# Estimation in a dual frame context 

A. Arcos, M. Rueda, M. G. Ranalli and D. Molina

December 12, 2015

## Contents

## 1 Introduction

2 Data description 2
3 Estimation with no auxiliary information 3
4 Estimation using frame sizes as auxiliary information 6
5 Estimation using frame and overlap domain sizes as auxiliary
information
6 Estimation using additional variables as auxiliary information

## 1 Introduction

Classic sampling theory usually assumes the existence of one sampling frame containing all finite population units. Then, a probability sample is drawn according to a given sampling design and information collected is used for estimation and inference purposes. But in practice, the assumption that the sampling frame contains all population units is rarely met.

Dual frame sampling approach solves this issue by assuming that two frames are available for sampling and that, overall, they cover the entire target population. The most common situation is the one represented in Figure 1 where the two frames, say frame $A$ and frame $B$, show a certain degree of overlapping, so it is possible to distinguish three disjoint non-empty domains: domain $a$, containing units belonging to frame $A$ but not to frame $B$; domain $b$, containing units belonging to frame $B$ but not to frame $A$ and domain $a b$, containing units belonging to both frames.

Then, independent samples $s_{A}$ and $s_{B}$ of size $n_{A}$ and $n_{B}$ are drawn from frame $A$ and frame $B$ and the information included is suitably combined to provide results.

This vignette shows the way package Frames2 operates and their wide options to work with data coming from a dual frame context.


Figure 1: Two frames with overlapping.

## 2 Data description

To illustrate how functions of the package operate, we will use data sets $D a t A$ and $D a t B$ (included in the package) as sample data from frame $A$ and frame $B$, respectively. Dat $A$ contains information about $n_{A}=105$ individuals selected through a stratified random sampling design from the $N_{A}=1735$ individuals composing frame $A$. Sample sizes by strata are $n_{h A}=(15,20,15,20,15,20)$. On the other hand, a simple random without replacement sample of $n_{B}=135$ individuals has been selected from the $N_{B}=1191$ included in frame $B$. The size of the overlap domain for this case is $N_{a b}=601$.

Let see the first three rows of each data set:

```
> library (Frames2)
> data(DatA)
> data(DatB)
> head (DatA, 3)
\begin{tabular}{lrrrrrrrrrr} 
& Domain & Feed & Clo & Lei & Inc & Tax & M2 & Size & ProbA & ProbB \\
1 & a & 194.48 & 38.79 & 23.66 & 2452.07 & 112.90 & 0.00 & 0 & 0.02063274 & 0.0000000 \\
2 & a 250.23 & 16.92 & 22.68 & 2052.37 & 106.99 & 0.00 & 0 & 0.02063274 & 0.0000000 \\
3 & ab & 199.95 & 24.50 & 23.24 & 2138.24 & 121.16 & 127.41 & 2 & 0.02063274 & 0.1133501
\end{tabular}
```

Each data set incorporates information about three main variables: Feeding, Clothing and Leisure. Additionally, there are two auxiliary variables for the
units in frame $A$ (Income and Taxes) and another two variables for units in frame $B$ (Metres2 and Size). Corresponding totals for these auxiliary variables are assumed known in the entire frame and they are $T_{\text {Inc }}^{A}=4300260, T_{\text {Tax }}^{A}=$ $215577, T_{M 2}^{B}=176553$ and $T_{\text {Size }}^{B}=3529$. Finally, a variable indicating the domain each unit belongs to and two variables showing the first order inclusion probabilities for each frame complete the data sets.

Numerical square matrices PiklA and PiklB (also included in the package), with dimensions $n_{A}=105$ and $n_{B}=135$, are used as probability inclusion matrices. These matrices contains second order inclusion probabilities and first order inclusion probabilities as diagonal elements.

