonableSet and drawWeberset. Note that core,
core cover, reasonable set and Weber set are all visualized as parts of the imputation set.
Note also that the Weber set is only guaranteed to be a subset of the imputation set for
superadditive games whereas the other three set solution concepts are always subsets
of the imputation set. Also, any efficient point solution method, i.e. any point solution
method for which the components of the solution vector are guaranteed to add up to the
value of the grand coalition, come with their own drawing routines.

As for the individual drawing routines users can add to an existing plot by setting the
parameter holdOn to TRUE. The parameter holdOn is set to FALSE by default and this
feature should be handled with a little care by the user. We strongly advise against plots
with too many set valued and/or point valued solutions.
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In addition, users can also set the colour of the polyhedron or point they want to draw
and use name for naming an individual point. Only for the function drawImputationset

the colour is fixed to white as any polyhedra or points are always displayed as parts of
the imputation set.

Also, only for the function drawImputationset there is the default label=TRUE. In any
plots the vertices of the imputation set are by default labelled by their coordinates. In
other words: Unless users start with drawImputationset(gameVector, label=FALSE)

and then carefully add to their plots with holdOn=TRUE the points of the imputation
set will by default be labelled. For all four drawing routines drawCore, drawCoreCover,
drawReasonableSet and drawWeberset the parameter label is set to FALSE by default,
i.e. by default the coordinates of the vertices of these sets are not displayed. The following
code yields a variant of the CoopGame logo with the three corner points of the imputation
set labelled.

library(CoopGame)

v0=c(6,8,10,18,20,22,31)

drawReasonableSet(v0, colour="blue")

drawCore(v0, holdOn=TRUE, colour="red")

drawModiclus(v0, holdOn=TRUE, colour="black")

(13,8,10) (6,15,10)

(6,8,17)

Modiclus

Placing labels in the perfect places by default is tricky and users may not always be
perfectly satisfied with the results they obtain when plotting set solution concepts with
label = TRUE. So our advice to users intending to use CoopGame for publication ready
graphics of the core, the core cover, the reasonable set and/or the Weber set with all
points labelled by their coordinates is to export the plots without these labels and then
postprocess the plots themselves putting labels of individual points in the desired places.

For drawing any point valued solution concepts label is actived by default and a proper
name for the point valued solution is set by default.
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6.3 The power of rgl

The R package rgl [107] offers the possibility to visualize solution concepts for cooperative
games with 4 players in three dimensions. Users are invited to uncomment the following
four lines of code, play around with the following example and rotate the nice 3d-plot
displayed by rgl.

#library(CoopGame)

#A=c(0,0,0,0,8,8,8,8,8,8,12,12,12,12,22)

#drawWeberset(A, colour ="grey")

#drawCore(A, colour ="red", holdOn = TRUE)

7 Outlook to Future Developments and Acknowl-

edgements

7.1 Future developments and ideas for software for cooperative

games

As previously mentioned the package CoopGame does not allow for partitions of the player
set or for communication structures (see e.g. the book by Slikker and van den Nouweland
[8]). The first author of this vignette is about to finish two smaller R packages by
the names of PartitionGames and CommunicationGames for cooperative games with
partitions of the player set and for cooperative games on undirected graphs, respectively.
For cooperative games with partitions of the player set we refer the readers to the three
articles by Owen [108], by Malawski [109] and by Stach [73]. For cooperative games on
undirected graphs we refer to the three papers by Myerson [110], by Borm, Owen and
Tijs [111] and by van den Brink, van der Laan and Pruzhansky [112].

Once PartitionGames and CommunicationGames will have been successfully established,
cooperative games on directed networks might be the subject of a future R package. We
refer to the articles by Gilles, Owen and van den Brink [113], by Gilles and van den Brink
[114], and by van den Brink [115] on permission structures as well as to the article by
Gilles and van den Brink on measuring domination in directed networks [116]. Chapters
5 and 6 of the book by Gilles [17] provide an excellent insight into this exciting field
where public domain implementations of established approaches are still scarce. In the
context of hierarchical structures modelled by a directed graph, the works by Faigle and
Kern [117] and by Algaba, van den Brink and Dietz [118] investigating cooperative game
theory solutions under precedence constraints are also worth mentioning. So is the very
recent article on the Shapley value and games with hierarchies by Algaba and van den
Brink [119] which appeared in the Handbook of the Shapley Value [120] in 2020. There
also exist studies into structures taking into account both communication and hierarchy
properties, see the article on network structures with hierarchy and communication by
Algaba, van den Brink and Dietz [121].

Cooperative games on multigraphs offer another of many possible lines of future investi-
gations, see e.g. the article by Forlicz, Mercik, Stach and Ramsey [122].

A classical application area for cooperative game theory on graphs is the study of indirect
control power in corporate networks, see e.g. the articles by Bertini, Mercik and Stach
[123], by Karos and Peters [124] or by Mercik and Stach [125]. We mention a recent
article by Staudacher, Olsson and Stach [126] which employs both R and the package
CoopGame for measuring indirect control.

