Description Details Note Author(s) References See Also Examples
Calculates the RMS intrinsic and parameter-effects curvatures of a nonlinear regression model.
The DESCRIPTION file:
This package was not yet installed at build time.
Index: This package was not yet installed at build time.
We are deeply thankful to Drs. Paul Gilbert and Jinlong Zhang for their invaluable help during creating this package.
Peijian Shi, Peter Ridland, David A. Ratkowsky, Yang Li
Maintainer: Peijian Shi <peijianshi@gmail.com>
Bates, D.M and Watts, D.G. (1988) Nonlinear Regression Analysis and its Applications. Wiley, New York.
Ratkowsky, D.A. (1983) Nonlinear Regression Modeling: A Unified Practical Approach. Marcel Dekker, New York.
Ratkowsky, D.A. (1990) Handbook of Nonlinear Regression Models, Marcel Dekker, New York.
hessian
in package numDeriv, jacobian
in package numDeriv, rms.curv
in package MASS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | #### Example 1 ##################################################################################
graphics.off()
# The velocity of the reaction (counts/min^2) under different substrate concentrations
# in parts per million (ppm) (Page 269 of Bates and Watts 1988)
x1 <- c(0.02, 0.02, 0.06, 0.06, 0.11, 0.11, 0.22, 0.22, 0.56, 0.56, 1.10, 1.10)
y1 <- c(76, 47, 97, 107, 123, 139, 159, 152, 191, 201, 207, 200)
# Define the Michaelis-Menten model
MM <- function(theta, x){
theta[1]*x / ( theta[2] + x )
}
res0 <- fitIPEC( MM, x=x1, y=y1, ini.val=c(200, 0.05),
xlim=c( 0, 1.5 ), ylim=c(0, 250), fig.opt=TRUE )
par1 <- res0$par
par1
res1 <- derivIPEC( MM, theta=par1, z=x1[1], method="Richardson",
method.args=list(eps=1e-4, d=0.11,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
res1
# To calculate curvatures
res2 <- curvIPEC( MM, theta=par1, x=x1, y=y1, alpha=0.05, method="Richardson",
method.args=list(eps=1e-4, d=0.11,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
res2
# To calculate bias
res3 <- biasIPEC(MM, theta=par1, x=x1, y=y1, tol= 1e-20)
res3
## Not run:
res4 <- bootIPEC( MM, x=x1, y=y1, ini.val=par1, target.fun = "RSS",
control=list(reltol=1e-20, maxit=40000),
nboot=2000, CI=0.95, fig.opt=TRUE, seed=123 )
res4
## End(Not run)
# To calculate skewness
res5 <- skewIPEC(MM, theta=par1, x=x1, y=y1, tol= 1e-20)
res5
#################################################################################################
## Not run:
#### Example 2 ##################################################################################
graphics.off()
