
HDPenReg: An R package for LARS algorithm

Quentin Grimonprez

August 30, 2013

Contents

1 Introduction 1

2 Lasso & Fusion 1

2.1 Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 LARS algorithm 2

4 HDPenReg package 4

4.1 LarsPath class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 simul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 HDlars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 HDcvlars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.5 HDfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Introduction

Lasso, fused lasso and fusion problems are linear regression problems with l1 constraints on the estimates.
This package provides a C++ implementation of the LARS which is an algorithm to solve the lasso problem.

The storage of the results has been designed for handling the case n < p, where n is the number of individuals
and p the number of covariates.

In the next section, the lasso problem will be presented as well as the fusion. The LARS algorithm will be
detailed in section 3. In section 4, we will present all the functionalities of the package through some examples.

2 Lasso & Fusion

2.1 Lasso

Let X the matrix of size n× p of covariates and y, the response vector of length n.
The goal of ordinary least squares (OLS) is to find β̂ minimizing the total square sum error S(β̂) = ∥y−Xβ̂∥22.
If we have a lot of covariates, the estimates can be more difficult to interpret, we prefer to have less covariates

but the most relevant one. The lasso [Tibshirani, 1994] consists in adding a penalization on the l1-norm of β̂ to
the OLS problem. The aim of this penalization is to force some coefficients to be exactly zero.

So, the lasso problem is to find β̂ such that

β̂ = argmin
β

{

∥y − Xβ∥22
}

subject to ∥β∥1 ≤ t (1)

where the bound t is a tuning parameter. For large enough t, we obtain the OLS solution.

We will see later a path algorithm giving solutions for all values of the tuning parameter.
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2.2 Fusion

If there is an order in the covariates (e.g. DNA sequence), a penalization can be added to the lasso prob-
lem to encourage sparsity in the difference of successive coefficients. This new problem is called the fused
lasso[Tibshirani et al., 2005] and is defined by :

β̂ = argmin
β

{

∥y − Xβ∥22
}

subject to ∥β∥1 ≤ t1 and

p
∑

i=2

|βi − βi−1| ≤ t2 (2)

where t1 and t2 are tuning parameters.
The fused lasso problem is more difficult to solve, but it can be interesting to consider the problem with

only the second penalization. This problem is called the fusion.

β̂ = argmin
β

{

∥y − Xβ∥22
}

subject to

p
∑

i=2

|βi − βi−1| ≤ t2 (3)

The problem can be rewritten as a lasso problem:
Let L a matrix of size p× p
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The lasso form of the fusion problem is

θ̂ = argmin
β

{

∥y − Zθ∥22
}

subject to ∥θ∥1 ≤ t2 (4)

with θ = Lβ and Z = XL−1.

So, we have just to resolve the lasso problem with Z and then transform back the estimates to find the path
of the fusion problem.

3 LARS algorithm

The LARS (Least Angle Regression) algorithm [Efron et al., 2004] is a stepwise procedure for solving the OLS
problem, but with a modification, it can solve the lasso problem.

The principle of the algorithm is to add or drop covariate one-at-a-time in the active set (non zero covariates).
At each step, coefficients will be updated in making a step in the equiangular direction of the most correlated
covariates until a new covariate is added or dropped.

Algorithm

We want to estimate µ̂ = Xβ̂.
0) Let i = 1, A0 = ∅ the actual active (non zeros) covariates, µ̂A0

= 0 and ĉ = X ′y the current correlation.

Repeat until |A| = min(n, p):

1) Compute the greatest absolute current correlation :

Ĉ = max
j

{|ĉj |}.

2) Let Ai =
{

j : |cj | = Ĉ
}

, the active set.
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3) Define
XAi

= (. . . sign(ĉj)xj . . . )j∈Ai
.

We compute
GAi

= X ′
Ai

XAi

and
AAi

= (1′
Ai

G−1

Ai
1Ai

)−1/2

where 1Ai
is a vector of 1 of length |Ai|.

4) Compute the equiangular vector (unit vector making equal angles with the columns of XAi
)

uAi
= XAi

ωAi

where ωAi
= AAi

G−1

Ai
1Ai

.

5) Compute a = X ′uAi
.

6) Update of the coefficient :
µ̂Ai+1

= µ̂Ai
+ γ uAi

How to choose the value of γ?

Compute

γ̂ = min+

j∈Ac
i

{

Ĉ − ĉj

AAi
− aj

,
Ĉ + ĉj

AAi
+ aj

}

.

