
MasterBayes: Maximum Likelihood and Markov chain

Monte Carlo methods for pedigree reconstruction,

analysis and simulation.

J. D. Hadfield

June 22, 2022

1



Contents

1 Markov Chain Monte Carlo 3
1.1 Metropolis-Hastings Updates and tunePed Objects . . . . . . . . 5
1.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 MCMC Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Prior Specifications and priorPed Objects . . . . . . . . . . . . . 9

2 A Worked Example: The Seychelles Warbler 10
2.1 Phenotypic Predictors . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Approximate Methods and startPed Objects . . . . . . . . . . . 13
2.3 Categorical Estimation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Full Probability Estimation . . . . . . . . . . . . . . . . . . . . . 18
2.5 Unsampled Parents . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Genotyping Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Further Examples using Simulated Data 28
3.1 Error Rate Estimation with and without a Pedigree . . . . . . . 28
3.2 Mismatch Tolerance and Computational Efficency . . . . . . . . 33
3.3 Equivalence with Poisson Models . . . . . . . . . . . . . . . . . . 36
3.4 Interactions and Reparameterisation . . . . . . . . . . . . . . . . 37
3.5 Interpreting Parameters Associated with Categorical Variables . 42
3.6 Unsampled Parents with Known Phenotypes: Estimating Extra-

pair Paternity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Assortative Mating and Heritability . . . . . . . . . . . . . . . . 48
3.8 Longitudinal Data and Multigenerational Pedigrees . . . . . . . . 53
3.9 Hermaphrodites and Selfing Rates . . . . . . . . . . . . . . . . . 56
3.10 Schrodinger’s Hermaphrodite Cat . . . . . . . . . . . . . . . . . . 57

A A Lightning Tour of Model Specification 62

2



This document provides worked examples for several types of model that
can be fitted using MasterBayes. The main emphasis is on the syntax used to
specify, estimate and interpret the models, although in some cases I have tried to
explain the underlying theory. I assume a basic familiarity with R. All example
code can be extracted by using the Stangle function on the file Tutorial.Rnw

in the MasterBayes/inst/doc/Figures folder.

> library("MasterBayes")

Many of the models that can be fitted are computationally intensive, and
many routines have been written in compiled C++ code for efficiency. Netherthe-
less, the amount of computing time required by some models may be a limiting
factor, and I incude model run times for many examples. These examples were
run on a dual Xeon 3GHz Linux machine with 1Gb RAM. In general the length
of the Markov chain is much shorter that what would be used in a real analysis.
Generally, these examples can be fitted in a few minutes, even seconds, but for
real problems I would suggest running multiple chains for as long as possible.
There have been many updates and bug fixes since the original version of Mas-
terBayes, and these used to be documented as footnotes in this manual. I have
now updated the manual and absorbed them into the body of the text.

1 Markov Chain Monte Carlo

In order to fit and interpret models successfully in MasterBayes it will be nec-
essary to have a baisc understanding of Marvov chain Monte Carlo (MCMC)
methods. I will give a non-technical, heuristic tour of MCMC that should give
an operational understanding of MasterBayes, and in particular the function
MCMCped. I strongly recommend reading one of the many good introductory
texts on the subject; my favourite is Bayesian Data Analysis [Gelman et al.,
2004].

Let’s imagine a model in which there are two parameters of interest, the
probability that territorial males gain paternity over non-territorial males, and
also the probability that old males gain paternity over young males. We will
denote the two parameters as β1 and β2, and group them in the vector β. We
are interested in the joint posterior distribution of these parameters conditional
on the parentage, spatial and age data we have collected (y):

Pr(β1, β2|y) (1)

The posterior probability distribution is a complete description of our state
of knowledge of the true value of β. The posterior is the product of two types of
information, information from the data we have collected (the likelihood) and
information that we have gained from prior experience (the prior).

For some very simple models the posterior distribution can be derived analyt-
ically. Let’s imagine that the equation describing the joint posterior distribution
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Figure 1: Bivariate posterior distribution of β

of β1 and β2 was known and could be plotted (see Figure 1). The area under the
distribution is equal to 1, since we are dealing with a probability, and we can
often summarise the posterior distribution using simple statistics. For example
we could state the values of β1 and β2 for the peak of the distribution, which
would represent the most likely values of β. We could state the width of the
distribution along the β1 axis as a measure of the precision with which we have
estimated β1, and so on.

For most models, however, we cannot derive the posterior distribution ana-
lytically, and we must use MCMC to get an approximation. MCMC relies on
the fact that although we cannot derive the complete posterior, we can calculate
the height of the posterior distribution at a particular set of co-ordinates. In this
example there are only two parameters, so we may be inclined to systematically
go through every likely combination of β1 and β2 and calculate the height of
the distribution at regular distances, and then plot Figure 1. The Markov chain
does exactly this, although it does not move systematically through parameter
space (the β1 and β2 co-ordinates in this case), it moves stochastically, hence the
name ‘Monte Carlo’. There are several ways in which we can get the chain to
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move in parameter space, and MasterBayes uses a combination of Metropolis-
Hastings updates and Gibbs sampling.

1.1 Metropolis-Hastings Updates and tunePed Objects

First we need to initialise the chain and specify a set of coordinates from which
the chain can start a journey through parameter space. Ideally we would like
to pick a region of high probability, as we do not want to waste time wandering
through regions of low probability: we are not so interested in determining the
height of the distribution outside of Figure 1 as it is virtually flat and close to
zero (or at least we hope so!). MasterBayes uses a mixture of Maximum Like-
lihood and heuristic techniques to determine the place from which the chain is
launched, the coordinates of the starting configuration are denoted βt=0.

After initialising the chain we need to decide where to go next, and this de-
cision is based on two rules. First we have to generate a candidate destination,
and then we need to decide whether to go there or stay where we are. There are
many ways in which we could generate the candidate coordinates, and Master-
Bayes uses a well tested and simple method. A random set of coordinates are
picked from a multivariate normal distribution that is centered on the initial
coordinates βt=0, and has a user specified variance. We will denote this new
set of coordinates as βnew. The question then remains whether to move to this
new set of coordinates or remain at our current coordinates βt=0 = βold. If the
height of the distribution at the new set of coordinates is greater, then the chain
moves from βold to βnew. If the new set of coordinates is in a region of lower
probability then the chain may move there, but not all the time. The probability
that the chain moves to low lying areas, is determined by the relative difference
between the heights of the posterior distribution at the two coordinates. If the
height of the distribution at βnew is 5 times less than the height at βold, then
the chain would move to the new set of coordinates 1 in 5 times, and βt=1 would
become βnew. Using these rules we can record where the chain has travelled and
generate an approximation of the posterior distribution. Basically, a histogram
of Figure 1.

The speed with which the chain moves through parameter space is critical,
and in part depends on the variance of the proposal distribution. Say we ini-
tialised the chain at the coordinates under the peak of the distribution in Figure
1, and specified the variance of the proposal distribution to be large (much larger
than the variance of the posterior distribution itself). Many of the candidate
coordinates would lie outside of Figure 1 in regions of very low probability, and
since the probability of moving there is low the chain would sit at the peak for
large amounts of time. We would have to run the chain for many iterations
before we could generate a histogram that was an adequate approximation of
Figure 1. Alternatively, we could specify the variance to be very small, say a
thousand times smaller than the variance of the posterior. In this case the co-

5



ordintates βnew and βold would be very close, and the chain would move almost
every iteration since the difference in heights of the posterior at the two coordi-
nates would be tiny. Although the chain is continuously moving it is travelling
such small distances each iteration that the chain would have to pass through
many iterations before it adequately covered parameter space.

tunePed objects control the variance of the proposal distributions for pa-
rameters updated by Metropolis-Hastings updates. By default, the standard
deviation of the proposal distribution will be the standard error of the parame-
ter estimated using Maximum Likelihood. Scaling constants can then be passed
to tunePed which are multiplied by the standard error squared to obtain the
variance of the proposal distribution. Ideally, the chain should move between
20% and 50% of the time, and this can be assessed by specifying verbose=TRUE

in MCMCped. The Metropolis-Hastings acceptance rates are then printed to the
screen during model fitting.