# Development data of female pupae of cotton bollworm (Wu et al. 2009)
# References:
# Ratkowsky, D.A. and Reddy, G.V.P. (2017) Empirical model with excellent statistical
# properties for describing temperature-dependent developmental rates of insects
# and mites. Ann. Entomol. Soc. Am. 110, 302-309.
# Wu, K.-J., Gong, P.-Y. and Ruan, Y.-M. (2009) Estimating developmental rates of
# Helicoverpa armigera (Lepidoptera: Noctuidae) pupae at constant and
# alternating temperature by nonlinear models. Acta Entomol. Sin. 52, 640-650.
# 'x2' is the vector of temperature (in degrees Celsius)
# 'D2' is the vector of developmental duration (in d)
# 'y2' is the vector of the square root of developmental rate (in 1/d)
x2 <- seq(15, 37, by=1)
D2 <- c(41.24,37.16,32.47,26.22,22.71,19.01,16.79,15.63,14.27,12.48,
11.3,10.56,9.69,9.14,8.24,8.02,7.43,7.27,7.35,7.49,7.63,7.9,10.03)
y2 <- 1/D2
y2 <- sqrt( y2 )
ini.val1 <- c(0.14, 30, 10, 40)
# Define the square root function of the Lobry-Rosso-Flandrois (LRF) model
sqrt.LRF <- function(P, x){
ropt <- P[1]
Topt <- P[2]
Tmin <- P[3]
Tmax <- P[4]
fun0 <- function(z){
z[z < Tmin] <- Tmin
z[z > Tmax] <- Tmax
return(z)
}
x <- fun0(x)
sqrt( ropt*(x-Tmax)*(x-Tmin)^2/((Topt-Tmin)*((Topt-Tmin
)*(x-Topt)-(Topt-Tmax)*(Topt+Tmin-2*x))) )
}
myfun <- sqrt.LRF
xlab1 <- expression( paste("Temperature (", degree, "C)", sep="" ) )
ylab1 <- expression( paste("Developmental rate"^{1/2}, " (", d^{"-1"}, ")", sep="") )
resu0 <- fitIPEC( myfun, x=x2, y=y2, ini.val=ini.val1, xlim=NULL, ylim=NULL,
xlab=xlab1, ylab=ylab1, fig.opt=TRUE,
control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par2 <- resu0$par
par2
resu1 <- derivIPEC( myfun, theta=par2, z=x2[1], method="Richardson",
method.args=list(eps=1e-4, d=0.11,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
resu1
# To calculate curvatures
resu2 <- curvIPEC( myfun, theta=par2, x=x2, y=y2, alpha=0.05, method="Richardson",
method.args=list(eps=1e-4, d=0.11,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
resu2
# To calculate bias
resu3 <- biasIPEC(myfun, theta=par2, x=x2, y=y2, tol= 1e-20)
resu3
resu4 <- bootIPEC( myfun, x=x2, y=y2, ini.val=ini.val1, target.fun = "RSS",
nboot=2000, CI=0.95, fig.opt=TRUE, seed=123 )
resu4
# To calculate skewness
resu5 <- skewIPEC(myfun, theta=par2, x=x2, y=y2, tol= 1e-20)
resu5
#################################################################################################
## End(Not run)
#### Example 3 ##################################################################################
graphics.off()
# Height growth data of four species of bamboos (Gramineae: Bambusoideae)
# Reference(s):
# Shi, P.-J., Fan, M.-L., Ratkowsky, R.A., Huang, J.-G., Wu, H.-I, Chen, L., Fang, S.-Y. and
# Zhang, C.-X. (2017) Comparison of two ontogenetic growth equations for animals and plants.
# Ecol. Model. 349, 1-10.
data(shoots)
attach(shoots)
# Choose a species
# 1: Phyllostachys iridescens; 2: Phyllostachys mannii;
# 3: Sinobambusa tootsik; 4: Pleioblastus maculatus
# 'x3' is the vector of the observation times from a specific starting time of growth
# 'y3' is the vector of the aboveground height values of bamboo shoots at 'x3'
ind <- 3
x3 <- time[code == ind]
y3 <- height[code == ind]
# Define the beta sigmoid model (bsm)
bsm <- function(P, x){
P <- cbind(P)
if(length(P) !=4 ) {stop("The number of parameters should be 4!")}
ropt <- P[1]
topt <- P[2]
tmin <- P[3]
tmax <- P[4]
tailor.fun <- function(x){
x[x < tmin] <- tmin
x[x > tmax] <- tmax
return(x)
}
x <- tailor.fun(x)
ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-2*tmax)*(
(x-tmin)/(topt-tmin) )^((topt-tmin)/(tmax-topt))
}
# Define the simplified beta sigmoid model (simp.bsm)
simp.bsm <- function(P, x, tmin=0){
P <- cbind(P)
ropt <- P[1]
topt <- P[2]
tmax <- P[3]
tailor.fun <- function(x){
x[x < tmin] <- tmin
x[x > tmax] <- tmax
return(x)
}
x <- tailor.fun(x)
ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-2*tmax)*
((x-tmin)/(topt-tmin))^((topt-tmin)/(tmax-topt))
