diffLC2K | R Documentation |
Compute difference between two one-sided LC2K estimators along the gradient direction.
diffLC2K(image, bandwidth, plot)
image |
A square matrix object of size n by n, no missing value allowed. |
bandwidth |
A positive integer to specify the number of pixels used in the local smoothing. |
plot |
If plot = TRUE, an image of the difference at each pixel is plotted. |
At each pixel, the gradient is estimated by a local linear kernel smoothing procedure. Next, the local neighborhood is divided into two halves along the direction perpendicular to (\widehat{f}'_{x}, \widehat{f}'_{y}). Then the one- sided deblurring local constant kernel (LC2K) estimates are obtained in the two half neighborhoods respectively.
Returns a matrix of the estimated difference, |\widehat{f}_+ - \widehat{f}_-|, at each pixel.
Kang, Y., and Qiu, P., "Jump Detection in Blurred Regression Surfaces," Technometrics, 56, 2014, 539-550.
diffLCK
, diffLLK
, diffLL2K
,
stepEdgeLC2K
data(sar) # SAR image is bundled with the package and it is a # standard test image in statistics literature. diff = diffLC2K(image = sar, bandwidth = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.