1.2 Gibbs Sampling

Gibbs sampling is a special case of Metropolis-Hastings updating, and MCM-

Cped uses Gibbs sampling to sample genotypes and parents. In the Metropolis-
Hastings example above, the Markov Chain was allowed to move in both di-
rections of parameter space simultaneously. An equally valid approach would
have been to set up two Metropolis-Hastings schemes where the chain was first
allowed to move along the β1 axis, and then along the β2 axis. In Figure 2
we have cut the posterior distribution of Figure 1 in half, and the edge of the
surface facing us is the conditional distribution of β1 given that β2 = 0:

Pr(β1|β2 = 0,y). (2)

In some cases, the equation that describes this conditional distribution can
be derived despite the equation for the complete joint distribution of Figure 1
remaining unknown. When the conditional distribution of β1 is known we can
use Gibbs sampling. Lets say the chain at a particular iteration is located at
zero for β2. If we updated β1 using a Metropolis-Hastings algorithm we would
generate a candidate value and evaluate its relative probability compared to
the old value. This procedure would take place in the slice of posterior that is
facing us in Figure 2. However, because we know the actual equation for this
slice we can just generate a new value of β1 directly. This is Gibbs sampling. If
for example, the slice of the posterior that we can see in Figure 2 has a normal
distribution with mean of zero and variance of one, then βnew

1 can simply be
drawn directly from this distribution. This can be much more efficient than
Metropolis-Hastings updates, and avoids the issue of having to specify the vari-
ance of a proposal distribution.
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Figure 2: Bivariate posterior distribution of β, for postive values of β2

1.3 MCMC Diagnostics

When fitting a model using MCMCped the parameter values through which the
Markov chain has travelled are stored and returned. The length of the chain (the
number of iterations) can be specified using the nitt argument of MCMCped, and
should be long enough so that the posterior approximation is valid. If we had
known the joint posterior distribution in Figure 1 we could have set up a Markov
chain that sampled directly from the posterior. If this had been the case each
successive value in the Markov chain would be independent of the previous value
after conditioning on the data, y, and a thousand iterations of the chain would
have produced a histogram that resembled Figure 1 very closely. However, gen-
erally we do not know the joint posterior distribution of the parameters, and we
use Gibbs sampling and Metropolis-Hastings updates to approximate this distri-
bution. For this reason the parameter values of the Markov chain at successive
iterations are usually not independent and care needs to be taken regarding the
validity of the approximation. MCMCped returns the Markov chain for continu-
ous parameters as mcmc objects, which can be analysed using the coda package.
The function autocorr estimates the level of non-independence between succes-
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sive samples in the chain for continuous parameters. For discrete parameters,
assessing auto-correlation is harder but the function autocorrP will calculate
an auto-correlation metric for parentage assignments. When auto-correlation is
high the chain needs to be run for longer, and this can lead to storage problems
for high dimensional problems. The argument thin can be passed to MCMCped

specifying the intervals at which the Markov chain is stored.

The approximation obtained from the Markov chain is conditional on the
set of parameter values that were used to initialise the chain. In many cases
the first iterations show a strong dependence on the starting parameterisation,
but as the chain progresses this dependence may be lost. As the dependence on
the starting parameterisation diminishes the chain is said to converge and the
argument burnin can be passed to MCMCped specifying the number of iterations
which must pass before samples are stored. Assessing convergence of the chain
is notoriously difficult. The posterior distribution in Figure 1 has a simple form
and the convergence of the chain would be easy to achieve. If however, the
posterior was multimodal convergence would be harder to achieve and diagnose.

Pr

β1

β2

C2

C1

Figure 3: A bimodal bivariate posterior distribution of β.
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For example, imagine a chain was initailised at C1 in Figure 3. The chain
may provide valid approximates for the region of high probability at small values
of β1 and β2 but it may fail to pass under the low probability ridge that connects
the two high probability regions. Conclusions drawn from a chain initialised a
C2 may be very different, and it is good practice to run multiple chains from
different starting parameterisations (See Section 3.10 for an interesting exam-
ple). For MCMCped models in which the posterior distribution of genotypes is
estimated, it is particularly important to assess the sensitivity of the chain to
different starting configurations. Genotype configurations with high probability
may be separated by configurations of low probability and the chain may mix
poorly. See Section 3.1 for an example where high probability genotype config-
urations are actually separated by configurations of zero probability. In such
cases the chain is said to be reducible and posterior simulation is not possible.

1.4 Prior Specifications and priorPed Objects

The posterior distribution is the product of the likelihood and the prior. If a
prior is not specified using the function priorPed, the default is to use an im-
proper uniform prior for all parameters, except allele frequencies, which have a
vague Dirichlet prior. For the size of the unsampled population and the geno-
typing error rates the prior has zero probability for negative values. When the
posterior distribution itself is improper (i.e if the volume under the surfaces
plotted in Figures 1 and 3 are not finite) then the posterior can no longer be
treated as a probability, and inferences taken from it would be compromised.
For some models the data will contain enough information to make the posterior
proper despite an improper prior specification. However, for chains in which a
sampled pedigree has little or no structure (i.e. all parents are unsampled),
or no sampled parents exist for some level of a categorical predictor variable,
then problems can occur unless informative priors are used. This last problem
is often encountered in real data-sets and has been referred to as the extreme
category problem. For example, the categorical variable ‘recorded in that

year/only recorded in the previous year’ may be fitted to account for
individuals that were not recorded but may have been alive. If these individuals
really were dead then the estimated probability of them having offspring tends
to zero which is −∞ on the logit scale. This problem can usually be identified
by the chain making long excursions into extreme values of the parameter space,
and can be solved by placing a prior on the parameter. I often use a prior with
mean zero and variance π2/3, as this is approximately uniform between 0 and
1 on the probability scale. In the extreme case, models in which parameters
are confounded, a proper prior distribution is required to make the parameters
identifiable. Imagine that all territorial males were old, and all non-territorial
males were young. If we tried to fit the two parameters, β1 and β2, in a sin-
gle model we would run in to difficulties. The parameters are not identifiable
because we cannot distinguish between the two alternatives; whether territorial
males gain more paternity because they hold a territory, or because they are
older. The likelihood surface for β would look something like Figure 4, with a
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ridge of high probability extending to infinity.

Pr

β1

β2

Figure 4: The likelihood of β, when the two parameters are not identifiable
from the data, y

In this instance the Markov chain would wander aimlessly along the ridge,
perhaps even giving the appearance of having converged. MasterBayes will not
check whether all parameters are identifiable.

2 A Worked Example: The Seychelles Warbler

To illustrate the basic methodology, I will use data collected in 1999 from the
Cousin Island population of the threatened Seychelles warbler [Richardson et al.,
2001].

> data(WarblerP)

> data(WarblerG)

WarblerP is a data frame containing phenotypic data for all individuals
recorded in that year. This includes a unique identifier for each bird, its sex
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and the territory it was recorded on. offspring is a binary vector with 1 indic-
dating the bird was born in 1999, and status is a factorial vector with 2 levels
indidcating whether the bird is a dominant or a subordinate. lat and long are
x and y coordinates for the centre of each bird’s territory. WarblerG is a data
frame containing the genotypes of each individual at 14 loci [Richardson et al.,
2000].

In this particular year there were 59 offspring, 127 adult females and 121
adult males recorded on the island. We will assume for now that an offspring’s
mother is always found on the same territory as the offspring, but an offspring’s
father could potentially be any one of the 121 sampled males, or even a male
that was not sampled. Initially, we will focus on modeling the degree to which
offspring and fathers are associated spatially, by estimating the rate at which
the probability of paternity drops with distance from the offspring. This rate
(β) is the exponential rate parameter, and we are interested in its probability
distribution given the data we have collected:

Pr(β|Gobs, lat, long, terr). (3)

G represents genotypes, and we use the subscript obs to indicate observed
rather than actual genotypes. This distinction is necessary when genotyping
error is present (see Section 2.6). Evaluating the problem in this form is in-
tractable, but the problem can be simplified by augmenting with the pedigree,
P : ∫

P

Pr(β,P |Gobs, lat, long, terr)dP . (4)

Equations 3 and 4 are equivalent. In the latter case we estimate the pedi-
gree, but we also integrate over any uncertainty that may remain regarding its
structure, leaving us with the marginal distribution of β. We will start by fitting
commonly used approximations to equation 4 and end by a fitting a model that
is very close to being exact.