}
# For the original beta sigmoid model
ini.val2 <- c(40, 30, 5, 50)
xlab2 <- "Time (d)"
ylab2 <- "Height (cm)"
re0 <- fitIPEC( bsm, x=x3, y=y3, ini.val=ini.val2, xlim=NULL, ylim=NULL,
xlab=xlab2, ylab=ylab2, fig.opt=TRUE,
control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par3 <- re0$par
par3
re1 <- derivIPEC( bsm, theta=par3, x3[15], method="Richardson",
method.args=list(eps=1e-4, d=0.11, zero.tol=
sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
re1
re2 <- curvIPEC( bsm, theta=par3, x=x3, y=y3, alpha=0.05, method="Richardson",
method.args=list(eps=1e-4, d=0.11, zero.tol=
sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
re2
re3 <- biasIPEC( bsm, theta=par3, x=x3, y=y3, tol= 1e-20 )
re3
## Not run:
re4 <- bootIPEC( bsm, x=x3, y=y3, ini.val=ini.val2, target.fun = "RSS",
control=list(trace=FALSE, reltol=1e-20, maxit=50000),
nboot=2000, CI=0.95, fig.opt=TRUE, fold=3.5, seed=123 )
re4
## End(Not run)
re5 <- skewIPEC( bsm, theta=par3, x=x3, y=y3, tol= 1e-20 )
re5
# For the simplified beta sigmoid model
# (in comparison with the original beta sigmoid model)
ini.val7 <- c(40, 30, 50)
RESU0 <- fitIPEC( simp.bsm, x=x3, y=y3, ini.val=ini.val7,
xlim=NULL, ylim=NULL, xlab=xlab2, ylab=ylab2,
fig.opt=TRUE, control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par7 <- RESU0$par
par7
RESU1 <- derivIPEC( simp.bsm, theta=par7, x3[15], method="Richardson",
method.args=list(eps=1e-4, d=0.11,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
RESU1
RESU2 <- curvIPEC( simp.bsm, theta=par7, x=x3, y=y3, alpha=0.05, method="Richardson",
method.args=list(eps=1e-4, d=0.11,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
RESU2
RESU3 <- biasIPEC( simp.bsm, theta=par7, x=x3, y=y3, tol= 1e-20 )
RESU3
## Not run:
RESU4 <- bootIPEC( simp.bsm, x=x3, y=y3, ini.val=ini.val7, target.fun = "RSS",
control=list(trace=FALSE, reltol=1e-20, maxit=50000),
nboot=2000, CI=0.95, fig.opt=TRUE, fold=3.5, seed=123 )
RESU4
## End(Not run)
RESU5 <- skewIPEC( simp.bsm, theta=par7, x=x3, y=y3, tol= 1e-20 )
RESU5
##################################################################################################
#### Example 4 ###################################################################################
# Data on biochemical oxygen demand (BOD; Marske 1967)
# References:
# Pages 56, 255 and 271 in Bates and Watts (1988)
# Carr, N.L. (1960) Kinetics of catalytic isomerization of n-pentane. Ind. Eng. Chem.
# 52, 391-396.
graphics.off()
data(isom)
Y <- isom[,1]
X <- isom[,2:4]
# There are three independent variables saved in matrix 'X' and one response variable (Y)
# The first column of 'X' is the vector of partial pressure of hydrogen
# The second column of 'X' is the vector of partial pressure of n-pentane
# The third column of 'X' is the vector of partial pressure of isopentane
# Y is the vector of experimental reaction rate (in 1/hr)
isom.fun <- function(theta, x){
x1 <- x[,1]
x2 <- x[,2]
x3 <- x[,3]
theta1 <- theta[1]
theta2 <- theta[2]
theta3 <- theta[3]
theta4 <- theta[4]
theta1*theta3*(x2-x3/1.632) / ( 1 + theta2*x1 + theta3*x2 + theta4*x3 )
}
ini.val8 <- c(35, 0.1, 0.05, 0.2)
cons1 <- fitIPEC( isom.fun, x=X, y=Y, ini.val=ini.val8, control=list(
trace=FALSE, reltol=1e-20, maxit=50000) )
par8 <- cons1$par
cons2 <- curvIPEC( isom.fun, theta=par8, x=X, y=Y, alpha=0.05, method="Richardson",
method.args=list(eps=1e-4, d=0.11,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2))
cons2
cons3 <- biasIPEC( isom.fun, theta=par8, x=X, y=Y, tol= 1e-20 )
cons3
## Not run:
cons4 <- bootIPEC( isom.fun, x=X, y=Y, ini.val=ini.val8, target.fun = "RSS",
control=list(trace=FALSE, reltol=1e-20, maxit=50000),
nboot=2000, CI=0.95, fig.opt=TRUE, fold=10000, seed=123 )
cons4
## End(Not run)
cons5 <- skewIPEC( isom.fun, theta=par8, x=X, y=Y, tol= 1e-20 )
cons5
##################################################################################################
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.