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Abstract

FRK is an R software package for spatial/spatio-temporal modelling and prediction with large datasets.
It facilitates optimal spatial prediction (kriging) on the most commonly used manifolds (in Euclidean
space and on the surface of the sphere), for both spatial and spatio-temporal fields. It differs from ex-
isting packages for spatial modelling and prediction by avoiding stationary and isotropic covariance and
variogram models, instead constructing a spatial random effects (SRE) model on a discretised spatial
domain. The discrete element is known as a basic areal unit (BAU), whose introduction in the software
leads to several practical advantages. The software can be used to (i) integrate multiple observations
with different supports with relative ease; (ii) obtain exact predictions at millions of prediction locations
with the use of sparse linear algebraic techniques (without conditional simulation); and (iii) distinguish
between measurement error and fine-scale variation at the resolution of the BAU, thereby allowing for
improved uncertainty quantification when compared to related packages. The temporal component is
included by adding another dimension. A key component of the SRE model is the specification of spatial
or spatio-temporal basis functions; they can be generated automatically or by the user. The package
also offers automatic BAU construction, an Expectation Maximisation (EM) algorithm for parameter
estimation, and functionality for prediction over any user-specified polygons or BAUs. Use of the package
is illustrated on several large spatial and spatio-temporal datasets in a Gaussian setting. Please refer to
the second vignette, “Tutorial on modelling spatial and spatio-temporal non-Gaussian data with FRK,”
for a tutorial on how to use the package with non-Gaussian spatial and spatio-temporal data.
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1 Introduction

Fixed Rank Kriging (FRK) is a spatial/spatio-temporal modelling and prediction framework that is scaleable,
works well with large datasets, and can change spatial support easily. FRK hinges on the use of a spatial
random effects (SRE) model, in which a spatially correlated mean-zero random process is decomposed
using a linear combination of spatial basis functions with random weights plus a term that captures the
random process’ fine-scale variation. Dimensionality reduction through a relatively small number of basis
functions ensures computationally efficient prediction, while the reconstructed spatial process is, in general,
non-stationary. The SRE model has a spatial covariance function that is always nonnegative-definite, and,
because any (possibly non-orthogonal) basis functions can be used, it can be constructed so as to approximate
standard families of covariance functions [Kang and Cressie, 2011]. For a detailed treatment of FRK, see
Cressie and Johannesson [2006, 2008], Shi and Cressie [2007], and Nguyen et al. [2012].

There are numerous R packages available for modelling and prediction with spatial or spatio-temporal
data,1 although relatively few of these make use of a model with spatial basis functions. However, a few
variants of FRK have been developed to date, and the one that comes closest to the present software is
LatticeKrig [Nychka et al., 2015]. LatticeKrig uses Wendland basis functions (that have compact support)
to decompose the spatially correlated process, and it also has a Markov assumption to construct a precision
matrix (the matrix K−1 in Section 2.1) to describe the dependence between the coefficients of these basis
functions. It does not cater for what we term fine-scale-process variation, and instead the finest scale of the
process is limited to the finest resolution of the basis functions used. However, this scale can be relatively fine
due to the computationally motivated sparsity imposed on K−1. LatticeKrig’s underlying model makes use
of sparse precision matrices constructed using Gaussian Markov random field (GMRF) assumptions, which
results in efficient computations and the potential use of a large number (> 10, 000) of basis functions.

The package INLA is a general-purpose package for model fitting and prediction. When using INLA

for spatial and spatio-temporal modelling, the prevalent approach is to assume that basis functions are
triangular ‘tent’ functions and that the coefficients are normally distributed with a sparse precision matrix,
such that the covariance function of the resulting Gaussian process is approximately a spatial covariance
function from the Matérn class [see Lindgren and Rue, 2015, for details on software implementation]. INLA’s
approach thus shares many of the features of LatticeKrig. A key advantage of INLA is that once the spatial
or spatio-temporal model is constructed, one has access to all the approximate-inference machinery and
likelihood models available within the package.

Kang and Cressie [2011] develop Bayesian FRK; they keep the spatial basis functions fixed and put a
prior distribution on K. The predictive-process approach of Banerjee et al. [2008] can also be seen as a
type of Bayesian FRK, where the basis functions are constructed from the postulated covariance function
of the spatial random effects and hence depend on parameters [see Katzfuss and Hammerling, 2017, for an
equivalence argument]. An R package that implements predictive processes is spBayes [Finley et al., 2007].
It allows for multivariate spatial or spatio-temporal processes, and Bayesian inference is carried out using
Markov chain Monte Carlo (MCMC), thus allowing for a variety of likelihood models. Because the implied
basis functions are constructed based on a parametric covariance model, a prior distribution on parameters
reults in new basis functions generated at each MCMC iteration. Since this can slow down the computation,
the number of knots used in predictive processes needs to be small.

Our software package FRK differs from spatial prediction packages currently available by constructing an
SRE model on a discretised domain, where the discrete element is known as a basic areal unit [BAU; see, e.g.,
Nguyen et al., 2012]. Reverting to discretised spatial processes might appear to be counter-intuitive, given
all the theory and efficient approaches available for continuous-domain processes. However, BAUs allow one
to easily combine multiple observations with different supports, which is common when working with, for
example, remote sensing datasets. Further, the consideration of a discrete element allows one to distinguish
between measurement error and fine-scale variation at the resolution of the discrete element which leads to
better uncertainty quantification. The BAUs need to be ‘small,’ in the sense that they should be able to
reconstruct the (undiscretised) process with minimal error, but FRK implements functions to predict over
any arbitrary user-defined polygons.

In the standard “flavour” of FRK [Cressie and Johannesson, 2008], which we term vanilla FRK (FRK-
V), there is an explicit reliance on multi-resolution basis functions to give complex non-stationary spatial

1see https://cran.r-project.org/web/views/Spatial.html.
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patterns at the cost of not imposing any structure on K, the covariance matrix of the basis function weights.
This can result in identifiability issues and hence can result in over-fitting the data when K is estimated
using standard likelihood methods [e.g., Nguyen et al., 2014], especially in regions of data paucity. Therefore,
in FRK we also implement a model (FRK-M) where a parametric structure is imposed on K [e.g., Stein,
2008, Nychka et al., 2015]. The main aim of the package FRK is to facilitate spatial and spatio-temporal
analysis and prediction for large datasets, where multiple observatons come with different spatial supports.
We see that in ‘big data’ scenarios, lack of consideration of fine-scale variation may lead to over-confident
predictions, irrespective of the number of basis functions adopted.

In this vignette we illustrate how to use FRK on spatial and spatio-temporal datasets with differing
supports and on different manifolds. In Section 2 we first present the model, the estimation approach and
the prediction equations. In Sections 3 and 4 we consider examples of spatial and spatio-temporal data,
respectively. In Section 5 we discuss some additional functionality (e.g., modelling of anisotropic fields) and
in Section 6 we discuss package limitations and opportunities for further development.

2 Outline of Fixed Rank Kriging: Modelling, estimation and pre-
diction

In this section we present the theory behind the operations in FRK. In Section 2.1 we introduce the SRE
model, in Section 2.2 we discuss the EM algorithm for parameter estimation, and in Section 2.3 we present
the prediction equations.

2.1 The SRE model

Denote the spatial process of interest as {Y (s) : s ∈ D}, where s indexes the location of Y (s) in our domain
of interest D. In what follows, we assume that D is a spatial domain but extensions to spatio-temporal
domains are natural within the framework (Section 4). Consider the classical spatial statistical model,

Y (s) = t(s)⊤α+ υ(s) + ξ(s); s ∈ D,

where, for s ∈ D, t(s) is a vector of spatially referenced covariates, α is a vector of regression coefficients,
υ(s) is a small-scale, spatially correlated random effect, and ξ(s) is a fine-scale random effect that is ‘almost’
spatially uncorrelated. It is natural to let E(υ(·)) = E(ξ(·)) = 0. Define λ(·) ≡ υ(·)+ξ(·), so that E(λ(·)) = 0.
It is the structure of the process υ(·) in terms of a linear combination of a fixed number of spatial basis
functions that defines the SRE model for λ(·):

λ(s) =

r∑

l=1

ϕl(s)ηl + ξ(s); s ∈ D,

where η ≡ (η1, . . . , ηr)
⊤ is an r-variate random vector, and φ(·) ≡ (ϕ1(·), . . . , ϕr(·))

⊤ is an r-dimensional
vector of pre-specified spatial basis functions. Sometimes, φ(·) contains basis functions of multiple resolutions
(e.g., wavelets), they may or may not be orthogonal, and they may or may not have compact support. The
basis functions chosen should be able to adequately reconstruct realisations of Y (·); an empirical spectral-
based approach that can ensure this is discussed in Zammit-Mangion et al. [2012].

