
Documentation

Contents

Installation . 1

Usage . 1

Installation

Before anything, make sure the DependencyReviewer package is installed.

remotes

The latest version is usually available on GitHub, and is installable with the remotes package.

If you do not have remotes installed:
install.packages("remotes")

Install DependencyReviewer with remotes:
remotes::install_github("darwin-eu/DependencyReviewer")

install.packages

DependencyReviewer 1.0.0 is also available on CRAN, and can be installed using install.packages as well.

install.packages("DependencyReviewer")

Usage

library(DependencyReviewer)

Other packages that are used in the examples
library(DT)
library(ggplot2)
library(dplyr)
library(igraph)
library(GGally)

1

getDefaultPermittedPackages

What does it do? The getDefaultPermittedPackages function retrieves a list of packages from several
on,- and o昀툀ine data sources. These data sources include:

1. Base packages with a high priority installed.packages(lib.loc = .Library, priority =
"high")

2. Tidyverse packages
3. OHDSI/HADES packages
4. Packages hosted on the DependencyReviewerWhitelists repository
5. Finally the function will also retrieve the de昀椀ned packages’ dependencies recursively, and add them to

the list.

These packages are deemed OK to use. This list will, and should change overtime as packages become
outdated, get replaced, or added to the list.

What does it need? getDefaultPermittedPackages does not require any arguments.

What does it return? getDefaultPermittedPackages returns a class of data.frame with columns: pack-
age and version

datatable(getDefaultPermittedPackages())
#> PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, please make sure the phantomjs executable can be found via the PATH variable.

Show 10 entries Search:

Showing 1 to 10 of 14 entries Previous 1 2 Next

1 checkmate 2.1.0

2 desc 1.4.2

3 DT 0.26

4 ggraph 2.1.0

5 glue 1.6.2

6 here 1.0.1

7 igraph 1.3.5

8 shiny 1.7.3

9 shinyAce 0.4.2

10 shinyjs 2.1.0

package ▴
▾ version ▴

▾

2

https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/blob/main/TidyverseDependencies.csv
https://github.com/OHDSI/Hades/blob/main/extras/packages.csv
https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/blob/main/dependencies.csv

checkDependencies

What does it do? Now that we have de昀椀ned our ‘whitelisted’ packages, checkDependencies allows us to
check our currently used dependencies against it. checkDependencies will run getDefaultPermittedPackages
internally so there is no need to run the two separately to check your dependencies against the white list.

What does it need? checkDependencies has two optional arguments:

1. packageName default (NULL): Expects a character string of a package name. Example: “ggplot2”.

2. dependencyType default (c("Imports", "Depends")): Expects a character vector of at least length
1 of dependency types. The supported types are: “Imports”, “Depends”, and “Suggests”.

Because both arguments are optional it can also be run without specifying anything. The function will then
assume that it is run inside a package-project environment. This is speci昀椀cally useful when working on, or
reviewing a package.

What does it return? checkDependencies prints out a message in the console that informs the user if
all their used package dependencies are whitelisted or not. If not it instructs the user where to go to request
the packages to be whitelisted.

Assumes the current environment is a package-project
Defaults are: packageName = NULL, packageTypes = c("Imports", "Depends")
checkDependencies()

Check dependencies for installed package "dplyr"
checkDependencies(

packageName = "dplyr"
)

1. If packages are not approved yet:

Check Imports and Suggests
checkDependencies(

packageName = "dplyr",
dependencyType = c("Imports", "Suggests")

)
#>
#> -- Checking if packages in Imports and Suggests have been approved --
#>
#> ! Found 33 packages in Imports and Suggests that are not
#> approved
#> > 1) cli
#> > 2) generics
#> > 3) lifecycle
#> > 4) magrittr
#> > 5) methods
#> > 6) pillar
#> > 7) R6
#> > 8) rlang
#> > 9) tibble
#> > 10) tidyselect

3

#> > 11) utils
#> > 12) vctrs
#> > 13) bench
#> > 14) broom
#> > 15) callr
#> > 16) covr
#> > 17) DBI
#> > 18) dbplyr
#> > 19) ggplot2
#> > 20) knitr
#> > 21) Lahman
#> > 22) lobstr
#> > 23) microbenchmark
#> > 24) nycflights13
#> > 25) purrr
#> > 26) rmarkdown
#> > 27) RMySQL
#> > 28) RPostgreSQL
#> > 29) RSQLite
#> > 30) stringi
#> > 31) testthat
#> > 32) tidyr
#> > 33) withr
#> ! Please create a new issue at https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/ to request approval for packages with the following message:
#> > |package |version |date | downloads_last_month|license |url |
#> |:-------|:-------|:----|--------------------:|:-------|:---|

As you can see, it returns a list of all the packages that are not white listed. Below the list it will display
some information in a markdown table format. This will come in handy later on. The table has six columns:
1) package, 2) version, 3) date, 4) downloads_last_month, 5) license, and 6) url.

