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Abstract

Ridge regression is a useful tool to deal with collinerity in the homoscedastic linear
regression model, which provide biased estimators of the regression parameters with lower
variance than the least square estimators. Evenmore, when the number of predictors (p)
is much larger than the number of observations (n), ridge regression give us unique least
square estimators by restringing the parametric space to the neighborhood of the origin.
From the Bayesian point of view ridge regression results of assigning a Gaussian prior
on the regression parameters and assuming they are conditionally independent. However,
from both classical and Bayesian approaches the estimation of parameters is a highly
demanding computational task, in the first one being an optimization problem and in
the second one a high dimensional integration problem usually faced up through Markov
Chain Monte Carlo (MCMC). The main drawback of MCMC is the practical impossibility
of checking convergence to the posterior distribution, which is commonly very slow due to
the large number of regression parameters. Here we propose a computational algorithm to
obtain posterior estimates of regression parameters, variance components and predictions
for the conventional ridge Regression model, based on a reparameterization of the model
which allows us to obtain the marginal posterior means and variances by integrating out
a nuisance parameter whose marginal posterior is defined on the open interval (0, 1).

Keywords: Bayesian Methods, Regression, Variable Selection, Shrinkage, Ridge Regression,
MCMC, R.

1. Introduction

Nowadays most research areas use massive quantities of information generated by the increas-
ingly sophisticated computer equipment; for example, in genomics an increasing amount of
data is available as new sequencing technologies appears. A lot of statistical models have been
proposed in order to learn valuable information from data; however, even with the simplest
models, the statisticians or data scientists have to deal with high dimensional inference prob-
lems which require millions of computation tasks. One of such models is the ridge regression,
being a useful tool to deal with collinearity in the homoscedastic linear regression model by
providing biased estimators of regression parameters with lower variance than the least square
estimators. Even more, when the number of predictors (p) is much larger than the number
of observations (n), ridge regression gives a unique least square estimator by restricting the
parametric space.

From the Bayesian point of view, ridge regression results of assigning a Gaussian prior on the
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regression parameters and assuming they are conditionally independent. However, since the
Bayesian estimation of parameters is a high dimensional integration problem, it is also a highly
demanding computational task which is usually faced up through Markov Chain Monte Carlo
(MCMC), in particular Gibbs Sampling because the full posterior conditionals are available
in closed form. The most successful MCMC option implemented in the R software is the
package BGLR(Pérez and de los Campos 2016) , other non Bayesian R package options are
penalized(Goeman et al. 2021) and ridge(Moritz et al. 2021).

The main drawback of MCMC in high dimensional settings is checking of convergence to the
joint posterior distribution, which is commonly very slow due to the large number of regression
parameters and the high correlations between successive samples from the conditional pos-
teriors in the Gibbs sampling implementation of MCMC. As Rajaratnam and Sparks (2015)
shows for the regression model, meanwhile the MCMC samples yield a good approximation of
the posterior means of the regression parameters, their posterior variances and the posterior
mean of the residual variance may be underestimated if the simulated Markov chain is not
large enough; nevertheless, the length of the chain is an issue that still being an open research
field. In this paper we propose a simple numerical method to estimate posterior means and
variances of the parameters in the ridge regression model as a way to abandon the theoretical
guarantees of MCMC methods. We use the SVD and the QR decompositions together with a
reparameterization to get closed expressions of the conditional posteriors from where we ob-
tain the marginal posterior means and variances by numerical integration on the open interval
(0,1); furthermore, variable selection and prediction are straightforward consequences. The
proposed method is implemented in R and allows to work within the big matrix framework
by using storing and parallelization packages bigstatsr, bigparallelr and parallel.

2. Method and Materials

In the Bayesian approach to inference statistics we formally combine, through the Bayes rule,
prior information and sample data to learn about unknown quantities of interest. The previous
to data uncertainty about the parameter of interest 6 is expressed by the prior distribution, the
information about # that comes from observed data is incorporated by the likelihood function
and by the Bayes formula we obtain the posterior distribution of the parameter given the
data (posterior distribution) (Lee 2012). However, calculating the posterior distribution is
not always an easy task because integration is required and, even in low dimensional settings,
Monte Carlo or numerical integration methods are needed. In this way, Gilks et al. (1996)
introduced the MCMC (Markov Chain Monte Carlo) which provides a straightforward and
intuitive way to both simulate values from an unknown distribution and use those simulated
values to perform subsequent analyses (Speagle 2020). For more information about MCMC
see Robert and Casella (2010); Andrieu et al. (2003). In this paper we do not use the
sampling based approach to approximate de posterior distribution, instead we focus on a
numerical approximation of the posterior of a nuisance parameter to integrate out it and to
obtain numerical aproximations of posterior means and variances of regression parameters
and predictions.
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2.1. Model

Consider the linear model
yi=xB+e, i=1,...,n.

where €;, i = 1,...,n, is a Gaussian error with mean 0 and variance o2, 8 C R? is a vector of
regression coefficients and x;, i = 1,...,n, is p dimensional vector of observed without error
covariates. Moreover, assume that cov (¢;,€;) = 0, ¢ # j. In matrix form the model is written
as

y = XB + ¢ (1)

where B = (b1, ..., ) is the vector of regression parameters, € = (e1,...,e,)7 is the vector
of random errors distributed as N, (0, 02I,,,,). The n x p matrix X is called the design matriz
and y is generally referred to as the vector response variable. Since the mean of y, X3, is a
linear combination of the columns of X, the model in (1) is known as the linear regression
model.