In order to cater for different observation supports {Bj} (defined below), it is convenient to assume a
discretised domain of interest DG ≡ {Ai ⊂ D : i = 1, . . . , N} that is made up of N small, non-overlapping

basic areal units or BAUs [Nguyen et al., 2012], and D =
⋃N

i=1 Ai. The set DG of BAUs is a discretisation,
or ‘tiling,’ of the original domain D, and typically N ≫ r. The process {Y (s) : s ∈ D} is then averaged over
the BAUs, giving the vector Y = (Yi : i = 1, . . . , N)⊤, where

Yi ≡
1

|Ai|

∫

Ai

Y (s)ds; i = 1, . . . , N, (1)

and N is the number of BAUs. At this BAU level,

Yi = t⊤i α+ υi + ξi, (2)
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where for i = 1, . . . , N, ti ≡
1

|Ai|

∫
Ai

t(s)ds, υi ≡
1

|Ai|

∫
Ai

υ(s)ds, and ξi is specified below. The SRE model

specifies that the small-scale random variation is υ(·) = φ(·)⊤η, and hence in terms of the discretisation
onto DG,

υi =

(
1

|Ai|

∫

Ai

φ(s)ds

)⊤

η; i = 1, . . . , N,

so that υ = Sη, where S is the N × r matrix defined as follows:

S ≡

(
1

|Ai|

∫

Ai

φ(s)ds : i = 1, . . . , N

)⊤

. (3)

In FRK, we assume that η is an r-dimensional Gaussian vector with mean zero and r × r covariance
matrix K, and estimation of K is based on likelihood methods; we denote this variant of FRK as FRK-V
(where recall that ‘V’ stands for ‘vanilla’). If some structure is imposed on var(η) in terms of parameters
ϑ, then K = K◦(ϑ) and ϑ needs to be estimated; we denote this variant as FRK-M (where recall that ‘M’
stands for ‘model’). Frequently, the resolution of the BAUs is sufficiently fine, and the basis functions are
sufficiently smooth, so that S can be approximated:

S ≈ (φ(si) : i = 1, . . . , N)
⊤
, (4)

where {si : i = 1, . . . , N} are the centroids of the BAUs. Since small BAUs are always assumed, this
approximation is used throughout FRK.

In FRK, we do not directly model ξ(s), since we are only interested in its discretised version. Rather, we
assume that ξi ≡

1
|Ai|

∫
Ai

ξ(s)ds has a Gaussian distribution with mean zero and variance

var(ξi) = σ2
ξvξ,i,

where σ2
ξ is a parameter to be estimated, and the weights {vξ,1, . . . , vξ,N} are known and represent het-

eroscedasticity. These weights are typically generated from domain knowledge; they may, for example,
correspond to topographical features such as terrain roughness [Zammit-Mangion et al., 2015]. Since we
specified ξ(·) to be ‘almost’ spatially uncorrelated, it is reasonable to assume that the variables representing
the discretised fine-scale variation, {ξi : i = 1, . . . , N}, are uncorrelated. From (2), we can write

Y = Tα+ Sη + ξ, (5)

where T ≡ (ti : i = 1, . . . , N)⊤, ξ ≡ (ξi : i = 1, . . . , N)⊤, and var(ξ) ≡ σ2
ξVξ, for known Vξ ≡

diag(vξ,1, . . . , vξ,N ).
We now assume that the hidden (or latent) process, Y (·), is observed with m footprints (possibly over-

lapping) spanning one or more BAUs, where typically m ≫ r (note that both m > N and N ≥ m are
possible). We thus define the observation domain as DO ≡ {∪i∈cjAi : j = 1, . . . ,m}, where cj is a non-

empty set in 2{1,...,N}, the power set of {1, . . . , N}, and m = |DO|. For illustration, consider the simple
case of the discretised domain being made up of three BAUs. Then DG = {A1, A2, A3} and, for example,
DO = {B1, B2}, where B1 = A1 ∪ A2 (i.e., c1 = {1, 2}) and B2 = A3 (i.e., c2 = {3}). Catering for different
footprints is important for remote sensing applications in which satellite-instrument footprints can widely
differ [e.g., Zammit-Mangion et al., 2015].

Each Bj ∈ DO is either a BAU or a union of BAUs. Measurement of Y is imperfect: We define the
measurement process as noisy measurements of the process averaged over the footprints

Zj ≡ Z(Bj) =

(∑N
i=1 Yiwij∑N
i=1 wij

)
+

(∑N
i=1 δiwij∑N
i=1 wij

)
+ ϵj ; Bj ∈ DO, (6)

where the weights,

wij = |Ai|I(Ai ⊂ Bj); i = 1, . . . , N ; j = 1, . . . ,m; Bj ∈ DO,
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depend on the areas of the BAUs, and I(·) is the indicator function. Currently, in FRK, BAUs of equal area
are assumed, but we give (6) in its most general form. The random quantities {δi} and {ϵi} capture the
imperfections of the measurement. Better known is the measurement-error component ϵi, which is assumed
to be mean-zero Gaussian distributed. The component δi captures any bias in the measurement at the
BAU level, which has the interpretation of an intra-BAU systematic error. These systematic errors are
BAU-specific, that is, the {δi} are uncorrelated with mean zero and variance

var(δi) = σ2
δvδ,i,

where σ2
δ is a parameter to be estimated, and {vδ,1, . . . , vδ,N} represent known heteroscedasticity.

We assume that Y and δ are independent. We also assume that the observations are conditionally
independent, when conditioned on Y and δ. Equivalently, we assume that the measurement errors {ϵj : j =
1, . . . ,m} are independent with var(ϵi) = σ2

ϵ vϵ,i.
We represent the data as Z ≡ (Zj : j = 1, . . . ,m)⊤. Then, since each element in DO is the union of

subsets of DG, one can construct a matrix

CZ ≡

(
wij∑N
l=1 wlj

: i = 1, . . . , N ; j = 1, . . . ,m

)
,

such that
Z = CZY +CZδ + ε,

where the three components are independent, ε ≡ (ϵj : j = 1, . . . ,m)⊤, and var(ε) = Σϵ ≡ σ2
ϵVϵ ≡

σ2
ϵdiag(vϵ,1, . . . , vϵ,m) is an m ×m diagonal covariance matrix. The matrix Σϵ is assumed known from the

properties of the measurement. If it is not known, Vϵ is fixed to I and σ2
ϵ is estimated using variogram

techniques [Kang et al., 2009]. Notice that the rows of the matrix CZ sum to 1.
It will be convenient to re-write

Z = TZα+ SZη + ξZ + δZ + ε, (7)

where TZ ≡ CZT, SZ ≡ CZS, ξZ ≡ CZξ, δZ ≡ CZδ, var(ξZ) = σ2
ξVξ,Z ≡ σ2

ξCZVξC
⊤
Z , var(δZ) =

σ2
δVδ,Z ≡ σ2

δCZVδC
⊤
Z , and where Vδ ≡ diag(vδ,1, . . . , vδ,N ) is known. Then, recalling that E(η) = 0 and

E(ξZ) = E(δZ) = E(ε) = 0,

E(Z) = TZα,

var(Z) = SZKS⊤
Z + σ2

ξCZVξC
⊤
Z + σ2

δCZVδC
⊤
Z + σ2

ϵVϵ.

In practice, it is not always possible for each Bj to include entire BAUs. For simplicity, in FRK we assume
that the observation footprint overlaps a BAU if and only if the BAU centroid lies within the footprint.
Frequently, point-referenced data is included in Z. In this case, each data point is attributed to a specific
BAU and it is possible to have multiple observations of the process defined on the same BAU.

We collect the unknown parameters in the set θ ≡ {α, σ2
ξ , σ

2
δ ,K} for FRK-V and θ◦ ≡ {α, σ2

ξ , σ
2
δ ,ϑ}

for FRK-M for which K = K◦(ϑ); their estimation is the subject of Section 2.2. If the parameters in θ or
θ◦ are known, an inversion that uses the Sherman–Woodbury identity [Henderson and Searle, 1981] allows
spatial prediction at any BAU in DG. Estimates of θ are substituted into these spatial predictors to yield
FRK-V. Similarly, estimates of θ◦ substituted into the spatial-prediction equations yield FRK-M.

In FRK, we allow the prediction set DP to be as flexible as DO; specifically, DP ⊂ {∪i∈c̃kAi : k =
1, . . . , NP }, where c̃k is a non-empty set in 2{1,...,N} and NP is the number of prediction areas. We can
thus predict both at the individual BAU level or averages over an area spanning multiple BAUs, and these
prediction regions may overlap. This is an important change-of-support feature of FRK. We provide the
FRK equations in Section 2.3.

