R/DRR.R

Defines functions drr

Documented in drr

#' Dimensionality Reduction via Regression
#'
#'
#' \code{drr} Implements Dimensionality Reduction via Regression using
#' Kernel Ridge Regression.
#'
#'
#' Parameter combination will be formed and cross-validation used to
#' select the best combination. Cross-validation uses
#' \code{\link[CVST]{CV}} or \code{\link[CVST]{fastCV}}.
#'
#' Pre-treatment of the data using a PCA and scaling is made
#' \eqn{\alpha = Vx}.  the representation in reduced dimensions is
#'
#' \deqn{y_i = \alpha - f_i(\alpha_1, \ldots, \alpha_{i-1})}
#'
#' then the final DRR representation is:
#'
#' \deqn{r = (\alpha_1, y_2, y_3, \ldots,y_d)}
#'
#' DRR is invertible by
#'
#' \deqn{\alpha_i = y_i + f_i(\alpha_1,\alpha_2, \ldots, alpha_{i-1})}
#'
#' If less dimensions are estimated, there will be less inverse
#' functions and calculating the inverse will be inaccurate.
#'
#'
#' @references
#' Laparra, V., Malo, J., Camps-Valls, G., 2015. Dimensionality
#'     Reduction via Regression in Hyperspectral Imagery. IEEE Journal
#'     of Selected Topics in Signal Processing 9,
#'     1026-1036. doi:10.1109/JSTSP.2015.2417833
#'
#' @param X input data, a matrix.
#' @param ndim the number of output dimensions and regression
#'     functions to be estimated, see details for inversion.
#' @param lambda the penalty term for the Kernel Ridge Regression.
#' @param kernel a kernel function or string, see
#'     \code{\link[kernlab]{kernel-class}} for details.
#' @param kernel.pars a list with parameters for the kernel. each
#'     parameter can be a vector, crossvalidation will choose the best
#'     combination.
#' @param pca logical, do a preprocessing using pca.
#' @param pca.center logical, center data before applying pca.
#' @param pca.scale logical, scale data before applying pca.
#' @param fastcv if \code{TRUE} uses \code{\link[CVST]{fastCV}}, if
#'     \code{FALSE} uses \code{\link[CVST]{CV}} for crossvalidation.
#' @param cv.folds if using normal crossvalidation, the number of
#'     folds to be used.
#' @param fastcv.test an optional separate test data set to be used
#'     for \code{\link[CVST]{fastCV}}, handed over as option
#'     \code{test} to \code{\link[CVST]{fastCV}}.
#' @param fastkrr.nblocks the number of blocks used for fast KRR,
#'     higher numbers are faster to compute but may introduce
#'     numerical inaccurracies, see
#'     \code{\link{constructFastKRRLearner}} for details.
#' @param verbose logical, should the crossvalidation report back.
#'
#' @return A list the following items:
#' \itemize{
#'  \item {"fitted.data"} The data in reduced dimensions.
#'  \item {"pca.means"} The means used to center the original data.
#'  \item {"pca.scale"} The standard deviations used to scale the original data.
#'  \item {"pca.rotation"} The rotation matrix of the PCA.
#'  \item {"models"} A list of models used to estimate each dimension.
#'  \item {"apply"} A function to fit new data to the estimated model.
#'  \item {"inverse"} A function to untransform data.
#' }
#'
#' @examples
#' tt <- seq(0,4*pi, length.out = 200)
#' helix <- cbind(
#'   x = 3 * cos(tt) + rnorm(length(tt), sd = seq(0.1, 1.4, length.out = length(tt))),
#'   y = 3 * sin(tt) + rnorm(length(tt), sd = seq(0.1, 1.4, length.out = length(tt))),
#'   z = 2 * tt      + rnorm(length(tt), sd = seq(0.1, 1.4, length.out = length(tt)))
#' )
#' helix <- helix[sample(nrow(helix)),] # shuffling data is important!!
#' system.time(
#' drr.fit  <- drr(helix, ndim = 3, cv.folds = 4,
#'                 lambda = 10^(-2:1),
#'                 kernel.pars = list(sigma = 10^(0:3)),
#'                 fastkrr.nblocks = 2, verbose = TRUE,
#'                 fastcv = FALSE)
#' )
#'
#' \dontrun{
#' library(rgl)
#' plot3d(helix)
#' points3d(drr.fit$inverse(drr.fit$fitted.data[,1,drop = FALSE]), col = 'blue')
#' points3d(drr.fit$inverse(drr.fit$fitted.data[,1:2]),             col = 'red')
#'
#' plot3d(drr.fit$fitted.data)
#' pad <- -3
#' fd <- drr.fit$fitted.data
#' xx <- seq(min(fd[,1]),       max(fd[,1]),       length.out = 25)
#' yy <- seq(min(fd[,2]) - pad, max(fd[,2]) + pad, length.out = 5)
#' zz <- seq(min(fd[,3]) - pad, max(fd[,3]) + pad, length.out = 5)
#'
#' dd <- as.matrix(expand.grid(xx, yy, zz))
#' plot3d(helix)
#' for(y in yy) for(x in xx)
#'   rgl.linestrips(drr.fit$inverse(cbind(x, y, zz)), col = 'blue')
#' for(y in yy) for(z in zz)
#'   rgl.linestrips(drr.fit$inverse(cbind(xx, y, z)), col = 'blue')
#' for(x in xx) for(z in zz)
#'   rgl.linestrips(drr.fit$inverse(cbind(x, yy, z)), col = 'blue')
#' }
#'
#' @import Matrix
#' @import kernlab
#' @import CVST
#' @export
drr <- function (X, ndim         = ncol(X),
                 lambda          = c(0, 10 ^ (-3:2)),
                 kernel          = "rbfdot",
                 kernel.pars     = list(sigma = 10 ^ (-3:4)),
                 pca             = TRUE,
                 pca.center      = TRUE,
                 pca.scale       = FALSE,
                 fastcv          = FALSE,
                 cv.folds        = 5,
                 fastcv.test     = NULL,
                 fastkrr.nblocks = 4,
                 verbose         = TRUE)  {
    if ( (!fastcv) && (cv.folds <= 1))
        stop("need more than one fold for crossvalidation")
    if (cv.folds %% 1 != 0)
        stop("cv.folds must be an integer")
    if (fastkrr.nblocks < 1)
        stop("fastkrr.nblocks must be > 1")
    if (fastkrr.nblocks %% 1 != 0)
        stop("fastkrr.nblocks must be an integer")
    if (!requireNamespace("CVST"))
        stop("require the 'CVST' package")
    if (!requireNamespace("kernlab"))
        stop("require 'kernlab' package")
    if (ndim < ncol(X))
        warning("ndim < data dimensionality, ",
                "the inverse functions will be incomplete!")