When the number observations is greater than the number of covariates, n > p, the best
linear unbiased estimator of 8 is ,3 = (X'X)"'X'y. However, when multicollinearity oc-
curs, although the least squares estimators are unbiased, their variances are inflated because
(X'X)~! tends to be singular. Another scenario where the obtention of the least squares
estimator is an ill-posed problem occurs when p >> n, which implies that B is not unique. In
both cases some sort of restriction of the parametric space or penalization is needed in order
to have unique estimators with lower variance. By adding a degree of bias to the regression
estimates, ridge regression gives an unique estimator of 8 with variance lower than the least
squares estimator variance.

2.2. Ridge Regression

Hoerl (1962) and Hoerl and Kennard (1968) first suggested that to control the inflation and
general instability associated with the least squares estimates we may use the same Tikhonov
regularization for all the regression parameters, which gives the ridge estimator:

Ak

g = (X'X+K)'(Xy); k>0, (2)

where k is the ridge penalty parameter. Large values of k tend to reduce the magnitude of the
estimated regression coefficients, leading to fewer effective model parameters Cannon (2009).
See Hoerl and Kennard (1970b,a); Hoerl et al. (1975); van Wieringen (2015); Alheety and
Kibria (2011); Yahya and Olaifa (2014) for more about ridge regression.

2.3. Bayesian inference for ridge regression

In Bayesian inference all the uncertainty about the unknown parameters (3, 02) is described
by the join posterior distribution, which is obtained, through the Bayes rule, as the likelihood
function, the joint density of y seen as a function of the parameters, times the prior. The
prior is a probability density function we use to measure the uncertainty about (3, 02) before
any data has been observed.

From model in (1) the likelihood function for the parameters (3, 0?) is given by
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If the prior for each §;, j = 1,...,p, is Gaussian with mean 0 and variance ag, and prior
independence of 8 and ¢? is assumed then the joint prior is of the form

(8,02 03) = w(B|of) n(o*) w(}), (4)
where,
T (5 \ 0[23) = N, (5 |0, O'%Ip)

and for the variance parameters we may assign conjugate priors (Reich and Ghosh 2019;
Gelman et al. 2021); that is, the inverse gamma distributions

. (02) - IgG (02 %’ n0283>
T (a%.,) G (a%

Po pod8>

27 2 )
where ny, s%, po and d% are known hyperparameters.The prior independence of the elementos
of B given a[% implies that marginally the distribution of 8 is multivariate ¢ with pg degrees
of freedom. Then, this hierarchical structure implies that regression parameters are not inde-
pendent to each other, which seems to be an appropiated structure in presence of colineallity
or when p >> n. The prior variance of the elements of 8 has also an interpretation in terms
of regularization: for fixed o2, as ag tends to 0 the shrinkage to the prior mean increases,

which means that large values of the parameters are penalized.

Due to the problem of estimation of the ridge regression parameters is ill-posed, prior elicita-
tion is a critical step in Bayesian inference since the posterior is too sensitive to the assignation
of values to the hyperparameters in the prior of 8. Here we use an approach closed to those
proposed by Guan and Stephens (2011) and Pérez and de los Campos (2016) to model the
initial knowledge of 8,02 and 0'%. Thus, the prior expected values of o2 and ag are

2 2
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Therefore, in order to have prior moments of first and second order finite for the variance
components, the value of ng and pg should be at least 5. Then,we use 5 as the default value
for ng and pg in the HDBRR package, but flat priors could be obtained as ng and py tend to
0. To assign values to s% and d% we will use the prior expected value of the proportion of
variance explained (PVE) by the model with respect to the residual variance, that is given
by

PVE =

x! 2 n p
( ZIB) _ ni_g Z(Zx”ﬁ])Q

i=1 i=1 j=1
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Then, by noting that
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the proportion of the total prior variance explained by the model. From this,
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therefore
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The value s3 may be interpreted as a prior guess about the residual variance.

In particular, when each covariate and the response have been centered about its sample mean

d2 — ( h > 8(2)(1)071)
0 pOZ] 1 j

moreover, if the all the data are standardized and s3 = 1 we have that d3 = (ﬁ) %

which approaches to 1/p when h = 0.5 and py is large. Also note that as h tends to 1 the
prior for ag becomes flat but proper distribution.

Once the prior distribution has been assigned and the likelihood function defined, then the
posterior distribution of the regression parameters is derived in what follows.

2.4. Posterior Distribution

By the Baye’s Rule, the joint posterior is obtained as the product of likelihood function in
(3) and the prior in (4). Thus,

7 (8, 0% 0% |y) o L(B o*ly) n(B,0% 0}),

Now, cosiderer the transformations v = 1/0% + 1/0% and u = o2/ (02 + 0%,); then, the joint
posterior distribution of (3, u, v) is given by

n+ng+p+pg 1 p+p071

w(Buvly) o v EEEEILI ) 5)
xexp {1 (8- ) 521 ) (8- Bw)) + SSE @) + nosd

X exp {—2 (B(U)B(u) + pod%)} )
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where B,(u) = (XX + 1), Bw) = ,X'y, §(u) = XB(u) and SSE(u) =
(y —y(u) (y = y(u)). From (5), the full conditional posterior of 3 is

m(Blu, v, y) = Np (ﬂ ‘B(U)7 1)(11—u)

=) (6)

Now, let S(u) = (1 —u) (SSE(u) + ngs3) + u(,@/(u)B(u) + pod3) and by the definition of
conditional distribution of 8 given (u,v), we have that

(B, v|uy)
“Blu vy g@

(7)

n -+ ng + S(u
(o], y) 0+ Po (U,

2 T2

where 7(8, v|u, y), from (5), is a Normal-Gamma density. It follows that, the posterior
distribution of 8 given u is t with v = n + ng + pg degrees of freedom, mean