2.2 Parameter estimation using an EM algorithm

In all its generality, parameter estimation with the model of Section 2.1 is problematic due to confounding
between δ and ξ. In FRK, the user thus needs to choose between modelling the intra-BAU systematic errors
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(in which case σ2
ξ is fixed to 0) or the process’ fine-scale variation (in which case σ2

δ is fixed to 0). We
describe below the estimation procedure for the latter case; due to symmetry, the estimation equations of
the former case can be simply obtained by replacing the subscript ξ with δ. However, which case is chosen
by the user has a considerable impact on the prediction equations for Y (Section 2.3). Recall that the
measurement-error covariance matrix Σϵ is assumed known from measurement characteristics, or estimated
using variogram techniques prior to estimating the remaining parameters described below. For conciseness,
in this section we use θ to denote the parameters in both FRK-V and FRK-M, only distinguishing when
necessary.

We carry out parameter estimation using an expectation maximisation (EM) algorithm [similar to Katz-
fuss and Cressie, 2011, Nguyen et al., 2014] with (7) as our model. Define the complete-data likelihood
Lc(θ) ≡ [η,Z | θ] (with ξZ integrated out), where [ · ] denotes the probability distribution of its argument.
The EM algorithm proceeds by first computing the conditional expectation (conditional on the data) of the
complete-data log-likelihood at the current parameter estimates (the E-step) and, second, maximising this
function with respect to the parameters (the M-step). In mathematical notation, in the E-step the function

Q(θ | θ(l)) ≡ E(lnLc(θ) | Z,θ
(l)),

is found for some current estimate θ(l). In the M-step, the updated parameter estimates

θ(l+1) = argmax
θ

Q(θ | θ(l)),

are found.
The E-step boils down to finding the conditional distribution of η at the current parameter estimates.

One can use standard results in Gaussian conditioning [e.g., Rasmussen and Williams, 2006, Appendix A]
to show from the joint distribution, [η,Z | θ(l)], that

η | Z,θ(l) ∼ Gau(µ(l)
η ,Σ(l)

η ),

where

µ(l)
η = Σ(l)

η S⊤
Z

(
D

(l)
Z

)−1 (
Z−TZα

(l)
)
,

Σ(l)
η =

(
S⊤
Z

(
D

(l)
Z

)−1

SZ +
(
K(l)

)−1
)−1

,

where D
(l)
Z ≡ (σ2

ξ )
(l)Vξ,Z +Σϵ, and where K(l) is defined below.

The update for α is

α(l+1) =

(
T⊤

Z

(
D

(l+1)
Z

)−1

TZ

)−1

T⊤
Z

(
D

(l+1)
Z

)−1 (
Z− SZµ

(l)
η

)
. (8)

In FRK-V, the update for K(l+1) is

K(l+1) = Σ(l)
η + µ(l)

η µ(l)⊤

η ,

while in FRK-M, where recall that K = K◦(ϑ), the update is

ϑ(l+1) = argmax
ϑ

ln
∣∣K◦(ϑ)

−1
∣∣− tr

(
K◦(ϑ)

−1
(
Σ(l)

η + µ(l)
η µ(l)⊤

η

))
,

which is numerically optimised using the function optim with ϑ(l) as the initial vector.
The update for σ2

ξ requires the solution to

tr((Σϵ + (σ2
ξ )

(l+1)Vξ,Z)
−1Vξ,Z) = tr((Σϵ + (σ2

ξ )
(l+1)Vξ,Z)

−1Vξ,Z(Σϵ + (σ2
ξ )

(l+1)Vξ,Z)
−1Ω), (9)

where

Ω ≡ SZΣ
(l)
η S⊤

Z + SZµ
(l)
η µ(l)⊤

η S⊤
Z − 2SZµ

(l)
η (Z−TZα

(l+1))⊤ + (Z−TZα
(l+1))(Z−TZα

(l+1))⊤. (10)
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The solution to (9), namely (σ2
ξ )

(l+1), is found numerically using uniroot after (8) is substituted into (10).

Then α(l+1) is found by substituting (σ2
ξ )

(l+1) into (8). Computational simplifications are possible when
Vξ,Z and Σϵ are diagonal, since then only the diagonal of Ω needs to be computed. Further simplifications
are possible when Vξ,Z and Σϵ are proportional to the identity matrix, with constants of proportionality γ1
and γ2, respectively. In this case,

(σ2
ξ )

(l+1) =
1

γ1

(
tr(Ω)

m
− γ2

)
,

where recall that m is the dimension of the data vector Z and α(l+1) is, in this special case, the ordinary-

least-squares estimate given µ
(l)
η (see (8)). These simplifications are used by FRK whenever possible.

Convergence of the EM algorithm is assessed using the (incomplete-data) log-likelihood function at each
iteration,

ln
[
Z | α(l),K(l), (σ2

ξ )
(l)
]
= −

m

2
ln 2π −

1

2
ln
∣∣∣Σ(l)

Z

∣∣∣− 1

2
(Z−TZα

(l))⊤(Σ
(l)
Z )−1(Z−TZα

(l)),

where
Σ

(l)
Z = SZK

(l)S⊤
Z +D

(l)
Z ,

and recall that D
(l)
Z ≡ (σ2

ξ )
(l)Vξ,Z +Σϵ. Efficient computation of the log-likelihood is facilitated through the

use of the Sherman–Morrison–Woodbury matrix identity and a matrix-determinant lemma [e.g., Henderson
and Searle, 1981]. Specifically, the operations

(
Σ

(l)
Z

)−1

=
(
D

(l)
Z

)−1

−
(
D

(l)
Z

)−1

SZ

[(
K(l)

)−1

+ S⊤
Z

(
D

(l)
Z

)−1

SZ

]−1

S⊤
Z

(
D

(l)
Z

)−1

,

∣∣∣Σ(l)
Z

∣∣∣ =
∣∣∣∣
(
K(l)

)−1

+ S⊤
Z

(
D

(l)
Z

)−1

SZ

∣∣∣∣
∣∣∣K(l)

∣∣∣
∣∣∣D(l)

Z

∣∣∣ ,

ensure that we only deal with vectors of length m and matrices of size r × r, where typically the fixed rank
r ≪ m, the dataset size.

2.3 Prediction

The prediction task is to make inference on the hidden Y -process over a set of prediction regions DP .
Consider the process {YP (B̃k) : k = 1, . . . , NP }, which is derived from the Y process and, similar to the
observations, is constructed using the BAUs {Ai : i = 1, . . . , N}. Here, NP is the number of areas at which
spatial prediction takes place, and is equal to |DP |. Then,

YP,k ≡ YP (B̃k) =

(∑N
i=1 Yiw̃ik∑N
i=1 w̃ik

)
; B̃k ∈ DP ,

where the weights are

w̃ik = |Ai|I(Ai ⊂ B̃k); i = 1, . . . , N ; k = 1, . . . , NP ; B̃k ∈ DP .

Define YP ≡ (YP,k : k = 1, . . . , NP )
⊤. Then, since each element in DP is the union of subsets of DG,

one can construct a matrix,

CP ≡

(
w̃ik∑N
l=1 w̃lk

: i = 1, . . . , N ; k = 1, . . . , NP

)
, (11)

the rows of which sum to 1, such that

YP = CPY = TPα+ SPη + ξP ,

where TP ≡ CPT, SP ≡ CPS, ξP ≡ CP ξ and var(ξP ) = σ2
ξVξ,P ≡ σ2

ξCPVξC
⊤
P . As with the observations,

the prediction regions {B̃k} may overlap. In practice, it may not always be possible for each B̃k to include
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entire BAUs. In this case, we assume that a prediction region contains a BAU if and only if the BAU centroid
lies within the region.

Let l∗ denote the EM iteration number at which convergence is deemed to have been reached. The final
estimates are then

µ̂η ≡ µ(l∗)
η , Σ̂η ≡ Σ(l∗)

η , α̂ ≡ α(l∗), K̂ ≡ K(l∗), σ̂2
ξ ≡ (σ2

ξ )
(l∗), and σ̂2

δ ≡ (σ2
δ )

(l∗).

Recall from Section 2.2 that the user needs to attribute fine-scale variation at the BAU level to either the
measurement process or the hidden process Y . This leads to the following two cases.

Case 1: σ2
ξ = 0 and estimate σ2

δ . The prediction vector ŶP and covariance matrix ΣYP |Z , corresponding

to the first two moments from the predictive distribution [YP | Z] when σ2
ξ = 0, are

ŶP ≡ E(YP | Z) = TP α̂+ SP µ̂η,

ΣYP |Z ≡ var(YP | Z) = SP Σ̂ηS
⊤
P .