Note that only packages available on CRAN are reported in the table. Non-CRAN packages will still show
up in the list.

2. If all packages are approved:

Only check directly imported dependencies of installed package "dplyr"
checkDependencies(

packageName = "dplyr",
dependencyType = c("Imports")

)
#>
#> -- Checking if package in Imports have been approved --
#>
#> ! Found 12 packages in Imports that are not
#> approved
#> > 1) cli
#> > 2) generics
#> > 3) lifecycle
#> > 4) magrittr
#> > 5) methods
#> > 6) pillar
#> > 7) R6

4

#> > 8) rlang
#> > 9) tibble
#> > 10) tidyselect
#> > 11) utils
#> > 12) vctrs
#> ! Please create a new issue at https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/ to request approval for packages with the following message:
#> > |package |version |date | downloads_last_month|license |url |
#> |:-------|:-------|:----|--------------------:|:-------|:---|

Notice how “Imports” and “Depends” packages of dplyr are whitelisted, but “Suggests” packages are not.

Requesting packages to be whitelisted

If you 昀椀nd that some packages are not yet whitelisted, you can request them to be. The DependencyRe-
viewerWhitelists repository on GitHub houses the white list for DependencyReviewer.

To request new packages a new issue can be created on this repository.

Assuming we have the following output from checkDependencies:

Get from temp file

�� Checking if packages in Imports and Suggests have been approved ��

! Found 3 packages in Imports and Suggests that are not
approved
→ 1) GGally
→ 2) lintr
→ 3) pak
! Please create a new issue at https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/ to request approval for packages with the following message:
package	version	date	downloads_last_month	license	url
GGally	2.1.2	2021-06-21 03:40:10	86657	GPL (>= 2.0)	https://ggobi.github.io/ggally/, https://github.com/ggobi/ggally
lintr	3.0.2	2022-10-19 08:52:37	61729	MIT + file LICENSE	https://github.com/r-lib/lintr, https://lintr.r-lib.org
pak	0.3.1	2022-09-08 20:30:02	39420	GPL-3	https://pak.r-lib.org/

When creating a new issue, a request template is available.

Figure 1: Request template button

This template asks for some basic information about the requested packages, and a reason as to why the
requested packages should be whitelisted.

Initially it displays some dummy information as to what a request might look like.

Firstly it asks us is to supply a table in markdown format with some basic information about the packages.
We can copy this from the output message from the checkDependencies function.

Then it asks us to give a description as to why we would like these packages to be whitelisted.

Finally, we can add some additional information if required.

5

https://github.com/mvankessel-EMC/DependencyReviewerWhitelists
https://github.com/mvankessel-EMC/DependencyReviewerWhitelists

Figure 2: Request template

Figure 3: Request 昀椀lled out

6

Figure 4: Request preview

7

We can then preview our request issue:

If everything looks good, we can submit the issue.

summariseFunctionUse

What does it do? summariseFunctionUse goes through all speci昀椀ed R-昀椀les and attempts to list all the
functions used in those 昀椀les. It will also report in what 昀椀le the function was found, at what line number the
function call was found, and from which package the function comes from.

What does it need? summariseFunctionUse has several optional arguments:

1. r_昀椀les default (list.昀椀les(here::here(“R”))): If in_package = TRUE expects a character vector of at
least length 1 of 昀椀le names in the /R/ folder. If in_package == FALSE expects full paths to the
R-昀椀les.

2. verbose default (FALSE): If verbose = TRUE will print messages in the console on which 昀椀le the
function is currently working. Useful when reviewing large R-昀椀les. If verbose = FALSE will not print
said messages.