E[Blu,y] = B(u)
and variance
S(u)
= ETL 5 - 2 .
VBl = o S y=2>0
Finally, the marginal posterior of u is obtained as
7Tu7/Uy Wﬁ?“?”}”“’ﬂu?z}’y
ruly) — T@rly) 7B v]y)/r(Blu v, y)
m(v|u,y) m(v|u,y)
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_ ntng+pg

x [(1=u)(SSE() +nost) + u (B wBw) +podd)| % ue(0,1)(8)

It is important to point out that the marginal moments (8 | y) can be obtained by theorem
of total expectation. I such a way, the unconditional posterior mean and variance of 8 are,
respectively,

1/\
BBy =BEB |y = [ Bu|yd
and
VIBly] = E[V[B|u yl]+ VIE[B|u,y]|
_ [ S(u) 300 2
= /0<(u—2)(1—u)2"(u)+(ﬁ(u) E[ﬂ‘y]))ﬂ'(u|y)du

Both integrals above may be evaluated numerically with accurate precision in most cases.

Marginal posterior distributions of variance components

The marginal distributions of ¢ and J% are obtained from the joint distribution, 7 (u, v|y) =
(v |u,y)m(u|y); that is, using the change of variable formula,

O(u,v)

ot eBly) = wwlet R)luleh of) im (u (o eB) 1) | oy
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However, the marginals can not be obtained in closed form, so numerical or Monte Carlo
integration over R™ is needed. However, if only points estimates are needed, it is possible to
get them using one dimensional integration over the interval (0, 1). For example, the Bayesian
estimator under square loss of the ridge parameter A = o2/ a% = u/(1 —u) is given by

“ Loy
A = E)|y]= du.
Ayl /0 - m(u]y)du

In the same way, the posterior means of a% and o? are

1 1 1
Blogly] = E[uv y} = E[UEL “y”
B 1 1S(u)
B n+no+pol/o w rly)du
and
9 B 1 ] - 1 L S(u)
Blo™ly] = E|:U(1—u) Y  ntng+po—1Jo 1—u7r(u’y)du.

2.5. Variable Selection

Suppose that the prior density for 8 is such that,
T <6j|0§, ’yj) = (1—-+)N (ﬁﬂO,U%) + N (ﬁﬂO,c?aé) , j=1,...,p.

Where ; ud Bernoulli(¢;) is an indicator variable which is 7; = 1 if the j — th predictor
variable is included in the model, in other case «y; = 0. To use this hierarchical mixture setup
for variable selection, the hyperparameters ag and c2a§ are set “small and large", respectively,

so that N'(0,03) is concentrated around 0 and N(0, c?a%) is diffuse as in Figure 1.

If the data supports «; = 0 over ; = 1, then ; is probably small enough so that X; will not
be needed in the model. Suppose a value 6; > 0 such that if |3;| < d; it would be preferable to
exclude X;. The parameter ¢; should be chosen so that the posterior probability Pr(y; =1 | y)
must be higher for those values of 3; such that || > ¢; than for those in the neighborhood
of 0. Before any data has been observed, ¢; may be fixed by choosing ag and c?a% such that
the pdf w (B |v; =0) = N (5 | O,ag) is larger than the pdf = (8; |v; =1) = N(5; |0, c?a%)
on the interval (—d;,d;y) (see Figure 1). This condition is satisfied for any og and c; such
that

202

log( Jf)
_\NB ) <2 9
1 1 = Y ( )
0'2 B C2-O'2

B i~ B

Hence,
2c202 log (c;
(5J = 1’8 ( ]), cj > 1.
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Figure 1: N(0,03) and N'(0, ¢j03) densities. Intersection at d;

For the selection of ¢;, note that it is equal to the ratioof 7 (5; = 0|v; =0)and 7 (5; = 0|v; = 1);
thus, ¢; may be interpreted as the prior odds that X; should be excluded of the model if ;

is to small. Further explanation about the selection of ¢; and ; can be found in George
and McCulloch (1993). In what follows, we will assume that, for j = 1,...,p, ¢; = ¢ and

¢j = ¢, which implies that J; = 6. In this way, the variable selection procedure is suitable for
covariates in the same scale.

The joint posterior distribution of v = (v1,...,7p) is given by

(vly) = 7y |v)7(v)/7(y)

where the marginal model given « in terms of the joint posterior of (,8 02, 0[23) is

L(B,0%|y)m <B|U%»7) 7 (o) (O‘%) |

T(yly) = w (8,02 03[ .)
Then,
ALy 7 (8105 7 (0% 7 (o)
(vly) = w(y)7 (8.0%02[7.¥)
L (8]o3.7) (10)

i (,3,0’2,0[2, ’ 'y,y)
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where it should be noted that =« (,8,02,0%’ vy = O,y) is the joint posterior given in (5).
Since,

r(v1y) = 7 (vl y) T (v 1Y),

where 6_; is the subvector composed by all the elements of 6 except the j-th element 0;.
Then, it follows from (10) and prior independence that

e~ m(vly) ™ () ™ (5]' \ Ofﬂj)
77(%"#]”) W(’Y—j|y) X 7T(7_j|y)7T(:3702’J%‘7’y>
o $i(1— @) in (,Bj \ ag,’yj)

(B3 )
Expressing the right hand side of the result above in terms of (8, u, v) we have the following:

¢V (1= ¢)' 0w (B | u,v, ;)
™ (B,u,v|7,y)
¢ (1= §) V(B ] u,v,75)
7 (8518w 0,7, y) 7 (B lu,0,7,y) 7w | u,y,3)m(u |7, y)
¢ (1 —¢) "o (B |, v,75) .
7 (8; 1By w0,7,y) (v | w7, y)m(u |7, y)

(v 1v—jy)