Under the assumptions taken, [YP | Z] is a Gau(ŶP ,ΣYP |Z) distribution. Note that all calculations are
made after substituting in the EM-estimated parameters, and that σ̂2

δ is present in the estimated parameters.
Case 2: σ2

δ = 0 and estimate σ2
ξ (Default). To cater for arbitrary observation and prediction support,

we predict YP by first carrying out prediction over the full vector Y, that is, at the BAU level, and then
transforming linearly to obtain ŶP through the use of the matrix CP . It is easy to see that if Ŷ is an
optimal (squared-error-loss matrix criterion) predictor of Y, then AŶ is an optimal predictor of AY, where
A is any matrix with N columns.

Let W ≡ (η⊤, ξ⊤)⊤ and Π ≡ (S, I). Then (5) can be re-written as Y = Tα+ΠW, and

Ŷ ≡ E(Y | Z) = Tα̂+ΠŴ,

ΣY |Z ≡ var(Y | Z) = ΠΣWΠ⊤, (12)

for

Ŵ ≡ ΣWΠ⊤C⊤
ZΣ

−1
ϵ (Z−TZα̂),

ΣW ≡
(
Π⊤C⊤

ZΣ
−1
ϵ CZΠ+Λ−1

)−1
,

and the block-diagonal matrix Λ ≡ bdiag(K̂, σ̂2
ξVξ), where bdiag(·) returns a block diagonal matrix of its

matrix arguments. Note that all calculations are made after substituting in the EM-estimated parameters.
For both Cases 1 and 2 it follows that ŶP = E(YP | Z) = CP Ŷ and

ΣYP |Z = var(YP | Z) = CPΣY |ZC
⊤
P . (13)

Note that for Case 2 we need to obtain predictions for ξP which, unlike those for η, are not a by-product
of the EM algorithm of 2.2. Sparse-matrix operations are used to facilitate the computation of (13) when
possible.

3 Fixed Rank Kriging on R
2 or S

2

In this part of the vignette we apply FRK to the case when we have spatial data, either on the plane or
on the surface of a sphere. For 2D data on the plane, we consider the meuse data, which can be found in
the package sp. For data on the sphere we will use readings taken between May 01 2003 and May 03 2003
(inclusive) by the Atmospheric InfraRed Sounder (AIRS) on board the Aqua satellite [e.g., Chahine et al.,
2006]. For spatial modelling of the data we need to load the following packages
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library(sp) # for defining points/polygons

library(ggplot2) # for plotting

library(dplyr) # for easy data manipulation

library(FRK) # for carrying out FRK

and, to keep the document tidy, we will set the progress package option to FALSE. Parallelisation is frequently
used in FRK, but for the purposes of this document we will set the parallel option to 0 as well.

opts_FRK$set("progress",FALSE) # no progress bars

opts_FRK$set("parallel",0L) # no parallelisation

In this vignette we go through the ‘expert’ way of using FRK. There is also a simple way through the
command FRK which serves as a wrapper for, and masks, several of the steps below; see help(FRK) for details.
Usage of FRK is only recommended once the steps below are understood.

3.1 The meuse dataset

The meuse dataset contains readings of heavy-metal abundance in a region of The Netherlands along the
river Meuse. For more details on the dataset see the vignette titled ‘gstat’ in the package gstat. The aim of
this vignette is to analyse the spatial distribution of zinc-concentration from spatially sparse readings using
FRK.

Step 1: We first load the meuse data:

data(meuse) # load meuse data

print(class(meuse)) # print class of meuse data

## [1] "data.frame"

The meuse data is of class data.frame. However, FRK needs all spatial objects to be of class SpatialPointsDataFrame
or SpatialPolygonsDataFrame, depending on whether the dataset is point-referenced of area-referenced.
The meuse data is point referenced, and we therefore cast it into a SpatialPointsDataFrame by applying
the coordinates function as follows:

coordinates(meuse) = ~x+y # change into an sp object

Step 2: Based on the data we now generate BAUs. For this, we can use the helper function auto BAUs:

set.seed(1)

GridBAUs1 <- auto_BAUs(manifold = plane(), # 2D plane

cellsize = c(100,100), # BAU cellsize

type = "grid", # grid (not hex)

data = meuse, # data around which to create BAUs

convex=-0.05, # border buffer factor

nonconvex_hull=FALSE) # convex hull

The auto BAUs function takes several arguments (see help(auto BAUs) for details). Above, we instruct the
helper function to construct BAUs on the plane, centred around the data meuse with each BAU of size
100 × 100 (with units in m since the data is supplied with x-y coordinates in m). The type="grid" input
instructs that we want a rectangular grid and not a hexagonal lattice (use "hex" for a hexagonal lattice), and
convex=-0.05 is a specific parameter controlling the buffer-width of the spatial-domain boundary. The name
‘convex’ was chosen as it is also used to control the buffer in case a non-convex hull is desired by setting
nonconvex hull=TRUE (see fmesher::fm nonconvex hull inla for more details and note that fmesher

needs to be installed for this option to be set). For the ith BAU, we also need to attribute the element vi
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Figure 1: (a) Locations of the meuse data. (b) BAUs for Fixed Rank Kriging with the meuse dataset.

that describes the hetereoscedascity of the fine-scale variation for that BAU. As described in Section 2.1, this
component encompasses all process variation that occurs at the BAU scale and only needs to be known up
to a constant of proportionality, σ2

ξ or σ2
δ (depending on the chosen model); this constant is estimated using

maximum likelihood with SRE.fit using the EM algorithm of Section 2.2. Typically, geographic features
such as altitude are appropriate, but in this case we will just set this parameter to unity. It is important
that this field is labelled ‘fs’:

GridBAUs1$fs <- 1 # fine-scale variation at BAU level

The data and BAUs are illustrated using the plot function in Fig. 1.

Step 3: FRK decomposes the spatial process as a sum of basis functions that may either be user-specified
(see Section 5.3) or constructed using helper functions. To create spatial basis functions we use the helper
function auto basis as follows:

G <- auto_basis(manifold = plane(), # 2D plane

data = meuse, # meuse data

nres = 2, # number of resolutions

type = "Gaussian", # type of basis function

regular = 1) # place regularly in domain

The argument nres = 3 indicates how many resolutions we wish, while type = "Gaussian" indicates that
the basis set we want is composed of Gaussian functions. Other built-in functions that can be used are
"exp" (the exponential covariance function), "bisquare" (the bisquare function), and "Matern32" (the
Matérn covariance function with smoothness parameter equal to 1.5). The argument regular indicates that
we want to place the basis functions regularly in the domain. Usually better results can be achieved by
placing them irregularly in the domain. For this functionality the mesher in the package fmesher is used
and thus fmesher needs to be installed when regular = 0. The basis can be visualised using show basis,
see Fig. 2.

show_basis(G) + # illustrate basis functions

coord_fixed() + # fix aspect ratio

xlab("Easting (m)") + # x-label

ylab("Northing (m)") # y-label
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Figure 2: Basis functions automatically generated for the meuse dataset with 2 resolutions. The interpre-
tation of the circles change with the domain and basis. For Gaussian functions on the plane, each circle is
centred at the basis function centre, and has a radius equal to 1σ. Type help(auto basis) for details.

Step 4: With the BAUs and the basis functions specified, we can construct the SRE model. For fixed
effects, we just use an intercept; if we wish to use covariates, one must make sure that they are also specified
at the BAU level (and hence attributed to GridBAUs1). The fixed effects are supplied in a usual R formula,
which we store in f:

f <- log(zinc) ~ 1 # formula for SRE model

The Spatial Random Effects model is then constructed using the function SRE, which essentially bins the
data in the BAUs, constructs all the matrices required for estimation, and provides initial guesses for the
quantities that need to be estimated.

S <- SRE(f = f, # formula

data = list(meuse), # list of datasets

BAUs = GridBAUs1, # BAUs

basis = G, # basis functions

est_error = TRUE, # estimation measurement error

average_in_BAU = FALSE) # do not average data over BAUs

The function SRE takes as arguments the formula; the data (as a list that can include additional datasets);
the BAUs; the basis functions; a flag; est error; and a flag average in BAU. The flag est error indicates
whether we wish to attempt to estimate the measurement-error variance Σϵ ≡ σ2

ϵ I or not using variogram
methods [Kang et al., 2009]. Currently, est error = TRUE is only allowed with spatial data. When not set,
the dataset needs to also contain a field std, the standard deviation of the measurement error.