γ̂ is the smallest positive value such that a new index joins the active set.

For the OLS problem, we use γ = γ̂, but a lasso solution has a restriction, each non-zero coefficient of β̂j

must have the same sign as that of the current correlation ĉj .

So, we want to find this value called γ̃.

Let d̂ = sign(ĉ)Ai
ωAi

.

and

γj = −
β̂j

d̂j
.

Compute
γ̃ = min

γj>0
{γj} ,

and let j̃ the index such that γ̃ = γj̃ .

If γ̃ < γ̂, then
µ̂Ai+1

= µ̂Ai
+ γ̃ uAi

and Ai+1 = Ai − {j̃}

and skip the next step 1).

Else
µ̂Ai+1

= µ̂Ai
+ γ̂ uAi

.

7) Compute the current correlation

ĉ = X ′(y − µ̂Ai+1
).

and i = i+ 1 .
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4 HDPenReg package

4.1 LarsPath class

The HDlars and HDfusion functions return a LarsPath S4 object. This object contains:

variable A list of size step+1 of vectors.
The i-th element contains the vector of indices of active covariates at the step i− 1.

coefficient A list of size step+1 of vectors.
The i-th element contains the vector of the estimates for active covariates at the step i− 1.

mu Intercept.
meanX Mean of columns of X.
lambda Vector containing the penalty parameter at each step.

l1norm Vector containing ∥β̂∥1 at each step.
addIndex Vector of length "step" containing the index of the dropped variable at the each step,

0 means no variable has been dropped at this step.
dropIndex Vector of length "step" containing the index of the added variable at each step,

, 0 means no variable has been added at this step.
nbStep Number of steps of the algorithm.
ignored A vector containing indices of ignored covariates during the algorithm.
p Total number of covariates.
fusion TRUE if you have run the HDfusion.
error Error message from lars.

With LarsPath objects, you can use following methods :

• plot To see the path of the LARS algorithm.

• plotCoefficient To plot the values of estimates at a given step.

• coeff To extract in a vector the value of all estimates at a given step.

4.2 simul

This function simulates copy-number signals in genomic but it’s not based on any biological assumptions.

This function takes in following arguments:
n Number of individuals.
nbSNP Number of covariates.
probCas Probability for an individual to be a case.
nbSeg Number of causal segments.
meanSegmentsize Mean of segments.
prob A 2× 2 matrix containing probabilities for covariates to create an anomaly.

prob=

(

prob11 prob12
prob21 prob22

)

prob11 = P [ anomaly | causal covariates and control individual]
prob21 = P [ anomaly | causal covariates and case individual]
prob12 = P [ anomaly | no causal covariates and control individual]
prob22 = P [ anomaly | no causal covariates and case individual]

alpha Parameter of the beta law Beta(alpha, alpha).
This parameter allows to control the variance of the signal.

This function will generate n signals composed of noised segments. A "normal" segment will have a mean
of 2, whereas a segment with an anomaly will have a mean of 1 or 3.

The simulation process can be defined as follows:
First, we simulate the response yi, i = 1, . . . , n, yi ∼ B(probCas) and randomly choose the centers of causal

segments and their mean values (1 or 3 corresponding to a loss or a gain).
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Then for an individual i, at each covariate, we use a binomial law with parameters pjk (j = 1 for control
individual, and j = 2 for case individual, k = 1 for causal covariates and k = 2 for non-causal covariate) to
determine if there is an anomaly at the covariate.

Then, for each anomaly, we generate its size λ, λ ∼ P(meanSegmentSize).
Finally, we simulate the signal with a beta law m+ Beta(alpha, alpha) where m is a constant representing

the status of the segment (gain, normal or loss).
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Figure 1: Example of a simulated signal.

The function returns a list of 3 objects:

data Matrix of size n× p. Each row contains the signal for an individual.
response Vector of length n with the status (1 or 0) for each individual.
causalSNP Vector containing the indices of the centers of segments.

4.3 HDlars

The function HDlars performs the LARS algorithm, here is its usage in R:

> # HDlars(X, y, maxSteps,intercept,eps)

X Matrix of size n× p of covariates.
y Vector of length n with the responses.
maxSteps Maximal number of steps for the LARS algorithm.

The default value is 3*min(n,p).
intercept If TRUE, there is an intercept in the model.
eps Tolerance of the algorithm.

The default value is .Machine$double.eps∧0.5.