X

Then, the conditional posterior probability of exclusion of the variable X; is

Pr(y=0[v_; = 0,y) = (3 =0[v_; = 0,y) (11)
(1 —¢)m (Bj|u,v,7; = 0)
w(ﬁj’ﬂ_j,u,v,’y:O,y)7r(v\u,~y:0,y)7r(u\7:0,y)
¢, (L) (8|10, = 0)
AP E—

Note that probability exclusion (11) does not depend on the values of 8, u and v and should
be equal to one when the conditional posterior mean of 3; is equal to the prior mean and
Bj = 0. Moreover, since the prior and the conditional posterior are both normal, it can

be verified that he proportionality constant is C; = (1 — gzﬁ)_l\/ m k—“x?j + 1. Thus, the

probability of the j-th predictor to be included in the model given that the others have been
excluded is:

pi=Pr(y =1y, =0y) = 1-Pr(y=0[v_;=0y)
= 1—exp {—?B? — (12_‘/;1)6 (B_] - Ej)z} (12)

N | _
where, V; = ( A x?j + ﬁ) and E; = VJXQ (y — X_]ﬂ_j) are the conditional posterior

variance and mean of 3;. The quantities @,0 and B are arbitrary values u,v and 3, but
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with high posterior density. From(12) we have that the conditional Bayes factor in favour of
including the covariate X; in the model is

_(A=9)p; _ (1-9) 1-a) [ @ s, 1 s N2
Ph==se 9 <6Xp{ 2 [(1—a)ﬁﬂz+vj(ﬁf_Eﬂ)H_1>

2.6. Posterior Computation

The main feature of the parameterization proposed above is that it enable to use standard
matrix algebra to speed up the computation of the posterior distributions without using
sampling techniques. This helps to significantly reduce computation time, avoiding slow
sampling methods. In fact, once the posterior distribution of u is calculated all the estimations
of interest are almost automatically available.

Posterior computation through SVD decomposition

Let UDV’ the full singular value decomposition (SVD) of the matrix of covariates X in the
linear model (1). Note that V = [V, Vg], where V| and V3 are orthonormals and D = [S, 0]
is a rectangular diagonal matrix, where S is the diagonal matrix of size n x n of positive
singular values, s;1 > --- > s, of X and the last p — n columns are all vectors of zeros.

Hence
-1
p)

)

-1
A Onp—n u /
= ’ + I Vv
(lop nn Op—np-n l—wu p)

So(u) = ( /

= (VD DV’ +

-1

= V A + 1— I ?L”’P—” V/,
Op,n,n T lp—n
where A = S’S = diag(\1,...,\,) is diagonal matrix whose elements are the eigenvalues of
XX’
Similarly,
Bu = Euxly
-1
_ v Al O yypry
0p—nn Ty lp—n

u -1
= V3 (A + In> SU'’y.
1—u
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And

<>

(v) = XB(u)
— UDVWH<A+1UM> SU'y
— U

U -1
—- US (A + In> S'U'y
1—u
— UPUY,
where P is a diagonal matrix with P;; = %, j=1,...,n.

Thus, for p > n, substituting in (8) the covariance matrix by its SVD decomposition we have,

n+n
nluly) o w1 —u) T EFT XX+ 21— w)(SSB(u) + sl T E
N N _n+ng+p0
|14 B (w)B(w) + podg
1—u SSE(u) + nos2
A u —1/2
o w1 gy AT I Ongpen
0 u_y
p—n.p 1—u~P—7
_mingipg

2N — n+ng+pg

X [(1 —u)(SSE(u) + nosg)]

u_ B(u)Bu) + podg
1—u SSE(u)+ nos?

1

n ~3
o u P 11— u)ngnoflu% (H(l —u)\j + u) (13)

J=1

_ ntnotpo

X[(1 —u)(SSE(u) + nosg)]_% [1 + u B (u)ﬁ(u) +p0d(2J] : 7

1—u SSE(u)+ nos?
where

SSE(w) = (y—yw) (y—y(u))
(y - UPU'y)'(y — UPUy) (14)
= y'U(I-P)*U’y.

In general,the marginal posterior of u is

NI

(np .
m(uly) o uwpo*l(l—u)ngn[)*lungplmn ( H (I —u)A; +u) (15)

n+ng+pg

w BB +pdg)
1—u SSE(u)+ nos?

n+ng+po

x[(1 = u)(SSE(u) + nost)] ™ 1+

Also note that

Cov (§(u),y|u) = Cov(UPU'y,y|u) = UPUCov(y) = o*UPU’

11
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and
Var (§(u) |u) = o>UPU,
hence
LS ul Py
cor (¥i,yi) = /0—] ! ; ]]2 m(uly) du. (16)
i=14;,;Pj;

For ridge regression the efcetive degrees of freedom may be calculated as the expected value
trace of the matrix UPU’; that is:

edf = E [tr(UPU'|y)] = E [tr(P]y)] / ZPjﬂr(u|y)du
=1

A naive but useful approach to calculate the quantities above may be to plug in the posterior
mode of u. Thus, for example, the effective degrees of freedom may be approximated by

P ~
— (L—a)X;
d pu—
edf Z(1—ﬁ)Aj+a’

j=1

where @ = max argm(u|y). Obviously, when there is no shrinkage @ = 0 and edf = rank(X).