2.1 Phenotypic Predictors

To fit the model we need to start by creating a variable that indicates whether
particular females and particular offspring occur on the same territory. Un-
fortunately the nature of these models precludes us from using the R formula
mini-language, and so variables are created using varPed and then evaluated as
part of the model formula in a PdataPed object

> res1<-expression(varPed(x="terr",gender="Female",

+ relational="OFFSPRING",restrict="=="))

x is the variable we are interested in, in this case territories. gender spec-
ifies whether the variable relates to maternity (gender="Female"), paternity

11



(gender="Male") or both (gender=NULL). The argument relational is a lit-
tle more complex, and specifies whether the variable is to be treated as it is
(relational=FALSE), or is to be transformed into a distance. relational="OFFSPRING"
creates a variable that is the distance between x measured in the offspring and
the parent, and relational="MATE" is the distance between x measured in a
potential mother and a potential father. When x is numeric, the transformed
variable is a Euclidean distance, although if V is appended to the relational
argument (e.g.relational="OFFSPRINGV") then the actual difference between
the two phenotypes is used rather than the absolute difference. When x is a
factor, the transformed variable is a logical vector with TRUE indicating that x

for the two individuals are the same, and FALSE indicating that they are differ-
ent. In this example we are dealing with a logical variable that is TRUE when
offspring and females are present on the same territory, and FALSE if not. We
could estimate a parameter associated with this variable which would be inter-
preted as the probability of within territory maternity. However, in this case we
are assuming that extra territory maternity does not occur and we can use the
argument restrict="==" to retain mothers that have the same territory as the
offspring for the transformed variable. Females that are on a different territory
to the offspring are excluded as mothers. This is essentially a strong prior on
the parameter associated with within territory/extra territory maternity, but is
computationally faster because excluded mothers can be discarded for particu-
lar offspring.

We also need to exclude individuals that are born in 1999 as potential parents

> res2<-expression(varPed(x="offspring",gender=NULL,

+ relational=FALSE,restrict=0))

We want to exclude individuals that have 1 in the variable offspring, as
they represent chicks born in 1999. We want to exclude offspring irrelevant of
their sex so gender=NULL and we want to evaluate x as it is (i.e. as a binary
variable). We exclude offspring by specifying restrict=0 which retains indi-
viduals that have 0 in the offspring variable.

The goal of the analysis is to estimate β, the rate at which paternity drops
with distance from an offspring

> var1<-expression(varPed(x=c("lat", "long"),gender="Male",

+ relational="OFFSPRING"))

x in this instance contains two variables that specify the coordinates of
each individual on the island. Because relational="OFFSPRING" this vari-
able is interpreted as the Euclidean distance between offspring and fathers
(gender="Male") in 2 dimensions. restrict is not specified indicating that
all males are potential fathers.

p
(o)
i,j ∝ exp(β

√
(latj − lato)2 + (longj − longo)2) (5)
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The full notation for a multinomial model is cumbersome so I’ll express all
models in this form for clarity. A full list of models and the associated varPed

specifications can be found in Appendix A. p
(o)
i,j is the probability that female i

and male j are the parents of offspring o.

These variables are to be evaluated inside various functions, and they need
to be associated with the data.frame in which x is stored. We also need to
provide data on the sex, age, and id of each individual. This is done by creating
a PdataPed object.

> PdP<-PdataPed(formula=list(res1, res2, var1), data=WarblerP, USsire=TRUE)

The variables are passed as a list to the argument formula, and the relevant
data are contained in WarblerP. In this case variables named id, sex and off-

spring exist in WarblerP and they do not need to be specified explicitly. All
PdataPed objects must contain an id and offspring variable containing unique
identifiers for each individual, and a variable indicating whether records belong
to offspring. If data does not have a sex column, or sex=NULL, the data are
assumed to have been collected from a hermaphrodite system (see Sections 3.9
and 3.10). Elements of the sex vector must be either "Male", "Female" or NA.
In this model we also allow for the presence of unsampled males: USsire=TRUE.

We also need to create a GdataPed object for storing the genotype data and
some associated information

> GdP<-GdataPed(G=WarblerG, categories=NULL)

GdataPed objects store genotype data (G) as a list of genotype objects for
co-dominant markers (see the package genetics), or genotypeD objects for domi-
nant markers. A list of genotype or genotypeD objects can be directly passed to
the argument G, or a data frame can be passed that is coerced to a list of geno-
type objects using the function genotype.list. The variable id is required,
and links genotypes with individuals. Individuals can have multiple genotypes
if they have been genotyped more than once. If G is a data.frame with a column
named id, id does not have to be explicitly passed to GdataPed. The argu-
ment marker.type specifies whether the genotypes are dominant ("AFLP") or
co-dominant with genotyping errors occurring according to the model of Wang
[2004] ("MSW") or CERVUS [Marshall et al., 1998] ("MSC"). If categories is not
specified then genotyping error rates are assumed not to vary across genotypes,
otherwise categories must be a vector of factors the same length as id.

2.2 Approximate Methods and startPed Objects

The optional startPed object specifies the starting parameterisation for the
model, and logical arguments specifying which parts of the model are to be
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fixed at the starting parameterisation and not estimated. Maximum likeli-
hood or heuristic starting parameterisations are used by default, and all es-
timable parameters are estimated, unless otherwise specified. These parameters
may include the pedigree (P), genotypes (G), base population allele frequencies
(A), genotyping error rates (E1 and E2), unsampled male (USsire) and female
(USdam) population sizes, and most importantly the parameters of the multi-
nomial log-linear model (beta). Estimating all unknown parameters can be
computationally intensive, and preliminary analyses can usually be carried out
using approximate methods. A commonly used approximation for dealing with
genotyping error is to integrate out any uncertainty prior to the parentage anal-
ysis (See Section 3.1). We can use the approximation by specifying estG=FALSE;
if we were to use the exact solution we would be required to estimate the actual
genotypes of all individuals. When estG=FALSE, error rates and allele frequen-
cies cannot be estimated and need to be specified. Allele frequencies, if not
explicitly specified, are taken directly from the genotype data using the func-
tion extractA.

2.3 Categorical Estimation

The most popular software for parentage analysis is CERVUS [Marshall et al.,
1998]. MasterBayes can fit CERVUS type models as a special case, although
a major differences exist between the MasterBayes implementation and the
CERVUS implementation. In MasterBayes confidence in parentage assignments
is assessed at the level of individual assignments and the measure of confidence
uses all the information provided by potential parents. CERVUS on the other
hand assesses confidence at the level of the population, and only uses the infor-
mation provided by the two most likely parents [Nielsen et al., 2001]. By default,
the model defined in Equation 4 is fitted with the minimal amount of approxima-
tion. To fit a CERVUS type approximation we need to do a little more work. We
need to specify that an approximation is to be used for genotyping error, and we
need to provide point estimates for the allele frequencies and the genotyping er-
ror rate (see Section 2.2). By default MasterBayes will not use CERVUS’s model
of genotyping error but uses the model devloped in Wang [2004]. CERVUS’s
model can be fitted by passing the argument marker.type="MSC" but we will
stick with Wang’s model and leave the error rates at their default values of 0.005
(see Section 2.6). We’ll also specify that the number of unsampled males is not
to be estimated (see Section 2.5), and use a point estimate of 10 instead.