3. in_package default (TRUE): If in_package = TRUE will expect that the function is run inside a
package-project. If in_package = FALSE will expect that the function is run outside a package-project
and will expect full 昀椀le paths to the 昀椀les reviewed.

By default summariseFunctionUse will expect that it is ran inside a package-project and will look at the
/R/ folder inside the project.

What does it return? summariseFunctionUse returns a class of data.frame with the following columns:
r_昀椀le, line, pkg, fun.

Assumes the function is run inside a package-project.
datatable(

summariseFunctionUse(list.files(here::here("R"), full.names = TRUE)
))

8

Show 10 entries Search:

Showing 1 to 10 of 274 entries

Previous 1 2 3 4 5 … 28 Next

1 checkDependencies.R 27 base function

2 checkDependencies.R 29 dplyr filter

3 checkDependencies.R 29 base is.na

4 checkDependencies.R 30 dplyr rename

5 checkDependencies.R 31 dplyr left_join

6 checkDependencies.R 33 base c

7 checkDependencies.R 35 dplyr filter

8 checkDependencies.R 48 base function

9 checkDependencies.R 51 dplyr filter

10 checkDependencies.R 52 dplyr anti_join

r_file ▴
▾ line ▴▾ pkg ▴

▾ fun ▴
▾

if (interactive()) {
Any other R-file, with verbose messages
foundFuns <- summariseFunctionUse(

r_files = "../inst/testScript.R",
verbose = TRUE

)

datatable(foundFuns)
}

The found functions can then be plotted out for each package. For the sake of this demonstration, only a
few packages will be plotted.

if (interactive()) {
funCounts <- foundFuns %>%

group_by(fun, pkg, name = "n") %>%
tally() %>%
dplyr::filter(pkg %in% c("checkmate", "DBI", "dplyr"))

ggplot(
data = funCounts,
mapping = aes(x = fun, y = n, fill = pkg)

) +

9

geom_col() +
facet_wrap(

vars(pkg),
scales = "free_x",
ncol = 1

) +
theme_bw() +
theme(

legend.position = "none",
axis.text.x = (element_text(angle = 45, hjust = 1, vjust = 1))

)
}

getGraphData

What does it do? getGraphData creates an igraph graph object of all the dependencies that the root
package depends on. This includes direct and transitive dependencies.

What does it need? getGraphData has three optional parameters:

1. path default (here::here()): Path to the package to get the graph data of. By default assumes that
the function is ran inside a package-project.

2. excluded_packages default (c(“ “)): A character vector of packages to be excluded. By default is
empty.

3. package_types default (c(“imports”, “depends”)): Package dependency types to be included. By de-
fault imports and depends are included. Available types are: 1) “imports”, 2) “depends”, 3) “suggests”,
4) “enhances”, 5) “linkingto”

Without any of these speci昀椀ed, the getGraphData function assumes that it is ran inside an package-project.

What does it return? getGraphData returns a class of igraph.

graphData <- getGraphData()

Because the amount of dependencies in the graph quickly get out of hand, it is suggested that you would
either 昀椀lter the igraph object after the fact, or only look at one kind of package type. In the following
example we’ll look at “Imports” only to keeps things simple.

It could then be plotted like so:

#> � Updated metadata database: 4.93 MB in 12 files.� Updated metadata database: 4.93 MB in 12 files.
#>
#> � Updating metadata database� Updating metadata database� Updating metadata database ... done� Updating metadata database ... done

Get graphData with only imports
graphData <- getGraphData()

10

if (!is.null(graphData)) {
Calculate colour of nodes based on distances from root package

cols <- factor(as.character(apply(
X = distances(graphData, V(graphData)[1]),
MARGIN = 2,
FUN = max

)))

Plot graph
ggnet2(

net = graphData,
arrow.size = 1,
arrow.gap = 0.025,
label = TRUE,
palette = "Set2",
color.legend = "distance",
color = cols,
legend.position = "bottom",
edge.alpha = 0.25,
node.size = 2.5,
label.size = 1,
legend.size = 2

)
}

DependencyReviewer

Matrix

R6

backports

bit64

bit

callr
cli

clipr

codetools

crayon

curl

cyclocomp

desc

digest

dplyr

ellipsis

evaluate

fansi

generics

glue

highr

hms
igraph

jsonlite

knitr

lazyeval

lifecycle

lintr

magrittr

pak

pillar

pkgbuild

pkgcache

pkgconfig

pkgdepends

processx

ps

purrr

rappdirs

readr

remotes

rex

rlang

rprojroot
stringi

stringr

tidygraph

tidyr

tidyselect

tzdb

utf8

vctrs

vroom

withr

xfun

xml2

xmlparsedata

tibble

lattice

R

methods

graphics

grid

stats

utils

grDevices

yaml

tools

prettyunits

filelock

lpSolve

zip

distance 0 1 2 3

11

runShiny

What does it do? runShiny runs a local shiny app that houses all the before mentioned functionality in
one environment. runSHiny assumes that it is being ran inside a package-project.