Posterior Computation through QR decomposition

Another procedure to compute the posterior distribution is given by the QR factorization
of X/. This is, let X’ = QR, where Q = [Q;,Q,] is a p x p orthonormal matrix and
R = [R],R))]" is a p x n upper triangular matrix, where the entries of the (p —n) x n matrix
R, are all zeros. Thus, proceeding in the same way as with SVD decomposition,

S(u) = (x'x+ 121,,) B (17)
- (emra+ “qq)
u

- Q (RR’ + = qu)l Q

_ Q[(RlR’H—lﬁuIn)_l Onpn ]

1—u /
Op—n,n u Ip_nQ

In the same way,
Blu) = Zn(uw)X'y (18)
—1
U
u -1

-1
U
= Q (RlRﬁ + l—uIn> Ruy,
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and
y(u) = XB()
-1
- R'QQ (RR’ 4 1“Ip> Ry (19)
—u

. / / U -1
= Rl Rl 1 + 71 _ uIn Rly

Hence, by plugging (17) and (18) in (13) is obtained another way to calculate the marginal
posterior of u, this is,

potr 4 no+n

m(uly) o w1 - w) (1 - wRRY 4 ul, |

u B (WB) +pdd]
1—u SSE(u)+ nos? ] (20)

1/2

__ntng+pg
n+ng+pg
2

x[(1 —u)(SSE(u) 4 ngs3)]”

-1

n+
2

o ~—1. Note that the covariance is

-1
In) R;.

+
when n > p. The other form, w1l s replaced by u

Cov(3uhy|w) = o°Rj (RiR+

and the variance

1 -1 /
Var (5 [w) = o°Rj (RaRi+ L) Ry [Ra (RiR;+ 1) Rll.

Therefore it is possible to calculate the correlation as in the equation (16).
In the same way the effective degrees of freedom are

-1
edf = E [tr <R’1 (RlR’l + 1ﬁul”) R1>
U -1
E |[tr RlRll (RlRll + In>
1—u
L / / U -1
= /0 [tr <R1R1 <R1 1 + Mln) )

Therefore the (edf) can be approximated as,

~ -1
edf = [tr (RlR’l <R1 ’1+1“aln) )] (22)

Yy

|

m(u|y) du. (21)

where 4 = max argm(u|y).

Since manipulating high dimensional inverse matrices is complicated and expensive, then
when we want to work with the QR method, the posterior mode of u will be used to obtain
the values described above. That is, instead of using a vector u, the posterior mode of u will
be taken.
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3. Results

An package named HDBRR was built in R for implementing the methodology described in the
previous sections. This package is available from CRAN at https://CRAN.R-project.org/
package=HDBRR. The main function in the package is also named HDBRR and its parameters
with their default values are given in the Box la.

Box 1la: List of arguments of the HDBRR function

HDBRR(y, X, n0 = 5, p0 = 5, s20 = NULL, d20 = NULL, h = 0.5,
intercept = TRUE, vpapp = TRUE, npts = NULL, c = NULL,
corpred = NULL, method = c("svd","qr"), bigmat = TRUE, ncores = 2)

Inputs

Box 1a displays a list of the main arguments of the HDBRR function implemented in the
HDBRR package, a short description follows:

e y, X are the data vector, generally referred to as the response variable vector, NA’s
allowed, and the design matrix of dimension n x p respectively.

e« n0, pO are the numerators of the shape parameters n0/2 and p0/2 of the Inverse
Gamma prior assigned to the residual variance and the shape parameter of the In-
verse Gamma prior assigned to the regression coefficients variance, respectively. The
default value for n0/2 and p0/2 hyperparameter is 5.

e 520, d20, h are the numerators of scale parameters (n0s20)/2 and (p0d20) /2 of the
Inverse Gamma prior assigned to the residual variance and the scale parameter of the
Inverse Gamma prior assigned to the regression coefficients variance respectively. By
default s20 and d20 are NULL which means that these parameters will be set at runtime
internally, where h is a dimensionless shrinkage coefficient, O0<h<1. If h — 0 then we
have greater shrinkage, that is, 8 — 0. If h — 1 then we will have less shrinkage.

e intercept Logical argument. Default value is TRUE. A model with intercept is fitted.

o vpapp Logical argument. Default value is TRUE. Computes an approximation of the
predictive variance.

o npts, ¢ number (integer) of points used to numerical evaluation of the density of w.
The default value for the npts parameter is 200 and c is the ratio of Gaussian densities
(Spike/Slab) in the prior mixture for variable selection.

e corpred method to compute the correlation between the pairs of predicted and ob-
served. There are two available methods, Empirical Bayes ("eb") and Bayesian method
("b"). The default value for the parameter corpred is NULL. If the value is NULL then
the output values corr and edf will be NULL.

e method Options for the posterior computation. There are two methods available: "qr"
decomposition of X*t(X) and "svd" decomposition of matrix X. The default value for
the method is SVD decomposition.
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e bigmat, ncores use of the bigstatsr package and number of the cores for computation
respectively. The default value for the ncores is 2. The number of cores can be detected
with detectCores() and may be used in macOS and Linux systems.

The values returned by the HDBRR function are listed in Table 1.

Value
$betahat ([‘3) (numeric, p) Vector with the beta estimates.
$yhat (y) (numeric, n) Vector with the y’s estimates.
Ssdyhat (numeric, n) Vector with the standard deviations of the predicted
values.
(numeric, n) Vector with the standard deviation of predicted vari-
$sdpred
ances.
$varb (numeric, p) Vector with the beta’s variance.
Ssigsahat (62) (numeric) estimated residual variance. The “Empirical Bayes”

method is used.

(numeric) estimated variance of beta. The “Empirical Bayes”

- ~9
Ssigbsqhat (UIB> method is used.

$u (numeric, npts) Vector with the values of w.

$postu 7(u|y) (numeric, npts) Vector with the values of the u posterior.

$uhat (a) (numeric) estimated w.

$umode (numeric) posterior mode of u.

$whichNa (integer) number of NA’s in y.

$phat (p) (numeric, p) Vector selection probability of z;.

$delta (0) (numeric) Value used in the variable selection.

$edf (numeric) Value of the effective degrees of freedom for regression.
$corr (numeric, n) Vector of the correlation between ¢; and ;.