> sP<-startPed(estG=FALSE, E1=0.005, E2=0.005, A=extractA(WarblerG),

+ estUSsire=FALSE, USsire = 10)

CERVUS breaks the problem down into two stages. In the first stage the
pedigree is estimated using the genetic data alone, and this pedigree (or part
of it) is then passed to the second stage, where the spatial parameter, β is
estimated. We start by estimating the pedigree using the function MCMCped

which returns samples of the posterior distribution of all unknowns.
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> PdPCervus<-PdataPed(formula=list(res1, res2), data=WarblerP, USsire=TRUE)

> model1<-MCMCped(PdP=PdPCervus, GdP=GdP, sP=sP,

+ verbose=FALSE)

[1] "using an approximation for genotyping error"

Note that we have created a new PdataPed object, PdPCervus, that does
not contain the distance variable as we wish to use the genetic data only to
infer parentage. Because the only unknown in this model is the pedigree the
object model1 only contains a single element (P): the posterior distribution of
the pedigree. By default this is the marginal distribution of parental pairs, and
we can extract the mode of this distribution

> ped1<-modeP(model1$P, threshold=0)

> ped1$P[1:10,]

[,1] [,2] [,3]

[1,] "N748835" "K278102" "N021989"

[2,] "Z993558" "K278102" "K278027"

[3,] "N748825" "K278115" "N021716"

[4,] "N748841" "N021991" "VE80200"

[5,] "N748842" "J368410" "J368403"

[6,] "N748848" "J854303" "K278101"

[7,] "Z993553" "K278011" "J368403"

[8,] "N748838" "N021965" "N021760"

[9,] "N748827" "K278018" "N021839"

[10,] "Z993562" "K278018" "N021707"

In this example the most likely pedigree for the first ten offspring is displayed,
with the offspring, dam and sire in each column. If the most likely father for one
of these offspring is unsampled then the respective element of the sire column
is designated as USsire. For such a simple model, Markov chain Monte Carlo
is redundant as the posterior distribution of the pedigree can be calculated
analytically.

> ped2<-MLE.ped(getXlist(PdPCervus, GdP), USsire=TRUE, nUSsire=10)

> ped2$P[3:12,]

[,1] [,2] [,3]

[1,] "N748835" "K278102" "N021989"

[2,] "Z993558" "K278102" "K278027"

[3,] "N748825" "K278115" "N021716"

[4,] "N748841" "N021991" "VE80200"

[5,] "N748842" "J368410" "J368403"

[6,] "N748848" "J854303" "K278101"

[7,] "Z993553" "K278011" "J368403"

[8,] "N748838" "N021965" "N021760"

[9,] "N748827" "K278018" "N021839"

[10,] "Z993562" "K278018" "N021707"
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This is the Maximum Likelihood estimate of P and is equivalent, in this
model, to the Bayesian estimate when all parental combinations have an equal
prior probability of being the parents. All code is ran afresh each time this
manual is updated, so for some readers there may be some discrepancies between
the MCMC and ML output due to Monte Carlo error, when two or more fathers
have almost identical probabilities of being the true father. We can extract the
posterior probabilities for these assignments estimated by the different methods
to assure ourselves that this is the case:

> discrepancies<-which(ped1$P[,3][1:10]!=ped2$P[,3][3:12])

> ped1$prob[1:10][discrepancies]

numeric(0)

> ped2$prob[3:12][discrepancies]

numeric(0)

We will return to the function getXlist later, and proceed to estimate β
assuming the MLE/posterior mode of the pedigree is the true pedigree. We do
this by passing the ML pedigree to a startPed object (ped=ped2$P)), and by
specifying that the pedigree should not be estimated (estP=FALSE), but should
be fixed.

> sP<-startPed(estP=FALSE, ped=ped2$P, estUSsire=FALSE)

> model2<-MCMCped(PdP=PdP, sP=sP, verbose=FALSE)

> plot(model2$beta)

> summary(model2$beta)

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

-0.0542810 0.0081881 0.0002589 0.0002719

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

-0.07054 -0.05983 -0.05411 -0.04861 -0.03899

The genetic data are not required since the pedigree is treated as known, and
only the PdataPed object (PdP) needs to be passed to MCMCped. Again, with
such a simple model, Maximum Likelihood gives valid results, and the large
sample approximation for the standard error is close to the Bayesian estimate.
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Figure 5: Posterior distribution of β from model2. The posterior is conditional
on the categorical assignment of the pedigree being true. These plots are a
way of summarising a Markov Chain using the coda package. The left plot is
a trace of the sampled posterior, and can be thought of as a time series. The
right plot is a density estimate, and can be thought of a smoothed histogram
approximating the posterior. See Section 1 for more details.

> MLElat<-MLE.beta(getXlist(PdP), ped2$P)

> MLElat$beta

[,1]

[1,] -0.05351072

> # ML estimate

> sqrt(MLElat$C)

[,1]

[1,] 0.00809248

> # SE

Despite the two methods giving similar estimates, they are both severely
biased towards zero; the value of β that would be observed if fathers were

17



distributed randomly across the island with respect to their offspring. We can
get a feel for this by estimating β for those paternity assignments that had a
probability exceeding 0.9.

> ped3<-modeP(model1$P, threshold=0.9)

> ped3$P[1:10,]

[,1] [,2] [,3]

[1,] "N748835" NA NA

[2,] "Z993558" NA NA

[3,] "N748825" NA NA

[4,] "N748841" NA NA

[5,] "N748842" NA NA

[6,] "N748848" NA NA

[7,] "Z993553" "K278011" "J368403"

[8,] "N748838" "N021965" "N021760"

[9,] "N748827" NA NA

[10,] "Z993562" NA NA

> MLElat3<-MLE.beta(getXlist(PdP), ped3$P)

> MLElat3$beta

[,1]

[1,] -0.2315504

> # ML estimate

> sqrt(MLElat3$C)

[,1]

[1,] 0.04647355

> # SE estimate

The first thing to notice is that by only using males that have a greater than
0.9 probability of being the father, we are excluding 75% of the offspring from
the analysis. Because of this the standard error of β is more than 5 times larger
than that in the previous model. However, the ML estimate of β is significantly
larger than in the previous model suggesting that our basic model is wrong.

2.4 Full Probability Estimation

The reason that it is wrong is because we have failed to use the information
contained in the phenotypic data to help us estimate the pedigree. Equation 4
can be rewritten

Pr(β,P |Gobs, lat, long, terr)

Pr(P |βGobs, lat, long, terr)
. (6)

18



and can be simplified under the assumption that the genetic data provide
no information regarding β once the pedigree is known

Pr(Gobs|P )Pr(P |β, lat, long, terr)

Pr(P |β,Gobs, lat, long, terr)
Pr(P , β) (7)

The fundamental difference between the exact solution implemented in Mas-
terBayes and the approximations used in categorical and fractional type ap-
proaches lies in the denominator of equation 7. This equation highlights the
importance of using the phenotypic data to aid pedigree reconstruction, and
the central role that β plays in mediating this information. The CERVUS type
approximation makes the mistake of assuming that only the genetic data are
required to estimate the pedigree [see the information boxes in Hadfield et al.,
2006].

We can fit a model where the pedigree and β are estimated simultaneously,
although for now we will retain the approximation for genotyping error and
leave the number of unsampled males fixed at 10.

> sP<-startPed(estG=FALSE, A=extractA(WarblerG), E1=0.005, E2=0.005,

+ estUSsire=FALSE, USsire=10)

> model3<-MCMCped(PdP=PdP, GdP=GdP, sP=sP, verbose=FALSE)

[1] "using an approximation for genotyping error"

> plot(model3$beta)

> summary(model3$beta)

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

-0.2335404 0.0298062 0.0009426 0.0017287

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

-0.2927 -0.2534 -0.2325 -0.2131 -0.1782

This estimate is much closer to the ML estimate for the restricted pedigree
ped3, although the standard error is tighter because the whole pedigree is used.
It should also be noted that the ML standard error is artificially low because it
does not take into account the uncertainty in the pedigree. This is another draw
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Figure 6: Posterior distribution of β from model3. The pedigree and β have
been simultaneously estimated, but an approximation for genotyping error has
still been used. It was also assumed that the size of the unsampled population
and the genotyping error rate were known.

back of the categorical approach; once the pedigree is estimated you then have
to treat it as if it was known with complete certainty, rather than a random
variable.