In practice, several datasets (such as the meuse dataset) are point-referenced. Since FRK is built on the
concept of a Basic Areal Unit, the smallest footprint of an observation has to be equal to that of a BAU.
If multiple point-referenced observations fall within the same BAU, then these are assumed to be readings
of the same random variable (hence, the fine-scale variation is not a nugget in the classical sense). When
multiple data points can fall into the same BAU, the matrix VZ is not diagonal; this increases computational
time considerably. For large point-referenced datasets, such as the AIRS dataset considered in Section 3.2,
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Figure 3: Convergence of the EM algorithm when using FRK with the meuse dataset.

one can use the argument average in BAU = TRUE to indicate that one wishes to summarise the data at
the BAU level. When this flag is set, all data falling into one BAU is averaged; the measurement error of
the averaged data point is then taken to be the average measurement error of the individual data points
(i.e., measurement error is assumed to be perfectly correlated within the BAU). Consequently, the dataset
is thinned; this can be used to obtain quick results prior to a more detailed analysis.

Step 5: The SRE model is fitted using the function SRE.fit. Maximum likelihood is carried out using
the EM algorithm of Section 2.2, which is assumed to have converged either when n EM is exceeded, or
when the likelihood across subsequent steps does not change by more than tol. In this example, the EM
algorithm would converge in 30 iterations but we limit the maximum number of iterations to 10 to minimise
compilation-time of this vignette; see Fig. 3.

S <- SRE.fit(S, # SRE model

n_EM = 10, # max. no. of EM iterations

tol = 0.01, # tolerance at which EM is assumed to have converged

print_lik=TRUE) # print log-likelihood at each iteration

Step 6: Finally, we predict at all the BAUs with the fitted model. This is done using the function predict.
The argument obs fs dictates whether we attribute the fine-scale variation to the process model or the
observation model (in which case it takes the role of systematicerror). Below, we allocate it to the process
model.

GridBAUs1 <- predict(S, obs_fs = FALSE)

The object GridBAUs1 now contains the prediction vector and the square of the prediction standard error
at the BAU level in the fields mu and var, respectively. These can be plotted using the standard plotting
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commands, such as those in sp or ggplot2. To use the latter, we first need to convert the Spatial object to
a data frame as follows:

BAUs_df <- as(GridBAUs1,"data.frame")

The function SpatialPolygonsDataFrame to df takes as argument the BAUs and the variables we wish to
extract from the BAUs. Now ggplot2 can be used to plot the observations, the predictions, and the standard
errors; for example, the following code yields the plots in Fig. 4.

g1 <- ggplot() + # Use a plain theme

geom_tile(data=BAUs_df , # Draw BAUs

aes(x,y,fill=mu), # Colour <-> Mean

colour="light grey") + # Border is light grey

scale_fill_distiller(palette="Spectral", # Spectral palette

name="pred.") + # legend name

geom_point(data=data.frame(meuse), # Plot data

aes(x,y,fill=log(zinc)), # Colour <-> log(zinc)

colour="black", # point outer colour

pch=21, size=3) + # size of point

coord_fixed() + # fix aspect ratio

xlab("Easting (m)") + ylab("Northing (m)") + # axes labels

theme_bw()

g2 <- ggplot() + # Similar to above but with s.e.

geom_tile(data=BAUs_df,

aes(x,y,fill=sqrt(var)),

colour="light grey") +

scale_fill_distiller(palette="BrBG",

name = "s.e.",

guide = guide_legend(title="se")) +

coord_fixed() +

xlab("Easting (m)") + ylab("Northing (m)") + theme_bw()

Now, assume that we wish to predict over regions encompassing several BAUs such that the matrix CP

containes multiple non-zeros per row. Then we need to set the newdata argument in the function auto BAUs.
First, we create this larger regionalisation as follows

Pred_regions <- auto_BAUs(manifold = plane(), # model on the 2D plane

cellsize = c(600,600), # choose a large grid size

type = "grid", # use a grid (not hex)

data = meuse, # the dataset on which to center cells

convex=-0.05, # border buffer factor

nonconvex_hull=FALSE) # convex hull

and carry out prediction on the larger polygons:

Pred_regions <- predict(S, newdata = Pred_regions) # prediction polygons

The prediction and its standard error can be visualised as before. These plots are shown in Fig. 5.

Point-level data and predictions

In many cases, the user has one data object or data frame containing both observations and prediction
locations with accompanying covariates. Missing observations are then usually denoted as NA. Since in FRK
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Figure 4: Inference at the BAU level using FRK with the meuse dataset. (a) FRK prediction. (b) FRK
prediction standard error.

all covariates are associated with the process, and not the data, the data frame needs to be used to construct
(i) a data object without missing values and one that does not contain covariates, and (ii) BAUs at both the
observation and prediction locations containing all the covariate locations.

For example, assume we are missing the first 10 points in the meuse dataset.

data(meuse)

meuse[1:10,"zinc"] <- NA

The data object we should use with FRK must not contain the missing values, nor the covariates we will use
in the model. Once the data frame is appropriately subsetted, it is then cast as a SpatialPointsDataFrame

as usual.

meuse2 <- subset(meuse,!is.na(zinc))

meuse2 <- meuse2[,c("x","y","zinc")]

coordinates(meuse2) <- ~x+y

The BAUs, on the other hand, should contain all the data and prediction locations, but not the data itself.
Their construction is facilitated by the function BAUs from points which constructs tiny BAUs around the
data and prediction locations.

meuse$zinc <- NULL

coordinates(meuse) <- c("x","y")

meuse.grid2 <- BAUs_from_points(meuse)
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Figure 5: Prediction and prediction standard error obtained with FRK from the meuse dataset over arbitrary
polygons. Both quantities are logs of ppm.

Once the complete-data data frame and the BAUs are constructed from the original data frame, FRK may
proceed as shown above. Note that predictions are made at both the unobserved and unobserved locations.

3.2 The AIRS dataset

Modelling on the sphere proceeds in a very similar fashion to the plane, except that a coordinate reference
system (CRS) on the surface of the sphere needs to be declared for the data. This is implemented using a
CRS object with string "+proj=longlat +ellps=sphere".

Step 1: Fifteen days of AIRS data in May 2003 are included with FRK and these can be loaded through the
data command:

data(AIRS_05_2003) ## Load data

We next subset the data to include only the first three days, rename co2std to std (since this is what is
required by FRK to identify the standard deviation of the measurement error), and select the columns that
are relevant for the study. Finally we assign the CRS object:

AIRS_05_2003 <-

dplyr::filter(AIRS_05_2003,day %in% 1:3) %>% # only first three days

dplyr::mutate(std=co2std) %>% # change std to have suitable name

dplyr::select(lon,lat,co2avgret,std) # select columns we actually need

coordinates(AIRS_05_2003) = ~lon+lat # change into an sp object

slot(AIRS_05_2003, "proj4string") =
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(a) (b)

Figure 6: BAUs and basis functions used in modelling and predicting with the AIRS data. (a) BAUs are the
ISEA3H hexagons at resolution 5. (b) Basis function centroids constructed using the function auto basis.

CRS("+proj=longlat +ellps=sphere") # unprojected coordinates on sphere

Step 2: The next step is to create BAUs on the sphere. This is done, again, using the auto BAUs function but
this time with the manifold specified to be the sphere. We also specify that we wish the BAUs to form an ISEA
Aperture 3 Hexagon (ISEA3H) discrete global grid (DGG) at resolution 6. Resolutions 0–6 are included with
FRK; for higher resolutions please install the package dggrids from https://github.com/andrewzm/dggrids.
By default, this will create a hexagonal grid on the sphere. However, it is possible to have a rectangular
lattice by using type = "grid" and specifying the cellsize as in Section 3.1; see Section 4.2. An example
of an ISEA3H grid, at resolution 5, is shown in Fig. 6.

isea3h_sp_poldf <- auto_BAUs(manifold = sphere(), # model on sphere

isea3h_res = 6, # isea3h resolution 6 BAUs

type = "hex", # hexagonal grid

data = AIRS_05_2003) # remove BAUs where there is not data

isea3h_sp_poldf$fs = 1 # fine-scale component

Step 3: Now we construct the basis functions, this time of type "bisquare" with two resolutions (three
would be better, but for computational reasons we leave it at two).