Table 1: Values returned by the HDBRR function implemented in the HDBRR package with
R software.

Also, the matop function was implemented in the HDBRR package, it calculates the SVD
and QR decompositions of an X matrix (specially if X is high dimensional) with the bigstatsr
package. The function with its arguments is:

Box 1b: List of arguments of the matop function

matop(y, X, method = c("svd", "qr"), bigmat = TRUE)

The arguments y, X, method and bigmat of the matop function are the same of the HD-
BRR function. The values returned by the matop function are listed in Table 2.

Summary, plot and predict functions

For variable selection and visualization of results for class “HDBRR”, the package contains
the following functions.

15
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(a) SVD

Value

Sy (numeric, n) Data vector. NAs allowed.

$X Design matrix of dimension n x p.

D Vector containing the singular values of X of length
min(n, p).

ST, A matrix whose columns contain the left singular vectors of
X.

SR A matrix whose columns contain the right singular vectors
of X.

$ev A vector containing the square of D.

$Ly The cross-product between the matrix L and vector y.

$n Number of rows of X.

$p Number of columns of X.

(b) QR

Value

Sy (numeric, n) Data vector. NAs allowed.

$X Design matrix of dimension n x p.

$R An upper triangular matrix of dimension p x p.

$n Number of rows of X.

$p Number of columns of X.

$Q A matrix of dimension n X p.

Table 2: Values returned by the HDBRR function when the (a) SVD and (b) QR decompo-
sitions are used.



Blanca Monroy-Castillo, Sergio Pérez-Elizalde, Paulino Pérez-Rodriguez

Box 1c: List of arguments of the summary, plot and predict functions
summary (object, all.coef = FALSE, crit = log(4), ...)
plot(x, crit = log(4), ...)

predict(object, ...)

The inputs for these functions are:

e object An HDBRR object generated by a call to HDBRR.

e all.coef Logical value. If all.coef = TRUE, estimations for all the regression pa-
rameters are returned; otherwise, only for those whose 2*x1log(bayes factor)>crit.

e crit Numerical value. The lower bound of the log Bayes factor in favor to include a
variable in the model. The default value for crit is log(4).

e ... Additional arguments to be passed to or from other methods.

« x An HDBRR object, typically generated by a call to HDBRR (for the print.HDBRR

and plot .HDBRR functions) or an object of class summary . HDBRR (for the print.summary.

function).

The returned values for the summary is a list of estimated coefficients (Estimate), their
standard deviations (Std. dev), the signal-to-noise ratio (SNR) and twice the conditional
log Bayes Factor en favor to include each covariate (21n(BF)). When all.coef = TRUE, then
estimations for all ridge regression parameters will be returned, otherwise only for those whose
21n(BF)>crit. The default value for crit is 1og(4). The interpretation of 21n(BF) is in the
“Kass-Raftery” scale (?), where

2log(Bayes Factor) Bayes Factor Evidence against Hj

(—00,0) [0,1) Negative
[0,2) [1,3) Weak
[2,6) [3,20) Positive
6, 10) [20, 150) Strong

[10, 4-00) [150, 4+-00) Very Strong

Table 3: Bayes Factor interpretation using “Kass-Raftery” scale.
Also, the summary function returns the estimation for the ridge parameter (5\) and the effec-
tive degrees of freedom (edf). When the corpred argument is NULL, then the edf value
will be NULL. If the ¢ value is NULL, then the Bayes Factor will not be calculated.

The plot function returns three graphs: 1) the plot of B vs p, 2) a plot with 4 subplots,
predicted values vs observed values, coefficients, Std. dev. (for coefficients) and
SNR and 3) the plot of the “Marginal Posterior of u”. CAMBIAR en la siguiente versién
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la grafica 2) de modo que los cuatro graficos se produzcan individualmente, como en lm.
The predict function returns a vector with the predicted values (§¥).
Dataset

The HDBRR package comes with a dataset named “phenowheat”, which contains data from
a balanced four-way multi-parental cross population from four elite durum wheat cultivars
(Neodur, Claudio, Colosseo, and Rascon/Tarro) that were chosen as diverse contributors of
different alleles of agronomic relevance. The final population includes 338 recombinant inbred
lines (RILs) and the final number of SNPs included in the linkage map was 7594, which were
centered and standardized. Phenotypic evaluation of the population was performed during
two growing seasons (2010-2011 and 2011-2012) in locations in the Po Valley: Cadriano in
the 2010-2011 growing season (Cadll) and the 2011-2012 growing season (Cadl12); Poggio
Renatico in the 2010-2011 growing season (Pr11) and Argelato in the 2011-2012 growing sea-
son (Argl2). The four traits included in this study where grain yield GY (Mg ha~!), heading
data HD (d) , 1000-kernel weight GWT (g 1000 kernels™!) and grain volume weight GVW
(kg hL.=1) . For a detailed description of the data set see Milner et al. (2015).

Box 2: Loading the phenowheat data set included in HDBRR

library (HDBRR)
data(phenowheat)
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3.1. Application Example

In order to illustrate the use of the HDBRR package with other real data and to show the
outputs obtained, the methods summary, predict and plot are shortly explained

Consider the “phenowheat” data set included in HDBRR. The data are loaded as in the
Box 2. In order to obtain the y vector, the Imer function is used. This allow us to find the
best linear unbiased predictions of the HD trait after adjusting for the environment (see Box
3b part #1#).

Box 3b: Example with dataset “phenowheat"

#1# mod <- lmer (pheno$HD~pheno$env+(1|pheno$Line))
y <- unlist(ranef (mod))

#2# n <- length(y)

X <- scale(X, scale=F)

fitall <- HDBRR(y, X/sqrt(ncol(X)), intercept = FALSE, corpred = "eb",
c = 100)

#3# fitall

summary (fitall, crit = 0)
plot(fitall, crit = 0)
predict(fitall)

In second part (#2#) the fit is done by calling the HDBRR function where the covariates
are scaled to avoid extremely small regression coefficients. In the third part (#3#) the results
for fitall are returned. If p > 250, then only 250 coefficients are displayed.

