inst/simulatorfunctions/simulate_multipathogen_ode.R

#' Simulation of a compartmental infectious disease transmission model with 2 types of pathogens
#'
#' @description  This model allows for the simulation of 2 IDs in a single host
#'
#' @param S : initial number of susceptible hosts  : numeric
#' @param I1 : initial number of hosts infected with type 1 : numeric
#' @param I2 : initial number of hosts infected with type 2 : numeric
#' @param I12 : initial number of double infected hosts : numeric
#' @param b1 : rate at which type 1 infected hosts transmit : numeric
#' @param b2 : rate at which type 2 infected hosts transmit : numeric
#' @param b12 : rate at which double infected hosts transmit : numeric
#' @param g1 : the rate at which infected type 1 hosts recover : numeric
#' @param g2 : the rate at which infected type 2 hosts recover : numeric
#' @param g12 : the rate at which double infected hosts recover : numeric
#' @param a : fraction of type 1 infections produced by double infected hosts : numeric
#' @param tmax : maximum simulation time, units of months : numeric
#' @return This function returns the simulation result as obtained from a call
#'   to the deSolve ode solver.
#' @details A compartmental ID model with several states/compartments
#'   is simulated as a set of ordinary differential
#'   equations. The function returns the output from the odesolver as a matrix,
#'   with one column per compartment/variable. The first column is time.
#' @section Warning:
#'   This function does not perform any error checking. So if you try to do
#'   something nonsensical (e.g. any negative values or fractions > 1),
#'   the code will likely abort with an error message.
#' @examples
#'   # To run the simulation with default parameters just call the function:
#'   result <- simulate_multipathogen_ode()
#'   # To choose parameter values other than the standard one, specify them like such:
#'   result <- simulate_multipathogen_ode(S = 100, I2 = 10, tmax = 100, b1 = 2.5)
#'   # You should then use the simulation result returned from the function, like this:
#'   plot(result$ts[,"time"],result$ts[,"I1"], xlab="Time",ylab="Number Infected Type 1",type="l")
#' @seealso The UI of the Shiny app 'Multi-Pathogen Dynamics', which is part of this package, contains more details on the model
#' @author Andreas Handel and Spencer Hall
#' @references See e.g. Keeling and Rohani 2008 for SIR models and the
#'   documentation for the deSolve package for details on ODE solvers
#' @export


simulate_multipathogen_ode <- function(S = 1e3, I1 = 1, I2 = 0, I12 = 0, b1 = 1e-3, b2 = 0, b12 = 0, g1 = 1, g2 = 1, g12 = 1, a = 0, tmax = 120)
{

    ############################################################
    # This function specifies and runs the ODE model for this app/simulation
    # For an explanation of the model, see the documentation for this app
    multipatheq <- function(t, y, parms)
    {
        with(
            as.list(c(y, parms)), #lets us access variables and parameters stored in y and pars by name
            {
                
                dS <- -S*(b1*(I1+I1X) + b2*(I2+I2X) + b12*I12)
                dI1 <- (b1*(I1+I1X) + a*b12*I12)*S       - g1*I1 - (b2*(I2+I2X) + b12*I12)*I1
                dI2 <- (b2*(I2+I2X) + (1 - a)*b12*I12)*S - g2*I2 - (b1*(I1+I1X) + b12*I12)*I2
                dI12 <- (b1*(I1+I1X) + b12*I12)*I2 + (b2*(I2+I2X) + b12*I12)*I1 - g12*I12 
                dI1X <- (b1 * (I1 + I1X) + b12*I12)*R2 - g1*I1X
                dI2X <- (b2 * (I2 + I2X) + b12*I12)*R1 - g2*I2X
                dR1 <- g1*I1 - (b2 * (I2 + I2X) + b12*I12)*R1
                dR2 <- g2*I2 - (b1 * (I1 + I1X) + b12*I12)*R2
                dR12 <- g12*I12 + g1*I1X + g2*I2X
                list( c(dS, dI1, dI2, dI12, dI1X, dI2X, dR1, dR2, dR12))        
            }
        ) #close with statement
    } #end function specifying the ODEs
    ############################################################
    
    
    ############################################################
    #main function code
    Y0 = c(S = S, I1 = I1, I2 = I2, I12 = I12, I1X = 0 , I2X = 0, R1 = 0, R2 = 0, R12 = 0);  #combine initial conditions into a vector
    dt = min(0.1, tmax / 1000); #time step for which to get results back
    timevec = seq(0, tmax, dt); #vector of times for which solution is returned (not that internal timestep of the integrator is different)
    
    
    ############################################################
    #vector of parameters which is sent to the ODE function  
    pars <- c(b1 = b1, b2 = b2, b12 = b12, g1 = g1, g2 = g2, g12 = g12, a = a);
    
    #this line runs the simulation, i.e. integrates the differential equations describing the infection process
    #the result is saved in the odeoutput matrix, with the 1st column the time, the 2nd, 3rd, 4th column the variables S, I, R
    #This odeoutput matrix will be re-created every time you run the code, so any previous results will be overwritten
    odeoutput = deSolve::lsoda(Y0, timevec, func = multipatheq, parms=pars, atol=1e-12, rtol=1e-12);
    
    result <- list()
    result$ts <- as.data.frame(odeoutput)
    
    return(result)
}

Try the DSAIDE package in your browser

Any scripts or data that you put into this service are public.

DSAIDE documentation built on July 4, 2019, 5:04 p.m.