G <- auto_basis(manifold = sphere(), # basis functions on the sphere

data=AIRS_05_2003, # AIRS data

nres = 2, # number of resolutions

type = "bisquare") # bisquare function

Steps 4–5: Since CO2 mole fraction has a latitudinal gradient, we use latitude as a covariate in our model.
The SRE object is then constructed in the same way as Section 3.1, but this time we set est error = FALSE
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since the measurement error is supplied with the data. When multiple data points fall into the same BAU,
we assume that each of these data points are conditionally independent readings of the process in the BAU.
The matrix VZ is therefore not diagonal and this increases computational time considerably. For large point-
referenced datasets, such as the AIRS dataset, one can leave the argument average in BAU = TRUE set (by
default) to indicate that one wishes to summarise the data at the BAU level. Below, and in all subsequent
analyses, we set the maximum number of EM iterations n EM = 1 so as to reduce the computational time
of the vignette:

f <- co2avgret ~ lat + 1 # formula for fixed effects

S <- SRE(f = f, # formula for fixed effects

list(AIRS_05_2003), # list of data objects

basis = G, # basis functions

BAUs = isea3h_sp_poldf, # BAUs

est_error = FALSE, # do not estimate meas. error

average_in_BAU = TRUE) # summarise data

S <- SRE.fit(S, # SRE model

n_EM = 1, # max. no. of EM iterations

tol = 0.01, # tolerance at which EM is assumed to have converged

print_lik=FALSE) # do not print log-likelihood at each iteration

Step 6: We now predict at the BAU level but this time ensure that obs fs = TRUE, which indicates that
we are forcing σ2

ξ to be zero and that the observations have systematic error. Maps of the FRK prediction
generated with this flag set are rather smooth (since the basis functions adopted tend to be smooth) and
the prediction standard error tends to be higher compared to what one would obtain when setting obs fs

= FALSE.

isea3h_sp_poldf <- predict(S) # fs variation is in the observation model

The prediction and prediction standard error maps, together with the observation data, are shown in
Figs. 7–9.

4 Fixed Rank Kriging in space and time

Although FRK is primarily designed for spatial data, it also has functionality for modelling and predicting
with spatio-temporal data. The functionality in the software is limited in some respects; in particular,
temporal change of support is not possible, and estimation of the standard deviation of the measurement
error is not implemented. These features will be implemented in future revisions.

Fixed Rank Kriging is space and time is different from Fixed Rank Filtering [Cressie et al., 2010] where
a temporal auto-regressive structure is imposed on the basis-function weights {ηt}, and where subsequently
Kalman filtering and Rauch-Tung-Striebel smoothing are used for inference on {ηt}. In FRK, the basis
functions also have a temporal dimension; the only new aspect is specifying these space-time basis functions.

We illustrate FRK in space and time using two datasets. The first dataset we consider was obtained from
the National Oceanic and Atmospheric Administration (NOAA), and we will term it the NOAA dataset. This
dataset is included in FRK, and it contains daily observations of maximum temperature (Tmax) in degrees
Fahrenheit at 138 stations in the US between between 32N–46N and 80W–100W, recorded between the years
1990 and 1993 (inclusive); see Fig. 10. We will only consider the 31 maximum temperatures recorded in
July 1993 in this vignette. The second dataset we use is the same AIRS dataset referred to in Section 3.2. In
Section 3.2 only the first 3 days were used to illustrate spatial-only FRK; we now use all 15 days to illustrate
spatio-temporal FRK.

For creating spatio-temporal objects used by FRK we need to load the spacetime package:
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Figure 7: CO2 mole-fraction readings in ppm from the AIRS.

Figure 8: Prediction of YP in ppm following FRK on the AIRS data.

library(spacetime)

4.1 The NOAA dataset

Step 1: We load the dataset and extract the data for July 1993 using the commands
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Figure 9: Prediction standard error of YP in ppm following FRK on the AIRS data.

data("NOAA_df_1990") # load data

Tmax <- subset(NOAA_df_1990, # subset the data

month %in% 7 & # May to July

year == 1993) # year of 1993

To construct a spatio-temporal object, one must first define the temporal component as a Date object by
stringing the year, month and day together:

Tmax <- within(Tmax,

{time = as.Date(paste(year,month,day,sep="-"))}) # create Date field

Since the data is point-referenced, we need to cast our data into a ‘spatio-temporal irregular data frame’,
STIDF; refer to the vignette JSS816 for various ways to do this. One of the most straightforward approaches
is to use the function stConstruct in the package spacetime. The function needs to be supplied along with
the data, the names of the spatial coordinates field, the name of the Date field, and a flag indicating whether
the data can be treated as having been recorded over the temporal interval and not at the specific instant
recorded in time (in our case interval=TRUE).

STObj <- stConstruct(x = Tmax, # dataset

space = c("lon","lat"), # spatial fields

time="time", # time field

interval=TRUE) # time reflects an interval

Unlike for the spatial-only case, the standard deviation of the measurement error needs to be specified. In
this case, we conservatively set it to be 2 degrees Fahrenheit, although it is likely to be much less in practice.
We also treat the data as being on R

2 (that is, where space is the plane; we consider space-time data where
space is the surface of a sphere in Section 4.2):

STObj$std <- 2
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Figure 10: Station locations from which the maximum temperature readings in the NOAA dataset were
obtained.

Step 2: When dealing with spatio-temporal data, the BAUs are space-time regular lattices, which are
classified in spacetime as a ‘spatio-temporal fixed data frame’, STFDF; type help(STFDF) for details. STFDF
objects may be constructed manually or by using the helper function auto BAUs. In the following, the helper
function is used to construct BAUs in a space-time cube, centred around the data STObj, with each BAU
of size 1 deg. latitude × 1 deg. longitude × 1 day. The new arguments here are manifold = STplane(),
which indicates that we are going to model a spatio-temporal field on the 2D plane, and tunit = "days",
which indicates that each BAU has a temporal ‘width’ equal to one day. Once again, we specify the fine-scale
component to be homoscedastic:

grid_BAUs <- auto_BAUs(manifold=STplane(), # spatio-temporal process on the plane

data=STObj, # data

cellsize = c(1,1,1), # BAU cell size

type="grid", # grid or hex?

convex=-0.1, # parameter for hull construction

tunit="days", # time unit

nonconvex_hull=FALSE) # convex hull

grid_BAUs$fs = 1 # fine-scale variation

Step 3: The simplest way to construct spatio-temporal basis functions is to first construct spatial basis
functions, then temporal basis functions, and then combine them by taking their tensor product. To construct
spatial basis functions, we first project the spatio-temporal data onto the spatial domain (collapse out time)
using as(STObj,"Spatial"), and then construct spatial basis function using auto basis:

G_spatial <- auto_basis(manifold = plane(), # spatial functions on the plane

data=as(STObj,"Spatial"), # remove the temporal dimension

nres = 1, # three resolutions

type = "bisquare", # bisquare basis functions

regular = 1) # regular basis functions

For the temporal basis functions, we use the function local basis, which gives the user more control over
the location parameters and the scale parameters of the basis functions. In this case we specify that we want
basis functions on the real line, located between t = 2 and t = 28 at an interval spacing of 4. Here, each
location represents a temporal interval used in the construction of grid BAUs; for example, t = 1 corresponds
to 1993-07-01, t = 5 to 1993-07-05, and so on.
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Figure 11: Spatial and temporal basis functions used to construct the spatio-temporal basis functions. (a)
Spatial support of the bisquare spatial basis functions. (b) The temporal basis functions.

print(head(grid_BAUs@time)) # show time indices

## timeIndex

## 1993-07-01 1

## 1993-07-02 2

## 1993-07-03 3

## 1993-07-04 4

## 1993-07-05 5

## 1993-07-06 6

G_temporal <- local_basis(manifold = real_line(), # functions on the real line

type = "Gaussian", # Gaussian functions

loc = matrix(seq(2,28,by=4)), # locations of functions

scale = rep(3,7)) # scales of functions

The basis functions can be visualised using show basis. The generated basis functions are shown in Figure
11:

basis_s_plot <- show_basis(G_spatial) + xlab("lon (deg)") + ylab("lat (deg)")

basis_t_plot <- show_basis(G_temporal) + xlab("time index") + ylab(expression(phi(t)))

The spatio-temporal basis functions are then constructed using the function TensorP as follows:

G <- TensorP(G_spatial,G_temporal) # take the tensor product

Steps 4–6: We next construct the SRE model, using an intercept and latitude as fixed effects, STObj as
the data, G as the set of basis functions, and grid BAUs as the BAUs. We also specify est error = FALSE
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since this functionality is currently not implemented for spatio-temporal data. The SRE model is then fitted
using the familiar command SRE.fit and prediction is carried out using predict:

f <- z ~ 1 + lat # fixed effects part

S <- SRE(f = f, # formula

data = list(STObj), # data (can have a list of data)

basis = G, # basis functions

BAUs = grid_BAUs, # BAUs

est_error = FALSE) # do not estimate measurement-error variance

S <- SRE.fit(S, # estimate parameters in the SRE model S

n_EM = 1, # maximum no. of EM iterations

tol = 0.1, # tolerance on log-likelihood

print_lik=FALSE) # print log-likelihood trace

grid_BAUs <- predict(S, obs_fs = FALSE)