    devnull <- if (Sys.info()["sysname"] != "Windows")
                 "/dev/null" # nolint
               else
                 "NUL"

    if (!verbose){
      devnull1 <- file(devnull,  "wt")
      sink(devnull1, type = "message")
      on.exit({
        sink(file = NULL, type = "message")
        close(devnull1)
      }, add = TRUE)
    }
    if (!verbose) {
      devnull2 <- file(devnull,  "wt")
      sink(devnull2, type = "output")
      on.exit({
        sink()
        close(devnull2)
      }, add = TRUE)
    }

    if (ndim > ncol(X))
        ndim <- ncol(X)

    if (pca) {
        pca <- stats::prcomp(X, center = pca.center, scale. = pca.scale)
        if (!pca.center) pca$center <- rep(0, ncol(X))
        if (!pca.scale) pca$scale   <- rep(1, ncol(X))
    } else {
        pca <- list()
        pca$x <- X
        pca$rotation <- diag(1, ncol(X), ncol(X))
        pca$center <- rep(0, ncol(X))
        pca$scale <- rep(1, ncol(X))
    }


    alpha <- pca$x
    d <- ndim

    kpars <- kernel.pars
    kpars$kernel <- kernel
    kpars$lambda <- lambda
    kpars$nblocks <- fastkrr.nblocks

    krrl <- constructFastKRRLearner() # nolint

    p <- do.call(CVST::constructParams, kpars)

    Y <- matrix(NA_real_, nrow = nrow(X), ncol = d)
    models <- list()
    if (d > 1) for (i in d:2) {
        message(Sys.time(), ": Constructing Axis ", d - i + 1, "/", d)
        data <- CVST::constructData(
            x = alpha[, 1:(i - 1), drop = FALSE],
            y = alpha[, i]
        )

        cat("predictors: ",
            colnames(alpha)
            [1:(i - 1)],
            "dependent: ",
            colnames(alpha)[i],
            "\n")


        res <- if (fastcv) {
                 CVST::fastCV(
                         data, krrl, p,
                         CVST::constructCVSTModel(),
                         test = fastcv.test,
                         verbose = verbose
                       )
               } else {
                 CVST::CV(
                         data, krrl, p,
                         fold = cv.folds,
                         verbose = verbose
                       )
               }

        model <- krrl$learn(data, res[[1]])

        models[[i]] <- model
        Y[, i] <- as.matrix(alpha[, i] - krrl$predict(model, data))
    }
    ## we don't need to construct the very last dimension
    message(Sys.time(), ": Constructing Axis ", d, "/", d)
    Y[, 1] <- alpha[, 1]
    models[[1]] <- list()


    appl <- function(x) {
        ## apply PCA
        dat <- scale(x, pca$center, pca$scale)
        dat <-  dat %*% pca$rotation

        ## apply KRR
        outdat <- matrix(NA_real_, ncol = d, nrow = nrow(x))
        if (d > 1) for (i in d:2)
            outdat[, i] <-
                dat[, i] - krrl$predict(
                    models[[i]],
                    CVST::constructData(x = dat[, 1:(i - 1), drop = FALSE],
                                        y = NA)
                          )

        outdat[, 1] <- dat[, 1]

        return(outdat)
    }

    inv <- function(x){
        dat <- cbind(x, matrix(0, nrow(x), ncol(X) - ncol(x)))

        outdat <- dat

        ## krr
        if (d > 1) for (i in 2:d)
            outdat[, i] <- dat[, i] + krrl$predict(
                models[[i]],
                CVST::constructData(x = outdat[, 1:(i - 1), drop = FALSE],
                                    y = NA)
                          )

        ## inverse pca
        outdat <- outdat %*% t(pca$rotation)

        outdat <- sweep(outdat, 2L, pca$scale, "*")
        outdat <- sweep(outdat, 2L, pca$center, "+")

        return(outdat)
    }

    return(list(
        fitted.data = Y,
        pca.means = pca$center,
        pca.scale = pca$scale,
        pca.rotation = pca$rotation,
        models = models,
        apply = appl,
        inverse = inv
    ))
}

Try the DRR package in your browser

Any scripts or data that you put into this service are public.

DRR documentation built on Jan. 7, 2018, 1:06 a.m.