## 3 Estimation with no auxiliary information

When there is no further information than the one on the variables of interest, one can calculate some estimators, as Hartley $(1962,1974)$ or Fuller-Burmeister (1972) estimators

```
> data(PiklA)
> data(PiklB)
> yA <- with(DatA, data.frame(Feed, Clo, Lei))
> yB <- with(DatB, data.frame(Feed, Clo, Lei))
> Hartley(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain)
Estimation:
            Feed Clo Lei
Total 586959.9820 71967.62214 53259.86947
Mean 246.0429 30.16751 22.32556
> FB(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain)
Estimation:
    Feed Clo Lei
Total 591665.5078 72064.99223 53034.09810
Mean 248.0153 30.20832 22.23092
```

Results show, by default, estimations for the population total and mean for the considered variables. If only first order inclusion probabilities are available, estimates can also be computed

```
> Hartley(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)
Estimation:
    Feed Clo Lei
Total 570867.8042 69473.86532 51284.2727
Mean 247.9484 30.17499 22.2746
> FB(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)
```

```
Estimation:
    Feed Clo Lei
Total 571971.9511 69500.11448 51210.03819
Mean 248.4279 30.18639 22.24236
```

Further information about estimation process (as variance estimations or values of parameters involved in estimation, if any) can be displayed by using function summary

```
> summary(Hartley(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain,
+ DatB$Domain))
Call:
Hartley(ysA = yA, ysB = yB, pi_A = DatA$ProbA, pi_B = DatB$ProbB,
    domains_A = DatA$Domain, domains_B = DatB$Domain)
Estimation:
                Feed Clo Lei
Total 570867.8042 69473.86532 51284.2727
Mean 247.9484 30.17499 22.2746
Variance Estimation:
Feed Clo Lei
```

Var. Total 9.050344e+08 1.550443e+07 6.977928e+06
Var. Mean $1.707326 \mathrm{e}+022.924874 \mathrm{e}+001.316370 \mathrm{e}+00$
Total Domain Estimations:
Feed Clo Lei
Total dom. a 263233.131476 .8422839 .95
Total dom. ab 166651.721494 .9615984 .64
Total dom. b 164559.220451 .8515693 .59
Total dom. ba 128704.715547 .4911112 .38
Mean Domain Estimations:
Feed Clo Lei
Mean dom. a 251.813330 .1112921 .84909
Mean dom. ab 241.646831 .1679223 .17791
Mean dom. b 242.244330 .1067523 .10221
Mean dom. ba 251.529130 .3846621 .71707
Parameters:
Feed Clo Lei
theta $0.37870750 .3358878 \quad 0.3362615$

Results slightly change when a confidence interval is required. In that case, user has to indicate the confidence level desired for the interval through argument conf_level (default is NULL) and add it to the list of input parameters.

In this case, default output will show 6 rows for each variable, lower and upper boundaries for confidence intervals are displayed together with estimates. So, one can obtain a $95 \%$ confidence interval for estimations computed using Hartley and Fuller-Burmeister estimators in this way

```
> Hartley(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain,
+ DatB$Domain, 0.95)
Estimation and 95 % Confidence Intervals:
    Feed Clo Lei
Total 570867.8042 69473.86532 51284.27265
Lower Bound 511904.6588 61756.37677 46106.87729
Upper Bound 629830.9496 77191.35387 56461.66802
\begin{tabular}{llll} 
Mean \(\quad 247.9484\) & 30.17499 & 22.27460
\end{tabular}
Lower Bound 222.3386 26.82301 20.02587
Upper Bound 273.5582 33.52697 24.52333
> FB(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,
+ 0.95)
Estimation and 95 % Confidence Intervals:
                Feed Clo Lei
Total 571971.9511 69500.11448 51210.03819
Lower Bound 513045.7170 61802.57411 46036.74627
Upper Bound 630898.1852 77197.65484 56383.33011
Mean 248.4279 30.18639 22.24236
Lower Bound 222.8342 26.84307 19.99541
Upper Bound 274.0217 33.52971 24.48930
```

When, for units included in overlap domaing, first order inclusion probabilites are known for both frames, estimators as the one proposed by Bankier (1986), Kalton and Anderson (1986) can be computed. To do this, numeric vectors pik_ab_B and pik_ba_A of lengths $n_{A}$ and $n_{B}$ should be added as arguments. While pik_ab_B represents first order inclusion probabilities according to sampling design in frame $B$ for units belonging to overlap domain selected in sample drawn from frame $A$, pik_ba_A contains first order inclusion probabilities according to sampling design in frame $A$ for units belonging to overlap domain selected in sample drawn from frame $B$.

```
> BKA(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA,
+ DatA$Domain, DatB$Domain)
Estimation:
    Feed Clo Lei
Total 566434.3200 68959.26705 50953.07583
Mean 247.8845 30.17814 22.29822
```