2.5 Unsampled Parents

Next we will relax the assumption that the number of unsampled males is 10
and simultaneously estimate the number from the data:

> sP<-startPed(estG=FALSE, A=extractA(WarblerG), E1=0.005, E2=0.005)

> model4<-MCMCped(PdP=PdP, GdP=GdP, sP=sP, verbose=FALSE)

[1] "using an approximation for genotyping error"

> plot(model4$USsire)

> summary(model4$USsire)
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Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

34.0521 15.3947 0.4868 0.4867

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

12.73 23.11 30.98 41.64 72.35
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Figure 7: Posterior distribution of the number of unsampled males from model4.
The number of unsampled males, the pedigree and β have all been simultane-
ously estimated, but we have still used an approximation for genotyping error.

The population of Seychelles Warbler on Cousin Island is small and essen-
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tially closed. Given that the island has been extensively sampled we have rea-
sonable prior belief that the number of unsampled males is somewhere between
2 and 15, and an estimate of 30.98 unsampled males seems unreasonably large.
We could set up a prior specification that reflected this, but before doing this
it will be useful to discuss some possible reasons why the model has failed to
estimate the number of unsampled males accurately.

The problem of accommodating unsampled parents is a difficult one because
the genotypes and phenotypes of unsampled individuals are by definition un-
observed. This does not mean that information does not exist in the observed
data regarding the genotypes and phenotypes of unsampled individuals. Imag-
ine, that 3 offspring in the north of the island possess an allele that is not present
in the sampled parental population. If genotyping error was low enough we could
be reasonably confident in stating that an unsampled male was present in the
north of the island and that his genotype contained the rare allele. However,
using this information is difficult and I use two approximations for dealing with
unobserved genotypes and phenotypes that are based around the same logic.

Nielsen et al. [2001] gives the likelihood of the total male population size,
sampled and unsampled, given the genotype data and known mother-offspring
pairs:

Pr(G|N ,A) =

no∏
i

N − n
N

Pr(Oi|Mi,A) +

n∑
j=1

1

N
Pr(Oi|Mi,Fj)

 . (8)

N and n are the total and sampled male population sizes, respectively, and
no is the number of sampled mother-offspring pairs. O, M and F are the
genotypes of offspring, mothers, and sampled father’s respectively, and A are
the allele frequencies in the unsampled population. The two genetic likelihoods
are the Mendelian transition probability, Pr(Oi|Mi,Fj), and an approximation
when the genotype of a parent is unknown, Pr(Oi|Mi,A). This approximation
makes several assumptions: a) genotype frequencies can be inferred from allele
frequencies under the assumption of Hardy-Weinberg equilibrium; b) the allele
frequencies in the base population are known with certainty; c) genotyping error
does not exist; d) the size of the unsampled population is so large that the allele
frequencies in the unsampled population do not differ from A; and e) O and
M provide no information regarding the genotypes of unsampled males after
conditioning onA. Generally, A is estimated fromG and an additional assump-
tion must be made that f) unsampled males and sampled individuals come from
the same statistical population with respect to allele frequencies. MasterBayes
makes all these assumptions except b) and c), and I return to assumption e) in
Section 3.8.

We can fit Nielsen’s [2001] model using the function MLE.popsize by speci-
fying the genotype error rate to be effectively zero
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> MLEUSsire<-MLE.popsize(getXlist(PdP, GdP, E1=1e-10, E2=1e-10),

+ USsire=TRUE, USdam=FALSE)

> MLEUSsire$nUS

[,1]

[1,] 102.828

> # ML estimate

> sqrt(MLEUSsire$C)

[,1]

[1,] 32.71612

> # SE estimate

Even larger! The estimates of the unsampled population size are sensitive
to even low levels of genotyping error, and this is obvious when we fit the same
model but with the stochastic genotyping error rate set to 0.01 per allele

> MLEUSsire2<-MLE.popsize(getXlist(PdP, GdP, E1=1e-10, E2=0.01),

+ USsire=TRUE, USdam=FALSE)

> MLEUSsire2$nUS

[,1]

[1,] 34.87078

> # ML estimate

> sqrt(MLEUSsire2$C)

[,1]

[1,] 19.66623

> # SE estimate

Perhaps we had underestimated the level of genotyping error in our original
models, and this possibility will be returned to in Section 2.6. Another possible
reason why our estimate of the unsampled population may be to high, is because
Equation 8 makes the assumption that unsampled males and sampled males do
not systematically differ in their ability to sire the sampled offspring.

When we estimate the number of unsampled males using MCMCped Equation 8
has a simpler form because the parameter space is augmented with the pedigree
(See Equation 4):

Pr(P |N) =

no∏
i

[
N − n
N

(1− δobsi ) +
1

N
δobsi

]
(9)

Here we have replaced the genetic likelihoods in Nielsen’s original equation
with the indicator variable δobsi . δobsi takes on the value 1 when offspring i’s
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father has been sampled, and 0 otherwise. If we knew the pedigree exactly then
the Maximum Likelihood Estimate for the number of unsampled males (N −n)
is simply the number of offspring with unsampled fathers divided by the average
number of offspring per sampled father:

MLE(N − n) =
nuso n

s
o

n
(10)

where nuso and nso are the number of offspring with sampled and unsampled
parents parents, respectively.

A more general solution than Equation 9 is:

Pr(P |N) =

no∏
i

 N − n

N − n+ E
[

p̂obs
i

p̂miss
i

]
n

(1− δobsi ) +
1

N − n+ E
[

p̂obs
i

p̂miss
i

]
n
δobsi


(11)

where p̂obsi and p̂miss
i are the linear predictors of paternity for sampled and

unsampled males, respectively. Nielsen’s original formulation of the problem
assumes that the expectation of the ratio in Equation 11 is exactly one, and
the estimate of the male population size has to be interpreted as an effective
population size assuming all males to be equal.

The default in MasterBayes is to assume that this ratio has an expectation
of 1. However, we still need to estimate the distribution of the mean linear
predictor for unsampled individuals (p̂miss

i ) so that we can sample the pedigree
correctly.

The parentage of each offspring is sampled from a multinomial distribution
with each category representing a unique parental combination. The probability
that the offspring falls into one of these categories is based on the Mendelian
transition probability and the linear predictors of potential parents. The number
of categories is equal to (nod)(nos +1) where nod and nos are the number of sampled
females and males that could be the parents of offspring o. An additional nod
categories are set up in this particular example, representing the pairing of each
female with an unsampled male. The genetic likelihoods for these categories can
be derived following Equation 8 and the linear predictor for this category can
be derived following a similar logic.

Under the assumption that sampled and unsampled males come from the
same statistical population, I use an approximation based around the central
limit theorem for the distribution of the linear predictor for the unsampled
category. Under the central limit theorem this distribution will be normally
distributed irrespective of the underlying distribution of linear predictors when
the sample size is large (equivalent to assumption a) for the genetic likelihoods).
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The distribution of the summed linear predictors of unsampled males can then
be obtained using the following

p(

N−n∑
p̂(miss)|p̂(obs)) ≈ N(

(N − n)

n

n∑
p̂(obs),

N(N − n)

n
S2
obs) (12)

which takes into account the sampling variance in calculating the expecta-
tion from the sampled population (avoiding assumption c), and the sampling
variance that arises because the size of the unsampled population is finite (as-
sumption d). S2

obs is the sample variance of the observed linear predictors [see
Gelman et al., 2004, Chapter 7] I should emphasise at this point that the approx-
imated linear predictors for missing individuals do not enter into the likelihoood
for β, they are only there to simplify the estimation of the pedigree. However, if
the phenotypes of unsampled individuals are known, then the linear predictors
of unsampled individuals do not need to be estimated and can enter into the
likelihood for β. In this instance the ratio in Equation 11 may not be unity and
assumption f) is relaxed (See Section 3.6 for an example).