In Box 3c the structure of the object returned by HDBRR function is shown. For this
case 250 coefficients were returned, but in the Box only 14 coefficients were printed.

( N
Box 3c: Structure of the object fitall returned by HDBRR (after running the code
in Box 3b part #3+#)

> fitall

Call:
HDBRR(y = y, X = X/sqrt(ncol(X)), intercept = F, ¢ = 100, corpred = "eb")

Coefficients:
X1 X2 X3 X4 X5 X6 X7
-0.069050 0.117750 -0.075723 -0.115526 -0.006621 -0.111297 -0.062642
X8 X9 X10 X11 X12 X13 X14

-0.088641 -0.096674 -0.114091 -0.063993 -0.082015 -0.114091 -0.107933

. 7580 coefficients was omitted
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The object HDBRR is a list of 21 elements, included betahat (B), yhat (), sigsqhat (62) and
sigbsqhat (62). In the Box 3d there are some elements contained by an object of the class
HDBRR .

( N
Box 3d: Structure of the object returned by HDBRR (after running the code in Box
3b)
str(fm)

List of 21

$ betahat : num [1:7594] -0.06905 0.11775 0.07572 ...
$ yhat : num [1:338] -0.394 -0.52 2.876 ...

$ sdyhat : num [1:338] 0.643 0.648 0.619 ...

$ sdpred : num [1:338] 1.71 1.72 1.7 ...

$ varb : num [1:7594] 0.3219 0.8271 0.0511 ...

$ sigsqghat : num 2.52

$ sigbsghat : num 6.88

$u : num [1:200] 0.116 0.117 0.119 ...

$ postu : Named num [1:200] 2.22e-05 2.73e-05 ...
..— attr(*,"names") = chr [1:200] "84.1344\}%"

$ uhat : num 0.273

$ umode : num 0.261

$ whichNa : int (0)

$ phat : num [1:7594] 3.53e-04 1.02e-03 ...

$ delta : num 7.96

$ edf : num 140

$ corr : num [1:338] 0.804 0.818 0.793 ...

. J

The summary function was explained above. Here, the crit argument was set equal to 0
because the probability of inclusion in very low (the default value for this argument is log4).
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Box 3e: Summary of the object returned by HDBRR (after running the code in Box
3b part #3#).

> summary(fitall, crit = 0)

Call:
HDBRR(y = y, X = X/sqrt(ncol(X)), intercept = FALSE, c = 100,
corpred = "eb")

Coefficients:

Estimate Std. dev SNR  21n(BF)
X1189 -3.477229 0.5949053 -5.845014 0.7370653
X1190 -3.411983 0.5887797 -5.795009 0.6232837
X1191 -3.437302 0.6060903 -5.671272 0.6674882
X1192 -3.578898 0.6424279 -5.570895 0.9133567
X1193 -3.595580 0.6084415 -5.909492 0.9422146
X1194 -3.548588 0.5963829 -5.950185 0.8609486
X1195 -3.581506 0.6196334 -5.780039 0.9178934
X1196 -3.376780 0.5930485 -5.693935 0.5616503
X1197 -3.444590 0.6027798 -5.714507 0.6802414
X1198 -3.443699 0.6013025 -5.727066 0.6786374
X1199 -3.395415 0.5896655 -5.758205 0.5942924
X1205 -3.623269 0.6607038 -5.483955 0.9899897

Signif. codes: 10 '#¥*' 6 's*x' 2 'x' 0O ' !

Ridge parameter: 0.3754
Effective degrees of freedom: 140.3917

Note that the estimation of the ridge parameter returned is A = 0.3754. The estimated effec-
tive degrees of freedom (edf) are equal to 140.3917.

Similarly, the plot function was discussed above and for this example the results are shown in
Figure 2. For variable selection, in the plot function the value of the crit argument was set
to 0, such that in the estimated coefficients vs selection probability plot, the variable names
that appear are those for which 2log (BF) > 0 (see Figure 7?7 (a)).

Figure 2 (b) is the marginal posterior of wu.

The predict function applied to the object HDBRR fitall returns the predictions of the
model, which are the mean of the posterior predictive distribution. See Box 3f
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( N
Box 3f: Predict of the object returned by HDBRR (after running the code in Box
3b part #3#).

> predict(fitall)

[1] -0.39403 -0.52017 2.87568 1.51151 0.11663 0.70171 0.12358
[10] -2.15284 0.62729 -2.25787 2.89244 1.41203 0.50038 -0.44047 ...
[19] 1.90388 -2.76213 -1.91036 2.99180 3.89731 1.10541 1.47814 ...
[28] 0.38303 -1.05772 -0.47791 -0.91379 -1.00456 -0.85098 -1.25591

Finally, the Figure 2 (c) has 4 subplots, predicted values vs observed values, coefficients,
Std. dev. (for coefficients) and SNR. The first subplot (predicted values vs observed values)
include the Spearman correlation, for this case this value is 0.9196.