Plotting proceeds precisely the same way as in Section 3.1, however now we need to convert the spatial
polygons at multiple time points to data frames. This can be done by simply iterating through the time
points we wish to visualise. In the following, we extract a data frame for the BAUs on days 1, 4, 8, 12, 16, and
20. The prediction and the prediction standard error are shown in Figs. 12 and 13, respectively. Note how
the prediction has both smooth and fine-scale components. This is expected, since fine-scale variation was,
this time, included in the prediction. Note also that the BAUs we used are not located everywhere within the
square domain of interest. This is because the auto BAUs function carefully chooses a (non-square) domain
in an attempt to minimise the number of BAUs needed. This can be adjusted by changing the convex

parameter in auto BAUs.

analyse_days <- c(1,4,8,12,16,20) # analyse only a few days

df_st <- lapply(analyse_days, # for each day

function(i)

as(grid_BAUs[,i],"data.frame") %>%

cbind(day = i)) # add day number to df

df_st <- do.call("rbind",df_st) # append all dfs together

In order to model the NOAA dataset on a subset of the sphere, we first need to associate an appropriate
Coordinate Reference System with STObj,

proj4string(STObj) <- "+proj=longlat +ellps=sphere"

and then adjust the BAUs and basis functions used. This entails using STsphere() instead of STplane()
in BAU construcation and sphere() instead of plane() in spatial-basis-function construction.

grid_BAUs <- auto_BAUs(manifold=STsphere(), # spatio-temporal process on the sphere

data=STObj, # data

cellsize = c(1,1,1), # BAU cell size

type="grid", # grid or hex?

convex=-0.1, # parameter for hull construction

tunit="days") # time unit

## Spherical geometry (s2) switched off

## although coordinates are longitude/latitude, st overlaps assumes that they are

## planar

## although coordinates are longitude/latitude, st intersects assumes that they

## are planar
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Figure 12: Spatio-temporal FRK prediction of Tmax on the plane in degrees Fahrenheit within a domain
enclosing the region of interest for six selected days spanning the temporal window of the data: 01 July 1993
– 20 July 2003.
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Figure 13: Spatio-temporal FRK prediction standard error of Tmax on the plane in degrees Fahrenheit within
a domain enclosing the region of interest for the same six days selected in Fig. 12 and spanning the temporal
window of the data, 01 July 1993 – 20 July 2003.

G_spatial <- auto_basis(manifold = sphere(), # spatial functions on the plane

data=as(STObj,"Spatial"), # remove the temporal dimension

nres = 2, # two resolutions of DGG

type = "bisquare", # bisquare basis functions
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Figure 14: Basis functions for FRK on the sphere with the NOAA dataset using two ISEA3H DGGs for
location parameters of the basis functions.

prune=15, # prune basis functions

isea3h_lo = 4) # but remove those lower than res 4

## NOTE: Zero process variability is implicitly enforced in regions where basis functions are pruned. Please

Recall that when calling auto basis on the sphere, basis functions are automatically constructed at
locations specified by the DGGs. In the code given above, we use the first six resolutions (resolutions 0 –
5) of the DGGs but discard resolutions less than 4 by using the argument isea3h lo = 4. The prune=15

argument behaves as above on the basis functions at these higher resolutions. The basis functions constructed
using this code are shown in Fig. 14. We provide more details on FRK on the sphere in Section 4.2.

4.2 The AIRS dataset

In this section we use spatio-temporal FRK on the sphere to obtain FRK predictions and prediction standard
errors of CO2, in ppm, between 01 May 2003 and 15 May 2003 (inclusive). To keep the package size small,
the dataset AIRS 05 2003 only contains data in these first 15 days of May 2003.

Step 1: First we load the dataset that is available with FRK:

data(AIRS_05_2003) # load AIRS data

and then rename co2std to std and attribute the time index t to the day number. We also use 20000 data
points chosen at random between 01 May 2003 and 15 May 2003 (inclusive) in order to keep the compilation
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time of the vignette low.

set.seed(1)

AIRS_05_2003 <- mutate(AIRS_05_2003, # take the data

std=co2std) %>% # rename std

sample_n(20000) # sample 20000 points

As with the NOAA dataset, we create a date field using as.Date

AIRS_05_2003 <- within(AIRS_05_2003,

{time = as.Date(paste(year,month,day,sep="-"))}) # create Date field

and construct the spatio-temporal object (STIDF) using stConstruct:

STObj <- stConstruct(x = AIRS_05_2003, # dataset

space = c("lon","lat"), # spatial fields

time ="time", # time field

crs = CRS("+proj=longlat +ellps=sphere"), # CRS

interval=TRUE) # time reflects an interval

Step 2: We next construct the BAUs. This time we specify STsphere() for the manifold, and for illustration
we discretise the sphere using a regular grid rather than a hexagonal lattice. To do this we set a cellsize

and specify type="grid". We also supply time(STObj) so that the BAUs are constructed around the time
of the data; if we supply STObj instead, then BAUs are pruned spatially. We show the BAUs generated
using time(STObj) and STObj in Fig. 15.

## Prediction (BAU) grid

grid_BAUs <- auto_BAUs(manifold=STsphere(), # space-time field on sphere

data=time(STObj), # temporal part of the data

cellsize = c(5,5,1), # cellsize (5 deg x 5 deg x 1 day)

type="grid", # grid (not hex)

tunit = "days") # time spacing in days

grid_BAUs$fs = 1

Step 3: We next construct the spatio-temporal basis functions. This proceeds in exactly the same way as
in the NOAA dataset: We first construct spatial basis functions, then temporal basis functions, and then we
find their tensor product.

Since by default basis functions on the sphere are set the cover the whole globe, a restriction to the area
of interest needs to be enforced bt ‘pruning’ basis functions outside this region. Pruning is controlled by
the parameter prune. Another argument subsamp then dictates how many data points (chosen at random)
should be used when carrying out the pruning. In general, the higher nres, the higher subsamp should be
in order to ensure that high resolution basis functions are not omitted where data is actually available. The
argument subsamp need only be used when pruning with the entire dataset consumes a lot of resources. See
help(auto basis) for details.

G_spatial <- auto_basis(manifold = sphere(), # functions on sphere

data=as(STObj,"Spatial"), # collapse time out

nres = 1, # use three DGGRID resolutions

prune= 15, # prune basis functions

type = "bisquare", # bisquare basis functions

subsamp = 2000, # use only 2000 data points for pruning

isea3h_lo = 2) # start from isea3h res 2
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Figure 15: Gridded BAUs on the sphere used for modelling and predicting with the AIRS data. (a) BAUs
constructed when supplying only the temporal indices of the data (the entire sphere is covered with BAUs
within the specified time period). (b) BAUs constructed when supplying the entire dataset. The view of the
sphere is from the bottom; in this case there is no data below 60◦S and thus BAUs have been omitted from
this region.

## NOTE: Zero process variability is implicitly enforced in regions where basis functions are pruned. Please

G_temporal <- local_basis(manifold=real_line(), # functions on real line

loc = matrix(c(2,7,12)), # location parameter

scale = rep(3,3), # scale parameter

type = "Gaussian")

G_spacetime <- TensorP(G_spatial,G_temporal)

Steps 4–6: Finally, the SRE model is constructed and fitted as in the other examples. Recall that est error

= FALSE is required with spatio-temporal data and, since we have multiple data per BAU we also set
average in BAU = TRUE. For predicting, we use the pred time flag to indicate at which time points we
wish to predict; here the numbers correspond to the time indices of the BAUs. We specify pred time =

c(4,8,12), which indicates that we want to predict on the 4, 8 and 12 May 2003. The data, prediction, and
prediction standard error for these days are given in Figs. 16–18.

f <- co2avgret ~ lat +1 # formula for fixed effects

S <- SRE(f = f, # formula

data = list(STObj), # spatio-temporal object

basis = G_spacetime, # space-time basis functions

BAUs = grid_BAUs, # space-time BAUs

est_error = FALSE, # do not estimate measurement error

average_in_BAU = TRUE) # average data that fall inside BAUs

S <- SRE.fit(S, # SRE model
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Figure 16: CO2 readings taken from the AIRS on the 04, 08 and 12 May 2003 in ppm.

Figure 17: Prediction of YP in ppm on 04, 08, and 12 May 2003 obtained with FRK on the AIRS data.

