This is an R package of the FTRL Proximal algorithm for online learning of elastic net logistic regression models.
For more info on the algorithm please see Ad Click Prediction: a View from the Trenches by McMahan et al. (2013).
Easiest way to install is from within R
using the latest CRAN version:
install.packages("FTRLProximal")
If you want the latest build from git you can install it directly from github using devtools
:
devtools::install_github("while/FTRLProximal")
Simplest use case is to use the model similar to normal glm with a model formula.
# Set up dataset
p <- mlbench::mlbench.2dnormals(100,2)
dat <- as.data.frame(p)
# Train model
mdl <- ftrlprox(classes ~ ., dat, lambda = 1e-2, alpha = 1, a = 0.3)
# Print resulting coeffs
print(mdl)
It is also possible to update the trained model object once it is trained.
# Set up first dataset
p <- mlbench.2dnormals(100,2)
dat <- as.data.frame(p)
# Convert data.frame to model.matrix
X <- model.matrix(classes ~ ., dat)
# Train on first dataset
mdl <- ftrlprox(X, dat$classes, lambda = 1e-2, alpha = 1, a = 0.3)
# Generate more of the same data after the first training session
p <- mlbench.2dnormals(100,2)
dat <- as.data.frame(p)
# Update model using the new data.
mdl <- update(mdl, X, dat$classes)
For more example please see the documentation.
lambda1
and lambda2
parameters to using lambda
and mixing parameter alpha
.Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.