This function returns a LarsPath object (see section 4.1).

First, we try the function on a basic example.
We simulate a data set with the function simul.

> data1=simul(50,10000,0.4,2,1000,matrix(c(0,1,0,0),nrow=2),5)

With these parameters, only causal SNPs create an anomaly for the case individual, whereas for the control
there is no anomaly through the signal.

We launch the LARS algorithm on the simulated data data1.

> reslars=HDlars(data1$data, data1$response)

We can plot the path of the LARS algorithm with the plot function.
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> plot(reslars)

In abscissa, there are the values of ∥β̂∥1 at each step, and in ordinate, the value of coefficients. A colored

curve represents the evolution of the value of one coefficient of β̂ during the algorithm. A vertical blue line
indicates that a variable is added or dropped to the active set.
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Figure 2: Path of the LARS algorithm.

Have a look on the center of the causal segments and the selected covariates at step 15.

> sort(data1$causalSNP)

[1] 1446 7723

> sort(reslars@variable[[16]])

[1] 1089 1276 1500 1579 1711 1795 1826 1828 1915 7262 7344 7348 7422 7926 8192

We find SNPs that are geographically closed to the centers.

4.4 HDcvlars

In order to help select the most appropriate coefficients, a cross-validation function is available. This function
will split the data into k folds and performs lars on data from k − 1 folds and then use the remaining fold to
predict the response at given index and compute the prediction error.

The function HDcvlars performs a cross-validation, here is its usage in R:

> # HDcvlars(X, y, nbFolds, index, mode, maxSteps, partition, intercept, eps)
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X Matrix of size say n× p of covariates.
y Vector of length n with the responses.
nbFolds Number of folds for the cross-validation.

The default value is 10.
index Values at which prediction error should be computed.

When mode = "fraction", this is the fraction of the saturated |beta|.
When mode="lambda", this is values of lambda.

mode Either "fraction" or "lambda". Type of values containing in partition.
maxSteps Maximal number of steps for the LARS algorithm.

The default value is 3*min(n,p).
partition partition in nbFolds folds of y.
intercept If TRUE, there is an intercept in the model.
eps Tolerance of the algorithm.

The default value is .Machine$double.eps∧0.5.

This function returns a list containing :
cv Vector containing the mean squared error (MSE) for each index.
cvError Vector containing the standard error of the MSE for each index.
minCv Littlest mean squared error.
minIndex Value of index for which the cv criterion is minimal.
index l1 norm ratio at which the mean squared error of prediction was computed.
maxSteps Maximal number of steps for the LARS algorithm.

We perform a 5-folds cross-validation on the previously simulated data set.

> rescvlars=HDcvlars(data1$data, data1$response,5)

Then, we can plot the MSE curve

> plot(rescvlars)
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The L1-norm fraction with the littlest MSE is 1.
We can now compute the coefficients associated to this fraction with the computeCoefficients function.

> coefficients=computeCoefficients(reslars, rescvlars$minIndex, mode = "lambda")

We obtain a list containing two vectors : variable and coefficient.

If we have a new data set without the response, we can use the predict function to compute the associated
response.

> # yPred=predict(reslars, rescvlars$fraction, mode = "fraction")
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4.5 HDfusion

The HDlars function performs the LARS algorithm, here is its usage in R:

> # HDfusion(X, y, maxSteps,intercept,eps)

This function takes in arguments which are the same parameters as HDlars.

Try the function on the same data set as previously.

> resfusion=HDfusion(data1$data, data1$response)

We plot the path of the algorithm.

> plot(resfusion)

0.000 0.001 0.002 0.003 0.004 0.005

−
0
.0

0
1
0

−
0
.0

0
0
5

0
.0

0
0
0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

Lars path

l1 norm

C
o
e
ff
ic

ie
n
ts

Figure 3: Path of the LARS algorithm on Z.

It is the path of the LARS version of the fusion (see equation (4)), a non-zero coefficient means a breakpoint
in the solution with a jump of the value of the coefficient.

The LarsPath object contains the solution β̂ of (4) (for the lasso version of the fusion problem).
To obtain the value of the estimate for the fusion problem (3) at a given step, we can use the coefficient

function.
Coefficients are organized in segments of the same value. Here, it’s more difficult to analyze due to few

number of non-zero coefficient.
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> resfusion@nbStep

[1] 150

> plotCoefficient(resfusion,3)
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Figure 4: β̂ coefficients at the step 15.
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