These examples include just a few of the estimators that can be used when no auxiliary information is known. Other estimators, as the pseudo-empirical likelihood estimator (Rao and Wu, 2010) or the dual frame calibration estimator (Ranalli et al., 2014), can be also calculated in this case. In this context, function Compare is quite useful, since it returns all possible estimators that can be computed according to the information provided as input

```
> Compare(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)
$Hartley
Estimation:
\begin{tabular}{|c|c|c|}
\hline Feed & Clo & Lei \\
\hline Total 570867.8042 & 69473.86532 & 51284.2727 \\
\hline Mean 247.9484 & 30.17499 & 22.2746 \\
\hline \multicolumn{3}{|l|}{\$FullerBurmeister} \\
\hline \multicolumn{3}{|l|}{Estimation:} \\
\hline Feed & Clo & Lei \\
\hline Total 571971.9511 & 69500.11448 & 51210.03819 \\
\hline Mean 248.4279 & 30.18639 & 22.24236 \\
\hline \multicolumn{3}{|l|}{\$PEL} \\
\hline \multicolumn{3}{|l|}{Estimation:} \\
\hline Feed & Clo & Lei \\
\hline Total 591956.1900 & 72391.7894 & 53396.32780 \\
\hline Mean 247.5017 & 30.2676 & 22.32544 \\
\hline \multicolumn{3}{|l|}{\$Calibration_DF} \\
\hline \multicolumn{3}{|l|}{Estimation:} \\
\hline Feed & Clo & Lei \\
\hline Total 595162.2604 & 72214.13351 & 53108.5059 \\
\hline Mean 248.8422 & 30.19332 & 22.2051 \\
\hline
\end{tabular}
```


## 4 Estimation using frame sizes as auxiliary information

Some of the estimators defined for dual frame data, as raking ratio (Skinner, 1991) or pseudo-maximum likelihood estimators (Skinner and Rao, 1996), require the knowledge of frame sizes to provide results. So, frame sizes need to be incorporated to the function through two additional input arguments, N_A and N_B. There is also a group of estimators, including pseudo-empirical likelihood
and calibration estimators, that even being able to provide estimations without the need of auxiliary information, can use frame sizes to improve their precision

```
> SFRR(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbB,
+ DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)
Estimation:
            Feed Clo Lei
Total 596147.5461 72584.5907 53527.39414
Mean 248.1584 30.2148 22.28185
> CalSF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbB,
+ DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)
Estimation:
            Feed Clo Lei
Total 595996.8469 72566.50183 53513.52578
Mean 248.1587 30.21495 22.28174
```

Previous estimators need probabilities of inclusion in both frames for the units in the overlap domain to be computed. This condition may be restrictive in some cases. As an alternative, in cases where frame sizes are known but this condition is not met, it is possible to caculate dual frame estimators as pseudomaximum likelihood, pseudo-empirical likelihood and dual frame calibration estimators

```
> PML(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,
+ N_A = 1735, N_B = 1191)
Estimation:
\begin{tabular}{lrrr} 
& Feed & Clo & Lei \\
Total & 594400.6320 & 72430.05834 & 53408.30337 \\
Mean & 248.0934 & 30.23115 & 22.29178
\end{tabular}
> PEL(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,
+ N_A = 1735, N_B = 1191)
Estimation:
            Feed Clo Lei
Total 591956.1900 72391.7894 53396.32780
Mean 247.5017 30.2676 22.32544
> CalDF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,
+ N_A = 1735, N_B = 1191)
Estimation:
            Feed Clo Lei
Total 588416.4644 71432.53671 52520.31623
Mean 248.8131 30.20539 22.20832
```


## 5 Estimation using frame and overlap domain sizes as auxiliary information

In addition to the frame sizes, in some cases, it is possible to know the size of the overlap domain, $N_{a b}$. Generally, this highly improves the precision of the estimates. Functions implementing pseudo-empirical likelihood and calibration estimators can incorporate overlap domain size to the estimation procedure through parameter $\mathrm{N}_{-} \mathrm{ab}$, as shown below

```
> PEL(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,
+ N_A = 1735, N_B = 1191, N_ab = 601)
Estimation:
    Feed Clo Lei
Total 575289.2187 70429.95641 51894.32490
Mean 247.4362 30.29245 22.32014
> CalSF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbB,
+ DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,
+ N_ab = 601)
Estimation:
            Feed Clo Lei
Total 577071.959 70294.89095 51771.9309
Mean 248.203 30.23436 22.2675
> CalDF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,
+ N_A = 1735, N_B = 1191, N_ab = 601)
Estimation:
\begin{tabular}{lrrr} 
& Feed & Clo & Lei \\
Total & 578895.6961 & 70230.1131 & 51570.55683 \\
Mean & 248.9874 & 30.2065 & 22.18088
\end{tabular}
```


