
EpiBayes 2-Level Models Vignette

Matt Branan

Updated: June 23, 2015

1 Setting up the Models in R

Run this code once to load the proper packages.

library(epiR) # For the BetaBuster function

library(compiler) # To compile the larger functions for computational speed

library(coda) # For processing Bayesian model output

library(shape) # For nice colorbar legends

library(scales) # For transparent colors

Next, we need to make sure that our package is installed and that the models we will be using
are loaded into R’s working memory. The file EpiBayes 0.0.1.tar.gz can be found in our shared
Dropbox folder under ref → Matt Documents. You will need to make sure that you point R to
the actual file using the setwd function. For example, if I knew that the file containing the models
was stored somewhere on my Mac (using OSX 10.6.8), then I would make sure that the R working
directory pointed to the folder containing our file and execute:

install.packages("EpiBayes_0.0.1", type = "source", repos = NULL) # Make sure the

version is correct and the working directory is pointed to where the .tar.gz

file is stored

library(EpiBayes) # Load the package

Before we actually get our hands dirty with the models, we will visit each briefly to get ourselves
familiar with the arguments of each and the potential uses of the models.

2 Argument Descriptions and Model Uses

We have code for two models:

a. EpiBayes ns: the hierarchical Bayesian model with n(o) s(torage). This model stores only
what is necessary to investigate the simulation results and posterior inference on cluster-level
prevalences. No other parameters are tracked and stored in the MCMC chain and so no
diagnostics can be investigated. This model is faster than model (b)

b. EpiBayes s: the hierarchical Bayesian model with s(torage). This model stores all realizations
of all parameters listed in Section 2.2. Diagnostics can be checked with this model, though it
is slower to execute.

Other than the storage differences and the implied differences in computational speed, there are
no other differences between the two models. Both are designed to implement the models described
in EpiBayes Proposal (3-level) in our Dropbox folder and is constructed in the spirit of Branscum
et al. (2006) [1].

These models are Bayesian hierarchical models that can serve two main purposes:

1

• Simulation model: can simulate data under user-specified conditions and run replicated data
sets under the Bayesian model to observe the behavior of the system under random realizations
of simulated data.

• Posterior inference model: can use actual, observed data from the field, run it through the
Bayesian model, and make inference on parameter(s) of interest using the posterior distribu-
tion(s).

The outputs of interest if the model is used as a simulation model can be found in Table 1.

Table 1: Outputs from either the EpiBayes ns or EpiBayes s models if used as simulation-type
models. These are, generally, frequencies of various behaviors of cluster-level prevalences among
replicated data sets.

Statistic Meaning Short Meaning

p2.tilde Proportion of replicated data sets
that result in probabilities of see-
ing cluster-level prevalences below
tau.thresh with p1 probability

Probability of non-detection or
disease-freedom

p4.tilde Proportion of replicated data sets
that result in probabilities of see-
ing cluster-level prevalences above
tau.thresh with p1 probability

Probability of detection or disease

p6.tilde Proportion of replicated data sets
that result in probabilities of see-
ing cluster-level prevalences in the
interval (tau.lb, tau.ub) with p1

probability

Probability of prevalence falling in
the interval

In the case of using he model as either a simulation or a posterior inference model, we might
wish to investigate the posterior distributions of various parameters returned by the functions
implementing our models. In order to manipulate these posterior distributions, we make use of the
coda package in R, which is a standard package for post-processing of MCMC output.

Both of the models deal with the same set of variables, which can be found in Table 2.
In addition, both models also have the same arguments. These are described in Table 3. We

include this to give the user a single place to reference the computational attributes of the arguments
as well as English descriptions of the inputs.

Next, we will delve into the output of models (a) and (b) separately (though there will be some
overlap).

2.1 No Storage Model

The so-called no storage model, EpiBayes ns, has the arguments as described in Table 3.
The outputs that we can garner from the no storage model are just the bare bones needed

to interpret the results in terms of the problem and does not include much in the way of output
that can be used to rigorously check for model fit or MCMC convergence properties. From this
model, we get the simulation results from Table 1 and the posterior distribution of the cluster-level
prevalence. We include the attributes of these outputs in Table 4.

2

Table 2: Variables involved in both models EpiBayes ns and EpiBayes s. The naming convention
”*mat” (where * is a wildcard) is for consistency between models since most of these variables truly
are stored as matrices in the storage model, EpiBayes s.

Variable (3-level) Description (2-level) Description

omegamat Probability of disease being in the
region

Not used

gammat Subzone-level (between subzone)
prevalence

Probability of disease being in the
region

z.gammat Subzone-level (between subzone)
prevalence latent indicator vari-
able

Not used

taumat Cluster-level (between-cluster)
prevalence

Same as (3-level)

z.taumat Cluster-level (between-cluster)
prevalence latent indicator vari-
able

Same as (3-level)

pimat Subject-level (within-cluster)
prevalence

Same as (3-level)

z.pimat Subject-level (within-cluster)
prevalence latent indicator vari-
able

Same as (3-level)

mumat Mean prevalence among infected
clusters

Same as (3-level)

psimat (Related to) variability of preva-
lence among infected clusters (in-
versely related so higher psi
→ lower variance of prevalences
among diseased clusters)

Same as (3-level)

etamat Diagnostic test sensitivity Same as (3-level)

thetamat Diagnostic test specificity Same as (3-level)

c1mat Latent count of true positive diag-
nostic test results

Same as (3-level)

c2mat Latent count of true negative di-
agnostic test results

Same as (3-level)

2.2 Storage Model

The storage model, EpiBayes s, has the arguments as described in Table 3. The outputs from
the model are more comprehensive and posterior distributions can be referenced for all variables
listed in Table 2. We include the attributes of these matrices output by the storage model for
easy reference when manipulating the output in practice. Also in this model, we can access the
simulation-based output as before.