We have no information regarding the phenotypes of unsampled males in
the Seychelles Warbler, and therefore the data do not allow us to distinguish
between a large unsampled population and a smaller population with a reduced
chance of paternity. However, as noted earlier, the discrepancy between our
estimate of 30.98 unsampled males and our prior belief that the number of
males should be less than 15 may be a consequence of underestimating the level
of genotyping error.

2.6 Genotyping Error

At this point it will be useful to distinguish between exact and approximate
methods for dealing with genotyping error. A useful notation will be G for
true but unobserved genotypes, and Gobs for observed but possibly erroneous
genotypes. Both methods implicitly or explicitly use this concept, and the aim
is to derive the probability distribution ofG fromGobs and what we know about
error rates (ε) and allele frequencies (A). The approximate method defines the
conditional probability of G as

Pr(G|Gobs, ε,A) (13)

whereas the exact solution defines the probability as

Pr(G|Gobs,P , ε,A). (14)

The distinction is subtle. The approximation implicitly assumes that the
genotypes are collected from unrelated individuals, whereas the exact solution
acknowledges the fact that the individuals are related. By acknowledging this
fact we become aware that the approximation actually throws some information
away; if individuals are related then the observed genotypes of some individuals
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actually provide information regarding the actual genotypes of others. The ex-
act solution comes at a computational cost. Because the pedigree is estimated,
P may change with every iteration of the Markov chain and the probability in
Equation 14 has to be updated each cycle. Beacase the probability distribution
of G does not depend on P in the approximation, Equation 13 only needs to be
evaluated once, prior to pedigree estimation. This is only true, however, if error
rates and allele frequencies (in the base population) are known with complete
certainty.

At this point we can drop the approximation for genotyping error and work
with the exact solution, allowing us to estimate genotyping error rates and the
allele frequencies in the parental generation. This becomes computationally
demanding, as the probability distribution for each individual’s genotype has
to be calculated and sampled from each iteration of the Markov chain. We are
using the default model of genotyping error which is a two parameter model
developed by Wang [2004]. In Wang’s model an allele is assumed to be miss-
scored as any other allele with equal probability (ε2) and allele’s of heterozgote
genotypes can also dropout with probability ε1. The model implemented in
CERVUS can also be used by specifying marker.type="MSC" in the GdataPed

object. However, although the CERVUS model is mathematically convenient
it may be less biologically realistic. The model only includes stochastic errors
and these errors are not independent for the two alleles within a genotype; if a
genotyping error has occurred at one allele then a genotyping error occurs at
the other allele with probability one. Accordingly, E2(2-E2) is the per-genotype
rate defined in CERVUS and so a default value of E1=0.005 is close to the
CERVUS’s default of 0.01 defined at the genotypic level. Perhaps a less realistic
assumption of the CERVUS model is that an erroneous genotype is scored as
another genotype (including itself) with a probability equal to that genotypes
frequency in the population. Consequently, rare genotypes are believed to be
miss-scored much less often than common genotypes.

> model5<-MCMCped(PdP=PdP, GdP=GdP, verbose=FALSE)

> plot(model5$E1)

> plot(model5$E2)

> plot(model5$USsire)

The chain is slow to mix when genotypes are estimated and successive sam-
ples from the posterior show autocorrelation

> autocorr(model5$E1)

, , E1

E1

Lag 0 1.00000000

Lag 1 0.42385734

Lag 5 0.18403024
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Figure 8: The marginal posterior distributions of the error rates and the num-
ber of unsampled males from model5. All unknowns have been simultaneously
estimated.

Lag 10 0.11792381

Lag 50 0.02344455

The chain needs to be run for longer to ensure that we gather independent
samples from the posterior, but nevertheless it is clear that we had underesti-
mated the amount of genotyping error (see Figure 8). Allelic drop out appears
to occur for about 1 in 100 genotypes, but the stochastic error rate appears
higher at around 1 in 25. The posterior for the number of unsampled males
now looks more reasonable but there is still a lot of uncertainty and a judicious
use of prior information seems reasonable. The log normal is used as the prior
specification for the number of unsampled males (see Figure 9)

> pP<-priorPed(USsire=list(mu=log(5), sigma=0.5))

> model6<-MCMCped(PdP=PdP,GdP=GdP,pP=pP,tP=tunePed(USsire=0.1),verbose=FALSE)

> plot(model6$USsire)
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Figure 9: The marginal posterior distribution of the number of unsampled males
from model6. In this model an informative prior was used.

3 Further Examples using Simulated Data

To illustrate some further functionality we will use the functions simpedigree

and simgenotypes to simulate pedigrees and genotypes according to certain
models and then analyse them. We will use an estimate of the Seychelles Warbler
allele frequencies to sample genotypes from.

> A<-extractA(WarblerG)

> # list off allele frequencies

3.1 Error Rate Estimation with and without a Pedigree

To start we will simply estimate genotyping error for two data sets, one in
which the information comes from individuals being sampled multiple times
and one in which the information comes from the pedigree. We will simulate a
large dropout rate (10% of alleles in a heterozygous state) but a low level of of
stochastic error (≈ 1% of single locus genotypes).
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> ped<-matrix(NA,50,3)

> ped[,1]<-1:50

> # 50 unrelated indivdiuals typed twice

>

> G<-simgenotypes(A=A,E1=0.1,E2=0.005,ped=ped,no_dup=2)

> # each individual is typed twice with high dropout

>

> tP<-tunePed(E1=15)

> #MH tuning paramater needs to be larger

>

> GdP<-GdataPed(G=G$Gobs,id=G$id)

> model.dupE<-MCMCped(GdP=GdP,tP=tP,verbose=FALSE)

> summary(model.dupE$E1)

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.1007901 0.0095240 0.0003012 0.0003462

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

0.08245 0.09416 0.10061 0.10688 0.11993

> summary(model.dupE$E2)

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

2.254e-03 1.480e-03 4.680e-05 4.965e-05

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

0.0003684 0.0011276 0.0019818 0.0030552 0.0056924
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The posterior summaries are consistent with the data we simulated, but no-
tice that the mean may not be a very good summary of the central tendency
of the posterior distribution for stochastic error (see Figure 10, for the next
example)1. We can simulate a similar set of data but with pedigree information

> ped<-matrix(NA,100,3)

> ped[,1]<-1:100

> ped[,2][51:100]<-1:50

> # 50 dams and their offspring

>

> G<-simgenotypes(A=A, E1=0.1, E2=0.005, ped=ped, no_dup=1)

> # only typed once

>

> sP<-startPed(ped=ped)

> #specify that the dams are known,

> #males are treated as base by default

>

> GdP<-GdataPed(G=G$Gobs, id=G$id)

> model.pedE<-MCMCped(GdP=GdP, sP=sP, tP=tP,

+ verbose=FALSE)

> summary(model.pedE$E1)

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.0804682 0.0116173 0.0003674 0.0004445

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

0.05955 0.07258 0.07965 0.08805 0.10481

> summary(model.pedE$E2)

Iterations = 1:1000

Thinning interval = 1

1Johnson and Haydon [2007] find that MasterBayes overestimates error rates by 31% when
error rates are low (compared to a downward bias of 18% for Pedant). However, large scale
simulation shows that MasterBayes is unbiased (if such a thing exists in a Bayesian analysis)
if the posterior mode is used rather than the posterior mean.
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Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.0177657 0.0082365 0.0002605 0.0007445

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

0.002719 0.012021 0.017301 0.022807 0.035231

> plot(model.pedE$E2)
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Figure 10: The marginal posterior distribution of stochastic error rate from
model.pedE. The mode is probably a better summary of central tendency as
the expectation of E2 may not coincide with the most likely value it could take.

The posterior from the second data set has greater variance. With respect
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to genotyping error, multiple samples from the same individual are more infor-
mative than genotypes typed once in mother-offspring pairs. If individuals have
been typed more than once then this information should be included in pedigree
reconstruction as it improves error rate estimation and increases the precision
with which an individual’s genotype is estimated.