It is mentioned that the ability of MCMCs to sample from modern-day high-dimensional
posteriors has been limited by a widespread perception that these chains typically experience
serious convergence problems. Figure 2 (b) shows evidence on the advantage of the HDBRR
over MCMC, the posterior distribution is always calculated.
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Figure 2: Plots returned for the object fitall produced by the HDBRR function.
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4. Conclusions

We propose a computational method to make Bayesian inference for high-dimensional ridge
regression without using MCMC methods. Posterior means and variances of regression pa-
rameters, variance components and predictions for the conventional ridge Regression model
are obtained by using a convenient reparameterization. The problem is reduced to numerical
integration on the open interval (0,1) to get rid of a nuisance parameter, after SVD or QR
decomposition of the matrix X’X. The method is implemented in the R package HDBRR,
which allows us also to make also variable selection and prediction without appealing the
theoretical guarantees of MCMC methods. The results of cross validation shown that the
proposed method has a performance in computation time and accuracy at least as good as
the results obtained by using MCMC methods.

References

Alheety M, Kibria BMG (2011). “Choosing ridge Parameters in the Linear regression Model
with AR(1) Error: A comparative Simulation Study.” International Journal of Statistics
and Economics, T(A11).

Andrieu C, de Freitas N, Doucet A, Jordan MI (2003). “An Introduction to MCMC for
Machine Learning.” Machine Learning, 50(1), 5-43.

Cannon A (2009). “Negative ridge regression parameters for improving the covariance struc-
ture of multivariate linear downscaling models.” International Journal of Climatology,
29(5), 761-769.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, BRubin D (2021). “Bayesian Data
Analysis.” Electronic. URL https://users.aalto.fi/~ave/BDA3.pdf.

George EI, McCulloch RE (1993). “Variable Selection Via Gibbs Sampling.” Journal of the
American Statistical Association, 88(423), 881-889.

Gilks WR, Richardson S, Spiegelhalter D (1996). Markov Chain Monte Carlo in Practice.
CHAPMAN & HALL/CRC.

Goeman J, Meijer R, Chaturvedi N, Lueder M (2021). penalized: L1 (Laso and Fused Lasso)
and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model. URL https://cran.
r-project.org/web/packages/penalized/index.html.

Guan Y, Stephens M (2011). “Bayesian Variable Selection Regression for Genome-Wide
Association Studies and other Large-Scale problems.” The Annals of Applied Statistics, 5,
1780-1815.

Hoerl AE (1962). “Application of ridge analysis to regression problems.” Chemical Engineering
Progress, 58, 54-59.

Hoerl AE, Kennard RW (1968). “On regression analysis and biased estimation.” Technomet-
rics, 10, 422-423.


https://users.aalto.fi/~ave/BDA3.pdf
https://cran.r-project.org/web/packages/penalized/index.html
https://cran.r-project.org/web/packages/penalized/index.html

Blanca Monroy-Castillo, Sergio Pérez-Elizalde, Paulino Pérez-Rodriguez 25

Hoerl AE, Kennard RW (1970a). “Ridge Regression: Applications to Nonorthogonal Prob-
lems.” Technometrics, 12(1), 69-82.

Hoerl AE, Kennard RW (1970b). “Ridge regression: Biased estimation for nonorthogonal
problems.” Technometrics, 12(1), 55-67.

Hoerl AE, Kennard RW, Baldwin KF (1975). “Ridge regression: Some simulation.” Commu-
nications in Statistics, 4, 105-123.

Lee PM (2012). Bayesian Statistics An Introduction. Fourth edition. Wiley.

Milner SG, Maccaferri M, Huang BE, Mantovani P, Massi A, Frascaroli E, Tuberosa R, Salvi
S (2015). “A multiparental cross population for mapping QTL for agronomic traits in
durum wheat (Triticum turgidum ssp. durum).” Plant Biotechnology Journal, 14, 735-748.

Moritz S, Cule E, Frankowski D (2021). ridge: Ridge Regression with Automatic Selection of
the Penalty Parameter. URL https://CRAN.R-project.org/package=ridge.

Pérez P, de los Campos G (2016). BGLR: A Statistical Package for Whole Genome Regression
and Prediction. R package version 1.0.8, URL https://CRAN.R-project.org/package=
BGLR.

Rajaratnam B, Sparks D (2015). “MCMC-Based Inference in the Era of Big Data: A Funda-
mental Analysis of the Convergence Complexity of High-Dimensional Chains.” 1508.00947.

Reich BJ, Ghosh SK (2019). Bayesian Statistical Methods. A CHAPMAN & HALL BOOK.
Robert CP, Casella G (2010). Introducing Monte Carlo Methods with R. Springer.

Speagle JS (2020). “A Conceptual Introduction to Markov Chain Monte Carlo Methods.”
van Wieringen WN (2015). “Lecture notes on ridge regression.”

Yahya WB, Olaifa JB (2014). “A note on ridge regression modeling techniques.” FElectronic
Journal of Applied Statistical Analysis, 07(02), 343-361.

Affiliation:

Sergio Pérez-Elizalde

Socio Economia Estadistica e Informatica
Colegio de Postgraduados, México
E-mail: sergiop@colpos.mx

Blanca Monroy-Castillo

Socio Economia Estadistica e Informéatica
Colegio de Postgraduados, México
E-mail: blancamonroy.96@gmail.com


https://CRAN.R-project.org/package=ridge
https://CRAN.R-project.org/package=BGLR
https://CRAN.R-project.org/package=BGLR
1508.00947
mailto:sergiop@colpos.mx
mailto:blancamonroy.96@gmail.com

26 HDBRR: An R-package for Ridge Regression without MCMC

Paulino Pérez-Rodriguez

Socio Economia Estadistica e Informatica
Colegio de Postgraduados, México
E-mail: perpdgo@colpos.mx


mailto:perpdgo@colpos.mx

	Introduction
	Method and Materials
	Model
	Ridge Regression
	Bayesian inference for ridge regression
	Posterior Distribution
	Marginal posterior distributions of variance components

	Variable Selection
	Posterior Computation
	Posterior computation through SVD decomposition
	Posterior Computation through QR decomposition


	Results
	Application Example

	Conclusions