3

2.3 Brief Look at Posterior Distributions

Note, one needs to be careful about the size of each of the arrays you are calling. The last index of
any of the variables from above is the MCMC replications and so we would typically always omit
the last index when looking at any particular variable. Let’s take two examples, one looking at the
cluster-level prevalence and the other looking at subject-level prevalences.

If we want to look at the posterior distribution of the cluster-level prevalence (taumat) for the
first replication, we will note that taumat is a matrix with rows indexed by replication and columns
by MCMC replications. Then, we will type something like

name_of_your_model$taumat[1, 1,]

in order to visually inspect the posterior distribution in the form of a vector. For the second
replication, we can type

name_of_your_model$taumat[2, 1,]

and so forth. Then, we can make histograms of these distributions if we so desire by the following
code:

hist(name_of_your_model$taumat[1, 1,], col = "cyan");box("plot")

To observe a trace plot, we can type:

plot(name_of_your_model$taumat[1, 1,], type = "l")

for all of the MCMC replications and we can look at the trace plot after a burn-in of 1000 iterations
by typing:

plot(name_of_your_model$taumat[1, 1, -c(1:1000)], type = "l")

If we want to look at the posterior distribution for the subject-level prevalence (pi) for the
tenth replication in the third cluster, we would type

name_of_your_model$pimat[10, 1,]

since the matrix containing the posterior distributions for the subject-level prevalences are indexed
by replications in the first dimension, clusters in the second, and MCMC replications in the third.
We can make histograms and trace plots using the same code as from the example code involving
taumat.

4

Table 3: Arguments for the function HM 2ns in the order in which they appear by default. We also
include the attributes of each of the arguments so the user has a single place to reference when the
type of input is questioned in practice.

Argument Attributes Description

H integer scalar number of subzones/states/HUC’s

k
integer vector

(H × 1)
number of clusters / farms / ponds / herds

n
integer vector

(sum(k) × 1)
number of subjects / animals / mussels / pigs per cluster
(can differ among clusters)

seasons
integer vector

(sum(k) × 1)
numeric season for each cluster in the order: Summer (1),
Fall (2), Winter (3), Spring (4)

reps integer scalar number of (simulated) replicated data sets

MCMCreps integer scalar number of iterations in the MCMC chain per replicated data
set

poi character
scalar

p(arameter) o(f) i(nterest) specifies one of the subzone-level
prevalence (gam) or the cluster-level prevalence (tau), indi-
cating which variable with which to compute the simulation
output p2.tilde, p4.tilde, and p6.tilde

y
integer matrix

(reps × sum(k))
an optional input of sums of positive diagnostic testing results
if one has a specific set of diagnostic testing outcomes for
every subject (will simulate these if this is left as NULL)

mumodes
real matrix

(4 × 2)
modes and (a) 95th percentiles for mode <= 0.50 or (b) 5th
percentiles for mode > 0.5 for season-specific mean preva-
lences for diseased clusters in the order: Summer, Fall, Win-
ter, Spring

poi.thresh real scalar Threshold that we must show poi prevalence is below to de-
clare disease freedom

tau.T real scalar assumed true cluster-level prevalence (used to simulate data
to feed into the Bayesian model)

poi.lb / poi.ub real scalars lower and upper bounds for posterior poi prevalences to show
ability to capture poi with certain probability

p1 real scalar probability we must show prevalence is below / above the
threshold tau.thresh or within specified bounds

psi real scalar (inversely related to) the variability of the subject-level preva-
lences in diseased clusters

parm(, *)
real vector

(2 × 1)
the rest of the model inputs in the form *parm(*, *) are the
prior parameters for variable * where * can be one of: omega,
gam, tau, eta, theta

burnin integer scalar number of MCMC iterations to discard from the beginning
of the chain

5

Table 4: Output values from the no storage model and their attributes. Mainly important for
reference of the size of the taumat matrix to make investigation more straightforward when calling
coda functions for clean post-processing.

Output Variable Attributes

p2.tilde real scalar

p4.tilde real scalar

p6.tilde real scalar

taumat
real matrix

(reps × H × MCMCreps)

6

Table 5: Output values from the no storage model and their attributes. Mainly important for
reference of the size of the taumat matrix to make investigation more straightforward when calling
coda functions for clean post-processing.

Output Variable Attributes

p2.tilde real scalar

p4.tilde real scalar

p6.tilde real scalar

taumat
real matrix

(reps × H × MCMCreps)

gammat
real matrix

(reps × MCMCreps)

omegamat
real matrix

(reps × MCMCreps)

z.gammat
real matrix

(reps × MCMCreps)

z.taumat
real matrix

(reps × H × MCMCreps)

pimat
real array

(reps × sum(k) × MCMCreps)

z.pimat
real array

(reps × sum(k) × MCMCreps)

mumat
real matrix

(reps × 4 × MCMCreps)

psimat real scalar

etamat
real matrix

(reps × MCMCreps)

thetamat
real matrix

(reps × MCMCreps)

c1mat
real array

(reps × k × MCMCreps)

c2mat
real array

(reps × k × MCMCreps)

mumh.tracker
real matrix

(reps × 4)

y
real matrix

(reps × sum(k))

7

References

[1] Branscum, A., Johnson, W. and Gardner, I. Sample size calculations for disease freedom and
prevalence estimation surveys. Statistics in Medicine 25 (2006), 2658-2674.

8

	Setting up the Models in R
	Argument Descriptions and Model Uses
	No Storage Model
	Storage Model
	Brief Look at Posterior Distributions