In Section 1.3 I mentioned the fact that MCMC may be sensitive to the
starting parameterisation, and that this is particularly so when the posterior
distribution is high-dimensional and multimodal. The posterior distribution of
genotypes has these properties, and high probability genotype configurations
may separated by regions of zero probability when pedigree data exist. As
an example we will specify a random (but legal) starting configuration for the
previous model:

> stG<-simgenotypes(A=A, E1=0, E2=0, ped=ped, no_dup=1)

> sP<-startPed(ped=ped, G=stG$Gobs, A=A)

> # A new set of random genotypes with positive probability

> # are generated and used as the starting configuration

> model.config<-MCMCped(GdP=GdP,sP=sP,tP=tP,verbose=FALSE)

> plot(model.config$E2)

When only dams are known the chain still mixes well and the chain converges
very rapidly despite the absurd starting configuration (see Figure 11). However,
we can simulate genotypes down a pedigree where individuals are grouped into
large full-sib families. We will analyse the data using two chains, one initialised
at the true genotype configuration, and one initialised at a random but legal
configuration.

> ped<-matrix(NA,120,3)

> ped[,1]<-1:120

> ped[,2][21:120]<-rep(1:10, each=10)

> ped[,3][21:120]<-rep(11:20, each=10)

> # 10 full-sib families of size 10

>

> G<-simgenotypes(A=A,E1=0.1,E2=0.005,ped=ped,no_dup=1)

> sP<-startPed(ped=ped, G=G$G, A=A)

> #specify that the dams and sires are known,

> #and use the true G as the starting configuration

>

> GdP<-GdataPed(G=G$Gobs, id=G$id)

> model.DS1<-MCMCped(GdP=GdP,sP=sP,tP=tP,verbose=FALSE)

> stG<-simgenotypes(A=A,E1=0.1,E2=0.005,ped=ped,no_dup=1)

> sP<-startPed(ped=ped, G=stG$G,A=A)

> #use a random G as the starting configuration

>

> model.DS2<-MCMCped(GdP=GdP,sP=sP,tP=tP,verbose=FALSE)

> plot(mcmc.list(model.DS1$E2, model.DS2$E2))
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Figure 11: The marginal posterior distribution of stochastic error rate from
model.config. This posterior should be identical to the posterior in Figure 10,
although the chain was initialised in a very low probability region of genotype
parameter space.

The chains are currently sampling from different regions of the posterior
(Figure 12). Methods exist for traversing these regions [Sheehan, 2000, Lange,
2002] more efficiently but these are hard to implement on fixed pedigrees, let
alone pedigrees that are being constantly updated. However, when the pedigree
is not fixed, zero probability regions do not exist because all genotype configura-
tions have a positive probability under some pedigree configuration. Neverthe-
less, there may be regions of very low probability connecting high probability
regions, and the chain may not mix well.

3.2 Mismatch Tolerance and Computational Efficency

The number of potential parental combinations is not linear in the number of
potential mothers and fathers. With 50 candidate mothers and 50 candidate
fathers the number of parental combinations is 2500. This can slow the chain
down because each iteration, and for each offspring 2500 Mendelian likelihoods
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Figure 12: Samples from the posterior distribution of stochastic error rate es-
timated from the data set Gobs. The two chains were initialised at the true
genotype configuration (black), and a random configuration (red).

have to be recalculated. Also, we have to sample parents from a multinomial
distribution with as many categories. When genotyping error is low, we can
safely assume that potential parents that have many mismatches with an off-
spring have a probability close to zero of being the true parents. The argument
mm.tol can be passed to MCMCped specifying the number of mismatches that will
be tolerated for a potential parent.

To illustrate I have simulated a pedigree where body size has a strong effect
on both paternity and maternity. However, the effect of body size is not the
same for the sexes: large males have an increased chance of gaining paternity,
but small females are more fecund. Following the notation of Equation 5:

p
(o)
i,j ∝ exp(β1sizei + β2sizej) (15)

A pedigree is simulated with β1 and β2 set to -1 and 1, respectively.

> sex<-c(rep("Female", 50), rep("Male", 100))
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> offspring<-c(rep(0, 100), rep(1, 50))

> size<-rnorm(150,10)

> data.MM<-as.data.frame(list(id=1:150, sex=sex,

+ offspring=offspring, size=size))

> res1<-expression(varPed(x="offspring", restrict=0))

> var1<-expression(varPed(x="size", gender="Male"))

> var2<-expression(varPed(x="size", gender="Female"))

> PdP<-PdataPed(formula=list(res1, var1, var2), data=data.MM)

> simped<-simpedigree(PdP, beta=c(1, -1))

> G<-simgenotypes(A=A, E1=0.005, E2=0.005, ped=simped$ped, no_dup=1)

> GdP<-GdataPed(G=G$Gobs, id=G$id)

> model_pedMM999<-MCMCped(PdP=PdP, GdP=GdP, verbose=FALSE)

> model_pedMM2<-MCMCped(PdP=PdP, GdP=GdP, mm.tol=2, verbose=FALSE)

> model_pedMM1<-MCMCped(PdP=PdP, GdP=GdP, mm.tol=1, verbose=FALSE)

> # identical models but the 2nd and 3rd models

> # exclude parents with 3 or more, or 2 or more,

> # mismatches, repectively

>

> summary(model_pedMM999$beta)[[1]][,1:2][1:2,]

Mean SD

size.D 1.1086914 0.1372865

size.S -0.9925665 0.1626351

> summary(model_pedMM2$beta)[[1]][,1:2][1:2,]

Mean SD

size.D 1.1125573 0.1372343

size.S -0.9970467 0.1629536

> summary(model_pedMM1$beta)[[1]][,1:2][1:2,]

Mean SD

size.D 1.111342 0.1341388

size.S -1.026845 0.1604380

The posterior distributions of β are almost identical, despite excluding par-
ents with several mismatches. However, the saving in computer time was large:
the first model took almost 7.7 minutes to fit where the last model took 1.9.

An alternative method for speeding things up is to specify jointP=FALSE

in MCMCped. In this case mothers are sampled followed by fathers, rather than
both parents at the same time. The chain may mix slower (per number of
iterations) than the default jointP=TRUE, but the chain may iterate much faster
if ninj >> ni +nj , where ni and nj are the number of potential dams and sires:

> model_pedJPF<-MCMCped(PdP=PdP, GdP=GdP, verbose=FALSE, jointP=FALSE)

> summary(model_pedJPF$beta)[[1]][,1:2][1:2,]
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Mean SD

size.D 1.099699 0.1353455

size.S -1.005569 0.1620252

> effectiveSize(model_pedMM999$beta)

size.D size.S

738.8332 745.7840

> effectiveSize(model_pedJPF$beta)

size.D size.S

813.4879 744.9783

The posterior distributions are identical up to Monte Carlo error since we
have only changed the sampling scheme, not the posterior distribution from
which we are trying to sample. However, the alternative sampling scheme it-
erates much faster (1.2 minutes compared to compared to 7.7) although the
amount of information we gain per iteration is slightly less (745 effective sam-
ples compared to 745.8 for the effect of size on paternity). Models that include
a variable with the argument relational="MATE" are particularly slow when
the number of parental combinations is large and I discuss faster approximate
methods in Section 3.7.

3.3 Equivalence with Poisson Models

If we knew the pedigree we may be inclined to fit a generalised linear model
with a Poisson error distribution and log link to the data set data.MM. We can
analyse the relationship between female body size and fecundity by counting
the number of offspring per female, and using the standard glm function in R

> counts<-rep(0,50)

> noff<-table(simped$ped[,2])

> counts[as.numeric(names(noff))]<-counts[as.numeric(names(noff))]+noff

> # number of offspring per mother

> model.Pd<-glm(counts~size[1:50], family="poisson")

> summary(model.Pd)

Call:

glm(formula = counts ~ size[1:50], family = "poisson")

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6206 -0.8772 -0.6222 0.5838 2.0379

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -11.8035 1.4977 -7.881 3.25e-15 ***

size[1:50] 1.1106 0.1338 8.302 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 99.188 on 49 degrees of freedom

Residual deviance: 41.641 on 48 degrees of freedom

AIC: 105.67

Number of Fisher Scoring iterations: 5

The slopes are virtually the same, but the standard errors are a little larger
for the MCMCped model, reflecting uncertainty in the pedigree. However, because
size is such a good predictor of parentage, and the genotype data are relatively
informative, the pedigree is resolved quite well.