Figure 18: Prediction standard error of YP in ppm on 04, 08 and 12 May 2003 obtained with FRK on the
AIRS data.

n_EM = 1, # max. EM iterations

tol = 0.01) # convergence criteria

grid_BAUs <- predict(S, obs_fs = TRUE, # fs variation is in obs. model

pred_time = c(4L,8L,12L)) # predict only at select days

5 Other topics

Sections 1–4 have introduced the core functionality of FRK. The purpose of this section is to present addi-
tional functionality that may be of use to the analyst.

5.1 Multiple observations with different supports

The main advantage of using BAUs is that one can make use of multiple datasets with different spatial
supports without any added difficulty. Consider the meuse dataset. We synthesise observations with a
large support by changing the meuse object into a SpatialPolygonsDataFrame, where each polygon is a
square of size 300 m × 300 m centred around the original meuse data point, and with the value of log-zinc
concentration taken as the block-average of the prediction in the previous analysis. Once this object is set
up, which we name meuse pols, the analysis proceeds in precisely the same way as in Section 3.1, but with
meuse pols used instead of meuse.
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Figure 19: Prediction and prediction standard error obtained with FRK using the meuse dataset where each
observation is assuming to have a spatial footprint of 300 m × 300m. (a) FRK prediction at the BAU level.
(b) FRK prediction standard error at the BAU level. The black hexagons outline the spatial footprints of
the data.

The prediction and the prediction standard error using meuse pols are shown in Fig. 19. In Fig. 19 (b)
we also overlay the footprints of the observations. Note how the observations affect the prediction standard
error in the BAUs and how BAUs which are observed by overlapping observations have lower prediction error
than those that are only observed once. As expected, the prediction standard error is, overall, considerably
higher than that in Fig. 4. Note also that the supports of the observations and the BAUs do not precisely
overlap. For simplicity, we assumed that an observation “influences” a BAU only if the centroid of the BAU
lies within the observation footprint. Refining this will require a more detailed consideration of the BAU
and observation footprint geometry and it will be considered in future revision.

5.2 Anisotropy: Changing the distance measure

So far we have only considered isotropic fields. Anisotropy can be easily introduced by changing the distance
measure associated with the manifold. To illustrate this, we simulate below a highly anisotropic, noisy,
spatio-temporal process on a fine grid in D = [0, 1] × [0, 1] and sample 1000 points chosen at random from
it. The process and the sampled data are shown in Fig. 20.

set.seed(1)

N <- 50

sim_process <- expand.grid(x = seq(0.005,0.995,by=0.01), # x grid

y = seq(0.001,0.995,by=0.01)) %>% # y grid

mutate(proc = cos(x*40)*cos(y*3) + 0.3*rnorm(length(x))) # anisotropic function
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Figure 20: FRK with anisotropic fields. (a) Simulated process. (b) Observed data.

sim_data <- sample_n(sim_process,1000) %>% # sample data from field

mutate(z = proc + 0.1*rnorm(length(x)), # add noise

std = 0.1, # with 0.1 std

x = x + runif(1000)*0.001, # jitter x locations

y = y + runif(1000)*0.001) # jitter y locations

coordinates(sim_data) = ~x + y # change into SpatialPoints

To create the modified distance measure, we note that the spatial frequency in x is approximately four
times that in y. Therefore, in order to generate anisotropy, we use a measure that scales x by 4. In FRK,
a measure object requires a distance function, and the dimension of the manifold on which it is used, as
follows:

scaler <- diag(c(4,1)) # scale x by 4

asymm_measure <- new("measure", # new measure object

dist=function(x1,x2=x1) # new distance function

FRK:::distR(x1 %*% scaler, # scaling of first point

x2 %*% scaler), # scaling of second point

dim=2L) # in 2D

The distance function used on the plane can be changed by assigning the object asymm measure to the
manifold:

TwoD_manifold <- plane() # Create R2 plane

TwoD_manifold@measure <- asymm_measure # Assign measure

We now generate a grid of basis functions (at a single resolution) manually. First, we create a 5 × 14
grid on D, which we will use as centres for the basis functions. We then call the function local basis to
construct bisquare basis functions centred at these locations with a range parameter (i.e., the radius in the
case of a bisquare) of 0.4. Due to the scaling used, this implies a range of 0.1 in x and a range of 0.4 in y.
Basis function number 23 is illustrated in Fig. 21.
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Figure 21: Basis function 23 of the 75 constructed to fit an anisotropic spatial field. Anisotropy is obtained
by changing the measure object of the manifold on which the basis function is constructed.

basis_locs <- seq(0,1,length=14) %>% # x locations

expand.grid(seq(0,1,length=5)) %>% # y locations

as.matrix() # convert to matrix

G <- local_basis(manifold = TwoD_manifold, # 2D plane

loc=basis_locs, # basis locations

scale=rep(0.4,nrow(basis_locs)), # scale parameters

type="bisquare") # type of function

From here on, the analysis proceeds in exactly the same way as shown in all the other examples. The
prediction and prediction standard error are shown in Fig. 22.

5.3 Customised basis functions and Basic Areal Units (BAUs)

The package FRK provides the functions auto BAUs and auto basis to help the user construct the BAUs
and basis functions based on the supplied data. These, however, could be done manually. When doing so it
is important that some rules are adhered to: The object containing the basis functions needs to be of class
Basis. This class contains 5 slots:

• dim: The dimension of the manifold.

• fn: A list of functions. By default, distances in these functions are attributed with a manifold, but
arbitrary distances can be used.

• pars: A list of parameters associated with each basis function. For the local basis functions used in
this vignette (constructed using auto basis or local basis), each list item is a list with fields loc

and scale where length(loc) is equal to the dimension of the manifold and length(scale) = 1.

• df: A data frame with number of rows equalling the number of basis functions, and containing auxiliary
information about the basis functions (e.g., resolution number).

• n: An integer equalling the number of basis functions.
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Figure 22: FRK using data generated by an anisotropic field. (a) FRK prediction. (b) FRK prediction
standard error.

There is no constructor yet for Basis, and the R command new needs to be used to create this object from
scratch.

There are less restrictions for constructing BAUs; they need to be stored as a SpatialPolygonsDataFrame
object, and the data slot of this object must contain

• All covariates used in the model.

• A field fs denoting the fine-scale variation.

• Fields that can be used to summarise the BAU as a point, typically the centroid of each polygon.
The names of these fields need to equal those of the coordnames(BAUs) (typically c("x","y") or
c("lon","lat")).

6 Future work

There are a number of important features that remain to be implemented in future revisions, some of which
are listed below:

• Currently, FRK is designed to work with local basis functions with analytic form. However, the package
can also accommodate basis functions that have no known functional form, such as empirical orthogonal
functions (EOFs) and classes of wavelets defined iteratively; future work will attempt to incorporate
the use of such basis functions. Vanilla FRK (FRK-V), where the entire positive-definite matrix K is
estimated, is particularly suited to the former (EOF) case where one has very few basis functions that
explain a considerable amount of observed variability.

• There is currently no component of the model that caters for sub-BAU process variation, and each
datum that is point-referenced is mapped onto a BAU. Going below the BAU scale is possible, and
intra-BAU correlation can be incorporated if the covariance function of the process at the sub-BAU
scale is known [Wikle and Berliner, 2005].

• Most work and testing in FRK has been done on the real line, the 2D plane and the surface of the
sphere (S2). Other manifolds can be implemented since the SRE model always yields a valid spatial
covariance function, no matter the manifold. Some, such as the 3D hyperplane, are not too difficult
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to construct. Ultimately, it would be ideal if the user can specify his/her own manifold, along with a
function that can compute the appropriate distances on the manifold.

• Although designed for very large data, FRK begins to slow down when several hundreds of thousands
of data points are used. The flag average in BAU can be used to summarise the data and hence reduce
the size of the dataset, however it is not always obvious how the data should be summarised (and
whether one should summarise it in the first place). Future work will focus on providing the user with
different options for summarising the data.

• Currently all BAUs are assumed to be of equal area. This is not problematic in our case, since we use
equal-area icosahedral grids on the surface of the sphere, and regular grids on the real line and the
plane. However, a regular grid on the surface of the sphere, for example that shown in Figure 6, right
panel, is not an equal area grid and appropriate weighing should be used in this case when aggregating
to arbitrary polygons.

In summary, the package FRK is designed to address the majority of needs for spatial and spatio-temporal
prediction. In separate tests we found that the low-rank model used by the package has validity (accurate
coverage) in a big-data scenario when compared to high-rank models implemented by other packages such as
LatticeKrig and INLA. However, it is less efficient (larger root mean squared prediction errors) when data
density is high and the basis functions are unable to capture the spatial variability.

The development page of FRK is https://github.com/andrewzm/FRK. Users are encouraged to report
any bugs or issues relating to the package on this page.
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