## 6 Estimation using additional variables as auxiliary information

Some of the estimators are defined such that, in addition to frame sizes, they can incorporate auxiliary information about extra variables to the estimation process. This is the case of pseudo-empirical likelihood and calibration estimators. Functions implementing them are also able to manage auxiliary information. To achieve maximum flexibility, these functions are prepared to deal with auxiliary information when it is available only in frame $A$, only in frame $B$ or in both frames.

For instance, auxiliary information collected from frame $A$ should be incorporated to functions through three arguments: xsAFrameA and xsBFrameA,
numeric vectors, matrices or data frames (depending on the number of auxiliary variables in the frame); and XA, a numeric value or vector of length indicating population totals for the auxiliary variables considered in frame $A$. Similarly, auxiliary information in frame $B$ is incorporated to each function through arguments xsAFrameB, xsBFrameB and XB. If auxiliary information is available in the whole population, it must be indicated through parameters xsT and X. Let see some examples

```
> PEL(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735,
+ N_B = 1191, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,
+ XA = 4300260)
Estimation:
    Feed Clo Lei
Total 588917.7336 72077.37877 53263.75154
Mean 246.8638 30.21355 22.32722
> CalSF(yA, yB, PiklA, PiklB, DatA$ProbB, DatB$ProbA, DatA$Domain,
+ DatB$Domain, N_A = 1735, N_B = 1191, xsAFrameB = DatA$M2,
+ xsBFrameB = DatB$M2, XB = 176553)
Estimation:
                    Feed Clo Lei
Total 581539.671 70735.99535 52208.48996
Mean 247.159 30.06336 22.18902
> CalDF(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735,
+ N_B = 1191, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,
+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260,
+ XB = 176553)
Estimation:
    Feed Clo Lei
Total 585185.4497 71194.61148 52346.43878
Mean 247.8075 30.14866 22.16705
```

While pseudo-empirical likelihood estimator has been computed considering only auxiliary information in frame A, single frame calibration estimator has been calculated considering auxiliary information in frame B. For the dual frame calibration estimator, auxiliary information in both frames has been taken into account.

## References

[1] Arcos, A., Molina, D., Rueda, M. and Ranalli, M. G. (2015). Frames2: A Package for Estimation in Dual Frame Surveys. The R Journal, 7(1), 52 72.
[2] Bankier, M.D. (1986). Estimators Based on Several Stratified Samples With Applications to Multiple Frame Surveys. Journal of the American Statistical Association, Vol. 81, 1074-1079.
[3] Fuller, W.A. and Burmeister, L.F. (1972). Estimation for Samples Selected From Two Overlapping Frames ASA Proceedings of the Social Statistics Sections, 245-249.
[4] Hartley, H.O. (1962). Multiple Frame Surveys. Proceedings of the American Statistical Association, Social Statistics Sections, 203-206.
[5] Hartley, H.O. (1974). Multiple frame methodology and selected applications. Sankhya C., Vol. 36, 99-118.
[6] Kalton, G. and Anderson, D.W. (1986) Sampling Rare Populations. Journal of the Royal Statistical Society, Ser. A, Vol. 149, 65-82.
[7] Ranalli, M.G., Arcos, A., Rueda, M. and Teodoro, A. (2014). Calibration estimators in dual frames surveys. arXiv:1312.0761 [stat.ME].
[8] Rao, J. N. K. and Wu, C. (2010) Pseudo Empirical Likelihood Inference for Multiple Frame Surveys. Journal of the American Statistical Association, Vol. 105, 1494-1503.
[9] Skinner, C.J. (1991). On the Efficiency of Raking Ratio Estimation for Multiple Frame Surveys. Journal of the American Statistical Association, Vol. 86, 779-784.
[10] Skinner, C. J. and Rao, J. N. K. (1996). Estimation in Dual Frame Surveys With Complex Designs. Journal of the American Statistical Association, Vol. 91, 349-356.