What does it need? runShiny Takes no arguments

What does it return? runShiny returns a class of shiny.appobj.

runShiny()

The shiny application has three main tabs: 1) Package review, 2) Dependency Graph, and 3) Path to
dependency.

Package review

On the package review tab there are three main panels.

1. Settings: The settings have two parts on this panel: A 昀椀le picker, and tick boxes to packages.
Currently all the 昀椀les are in the summariseFunctionUse table.

2. summariseFunctionUse table and plot: The summariseFunctionUse table for the speci昀椀ed 昀椀les,
or all 昀椀les if ALL is picked in the 昀椀le picker in the settings.

3. Script preview: A preview of the contents of the selected 昀椀le. If ALL is chosen, a dummy script will
appear, or the last viewed contents will stay.

Figure 5: Function review

Notice how the Settings, summariseFunctionUse table and plot, and Script preview dynamically
change when the darwinLint.R 昀椀le is selected.

When swapping from the Function review to the Plot tab a bar graph is shown for each package used in
the 昀椀le. The bars represent the amount of function calls in that 昀椀le per package.

Lets say base functions are not interesting for your use case, you can then tick the base tick box in the
Exclude Packages in the settings.

12

Figure 6: Package review

Figure 7: Function review plot

13

Figure 8: Package review

Figure 9: Package review

14

base packages are now excluded from both the summariseFunctionUse table and plot.

Dependency Graph

The Dependency Graph tab displays a graph, like plotted earlier, using the graphData function. On the
right-hand-side di昀昀erent kinds of dependencies are able to be chosen to be included in the graph.

Figure 10: Package review

Path to dependency

The path to dependency tab displays how the root package depends on any recursive dependency.

On the right-hand-side a dependency found somewhere included in the root package can be chosen. A cuto昀昀
can be de昀椀ned to limit the distance from the root package to the chosen dependency.

darwinLintFile

What does it do? darwinLintFile is an extension of the default Lintr object, but instead of snake_case,
it uses camelCase. As the name suggest it will run the lintr on a speci昀椀ed 昀椀le.

What does it need? darwinLintFile takes one parameter: 1. 昀椀leName: Path to an R-昀椀le.

What does it return? It returns a class of lints.

However the output of a lintr function can be cast to a data.frame.

15

Figure 11: Package review

16

if (interactive()) {
lintOut <- data.frame(

darwinLintFile(
fileName = "../inst/testScript.R"

)
)

}

Which can then be manipulated to get a summary of lint messages.

if (interactive()) {
lintOut %>%

group_by(type, message) %>%
tally(sort = TRUE) %>%
datatable()

}

darwinLintPackage

What does it do? darwinLintPackage is an extension of the default Lintr object, but instead of
snake_case, it uses camelCase. But unlike darwinLintFile, will run the lintr on the entire package. There-
fore it will assume that the function is ran inside a package-project.

What does it need? darwinLintPackage Does not take any arguments.

What does it return? It returns a class of lints.

darwinLintScore

What does it do? darwinLintScore calculates a percentage per type of lint-message from the lintr.

The percentage is calculated as: þ����������ý��ÿ���� = �þ��������ý�ÿ�� × 100
What does it need? darwinLintScore takes one prede昀椀ned argument: 1. lintFunction: A lint function
extended from lintr::lint_package or lintr::lint 2. …: Any other arguments that the lint function
might need

What does it return? Returns a class of data.frame with two columns: 1) type, and 2) pct.

It will also print out colour coded messages with the percentages per message type.

if (interactive()) {
darwinLintScore(darwinLintPackage)

}

i style: 5.9% of lines of code have linting messages
i warning: 0.95% of lines of code have linting messages

17

type pct
style 5.9
warning 0.95

18