Currently, the first author of this vignette could think of various other ideas for software
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connected to the field of cooperative game theory beyond coalition structures, graphs or
multigraphs. We already mentioned that CoopGame is far from efficient for computing
power indices. Software packages for efficient and truly powerful computation of power
indices appear very worthwhile. In this context, we wish to mention three approaches.
The first is the paradigm of dynamic programming, see e.g. the article by Kurz [127] from
2016 and the 2021 article by Staudacher, Stach, Kóczy, Filipp, Kramer, Noffke, Olsson,
Pichler and Singer [128] which both focus on the special case of weighted voting games.
The second is a recent approach based on relational algebra called quasi-ordered binary
decision diagrams (QOBDDs), see the papers by Berghammer, Bolus, Rusinowska and
de Swart [129], by Berghammer and Bolus [130], by Bolus [131] as well as the doctoral
dissertation by Bolus [132]. Finally, the idea of generating functions appears to be of
paramount importance, see e.g. the articles by Algaba, Bilbao, Fernandez Garcia and
Lopez [133], by Algaba, Bilbao, Fernandez Garcia [134], by Bilbao, Fernandez, Jimenez
Losada and Lopez [135] and by Alonso-Meijide and Bowles [136].

Cooperative games in a continuous setting are very intriguing. We mention the work by
Aumann and Shapley on values of non-atomic games [137], Owen’s multilinear extensions
of cooperative games [138], the 1994 paper by Algaba, Bilbao, Fernandez and Jimenez on
the Lovasz extension (see the article by Lovasz [139] from 1983) of market games [140]
and Neyman’s work on values of games with infinitely many players [141] as exemplary
representatives of this exciting field. A publicly available software package for cooperative
game theory in a continuous setting combining both symbolic and numeric computation
appears both challenging and attractive.

7.2 Acknowledgements for version 0.2.1

The R package CoopGame started as a software project in the Computer Science M.Sc.
program at Kempten University in March 2015 under the supervision of the first author
of this vignette. Anna Merkle, Fatma Tokay and Kübra Tokay got the ball rolling with
their remarkable efforts. In a subsequent project Alexandra Tiukkel, Michael März and
Johannes Anwander, the second author of this vignette, made excellent progress. Later,
Daniel Gebele, Franz Müller and Nicole Cyl contributed to CoopGame as parts of their
B.Sc. theses. In his M.Sc. thesis [102] Johannes Anwander moved CoopGame significantly
closer to the shape of its first release on CRAN. So this is also the place for the first
author to express his deep gratitude to his coauthor for all his assistance in making
CoopGame available to the general public via CRAN.

The wonderful conference SING14, 14th European Meeting on Game Theory 2018, in
Bayreuth in July 2018 provided the first author with a very first opportunity to present
small parts of an unfinished version of CoopGame to fellow researchers and colleagues
in the field of cooperative game theory. The package CoopGame benefited from detailed
discussions with Izabella Stach (AGH Kraków), Gianfranco Gambarelli (University of
Bergamo) and Tamás Solymosi (Corvinus University Budapest) during that conference.
Tamás also suggested the term weakly constant-sum game and provided the first author
with a copy of the famous 1967 technical report by Kopelowitz [75] on computing the
nucleolus. This is also the place to thank a large number of other colleagues, too numerous
to name them all, for expressing their interest in CoopGame and for making suggestions
during that conference. Finally, this is also the opportunity to apologize to any colleagues
in the field who might have been waiting for the release of CoopGame since July 2018.
The process of getting the final details right took overly long.

The final thanks of the first author go to his Kempten colleague Stefan Rieck in the
Faculty of Computer Science for having hosted CoopGame on his Open Project Server for
four years and, in particular, for having provided a subversion server for CoopGame until
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its ultimate release on CRAN.

7.3 Acknowledgements for version 0.2.2

Version 0.2.2 of CoopGame is only a very minor update to version 0.2.1. It solves an
internal problem in the automatic generation of this vignette, no longer requires users
of CoopGame to install the library rgl and fixes very few (but certainly not all) bugs.
Nevertheless, the package maintainer wishes to thank many of his students and his
colleagues – far too numerous to name them all – for their feedback on CoopGame and
their suggestions for improvements and additional functionality (none of which have been
incorporated in version 0.2.2). Special thanks go to Encarnación Algaba (Universidad
de Sevilla) who provided the package maintainer with precious suggestions for future
software development as well as with references to the literature for improving section
7.1 of this vignette in March 2020. Finally, the first author wishes to express his deep
gratitude to his friend and coauthor Izabella Stach (AGH Kraków) for having advertised
CoopGame within her research community immediately after its initial release in March
2019, for having introduced him to many esteemed colleagues in the scientific community
and for the humour she constantly provides in their research cooperation even in situations
when she feels that more efficient software than CoopGame is needed.
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