> table(simped$ped[,2:3][101:150,]==modeP(model_pedMM999$P)$P[,2:3])

FALSE TRUE

5 95

The modal parentage assignments are close to the true pedigree, with 95%
of assignments correct. One important difference arises because MCMCped uses
a mutinomial log-linear model rather than the Poisson log-linear model used
above. The models are very similar except the multinomial model conditions on
the number of counts (offspring) whereas the Poisson model does not. Conse-
quently the number of parameters in a multinomial model (excluding the count
total) is one less than the equivalent Poisson model. In the above example
an intercept term is not calculated because it can be derived directly from the
number of parental combinations and the number of offspring which we have
conditioned on [McCullagh and Nelder, 1989].

3.4 Interactions and Reparameterisation

Next we will consider a model similar to that above, but we will have a constant
effect of size for both sexes. However, we will include a second variable age

which has two levels: old and young. We will fit both main effects together
with an interaction. Interactions can fitted by adding an extra element to the
formula argument that is a list containing the two varPed expressions to be
combined.

p
(o)
i,j ∝ exp(β1δi+β1δj+β2sizeiδi+β2sizejδj+β3sizei(1−δi)+β3sizej(1−δj))

(16)
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The δ variables take on the values 1 if the individual is young, and zero if
not. Notice that although there are six terms in Equation 16 there are only 3
parameters to be estimated because the variables are assumed to have the same
effects on both maternity and paternity.

> age<-gl(2, 1,150, label=c("old", "young"))

> data_INT<-cbind(data.MM, age)

> res1<-expression(varPed(x="offspring", restrict=0))

> var1<-expression(varPed(x="size"))

> var2<-expression(varPed(x="age"))

> PdP<-PdataPed(formula=list(res1, var1, var2, list(var1, var2)), data=data_INT)

> simped<-simpedigree(PdP, beta=c(0.5, 10, -1))

> G<-simgenotypes(A=A, E1=0.005, E2=0.005, ped=simped$ped, no_dup=1)

> GdP<-GdataPed(G=G$Gobs, id=G$id)

> model.INT<-MCMCped(PdP=PdP, GdP=GdP, mm.tol=1, verbose=FALSE)

Markov chains may not mix well when the posterior distribution of the pa-
rameters are not independent. This can be alleviated to some degree by sampling
correlated parameters together, although when Metropolis-Hastings updates are
used gains in efficiency are only possible when the proposal distribution is similar
in form to the conditional posterior distribution of the parameters. MasterBayes
attempts to find such a proposal distribution using approximate maximum like-
lihood methods, although this distribution tends to underestimate the strength
of correlation between the parameters. In this example the posterior distribu-
tion of the three parameters is highly correlated with the correlation between
age and the age by size interaction approaching -1. The efficiency of the chain
is not necessarily compromised by this but we can see that the autocorrelation
between the parameters is reasonably high despite a thinning interval of 10 (See
Figure 13).

> plot(model.INT$beta)

> autocorr(model.INT$beta)[,,3]

size age.young size.age.young

Lag 0 -0.73229292 -0.995353801 1.000000000

Lag 1 -0.24331016 -0.316794496 0.317773935

Lag 5 -0.01660023 -0.003279173 0.002917106

Lag 10 -0.04480474 -0.043269940 0.044938289

Lag 50 0.02226050 0.021094381 -0.018000246

The dependency between slopes and intercepts in regression models is well
know and we can alleviate the problem by simply centering the covariate, size.
The intercept is now evaluated at the population mean for size (10) rather than
at a size of zero

> data_INT[,"size"]<-size-10

> PdP<-PdataPed(formula=list(res1, var1, var2, list(var1, var2)), data=data_INT)
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Figure 13: The marginal posterior distributions for the three elements of beta

from model.INT. The intercept for young individuals age.young is evaluated
at a size of 0, which lies well outside the distribution of size observed in the
population.

> model.INT.cntr<-MCMCped(PdP=PdP, GdP=GdP, mm.tol=1, verbose=FALSE)

> plot(model.INT.cntr$beta)

> autocorr(model.INT.cntr$beta)[,,3]

size age.young size.age.young

Lag 0 -0.729478279 -0.113150855 1.00000000

Lag 1 -0.179349485 -0.014859268 0.26109208

Lag 5 0.003967927 0.047545476 0.05501976

Lag 10 0.004850002 0.072179126 0.03441719

Lag 50 -0.065998770 -0.005993626 0.03736367

Despite having similar Metropolis-Hastings acceptance rates the second chain
mixes better, and the parameters have a better biological interpretation: at the
average size no differences in the ability to reproduce exists between young and
old individuals; the posterior distribution of age.young is centered around zero
(Figure 14). However, as old individuals get larger their ability to reproduce
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Figure 14: The marginal posterior distributions for the three elements of beta

from model.INT, but with the intercept for young individuals age.young eval-
uated at the average size of 10.

increases (size is positive - the true underlying slope is 0.5), but young indi-
viduals have a significantly shallower slope (size.age.young is less than zero).
The contrasts are set up so that size.age.young is is the difference between
the slopes of young and old individuals. Inference from posterior samples is very
flexible. If we wish to see whether the slope is so shallow it is in fact likely to
be negative we can create the posterior distribution for the young slope

> young.slope<-mcmc(model.INT.cntr$beta[,1]+model.INT.cntr$beta[,3])

> plot(young.slope)

There is good evidence that the slope for young individuals is negative (Fig-
ure 15). In fact the pedigree was simulated so that the slopes would be of the
same magnitude (0.5), but with different signs. In this instance the sexes fol-
lowed the same rules with regard to reproduction, and we can fit a single GLM
across the sexes

> counts<-rep(0,100)

> noff<-table(c(simped$ped[,2], simped$ped[,3]))
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Figure 15: The marginal posterior distribution for the slope of young individuals
from model model.INT.cntr.

> counts[as.numeric(names(noff))]<-counts[as.numeric(names(noff))]+noff

> par_age<-age[1:100]

> par_size<-size[1:100]-10

> model.Pint<-glm(counts~par_age*par_size, family="poisson")

> summary(model.Pint)

Call:

glm(formula = counts ~ par_age * par_size, family = "poisson")

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6569 -1.2287 -0.1118 0.4781 2.7727

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.09746 0.15665 -0.622 0.53384

par_ageyoung 0.15230 0.21023 0.724 0.46881

par_size 0.31936 0.19167 1.666 0.09567
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par_ageyoung:par_size -0.68096 0.25142 -2.709 0.00676

(Intercept)

par_ageyoung

par_size .

par_ageyoung:par_size **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 111.78 on 99 degrees of freedom

Residual deviance: 103.64 on 96 degrees of freedom

AIC: 260.05

Number of Fisher Scoring iterations: 5

A Poisson GLM indicates the same thing: young and old individuals do
not appear to behave differently at the average body size. However, the slope
for old individuals is significantly positive, and the slope for young individuals
differs significantly from the slope of old individuals. Testing whether young
individuals have a negative slope would involve setting different contrasts.

3.5 Interpreting Parameters Associated with Categorical Vari-
ables

Imagine an experiment in which 30 males are randomly selected from a large
population and treated, and we are interested in whether the treatment af-
fects fecundity. We would like a statistic that does not depend on the number
of treated and control males in the population. We are not interested in the
probability that an offspring has a treated father compared to a control father,
because this probability could be increased by simply treating a greater propor-
tion of males. The default in MasterBayes is to estimate the logs odd ratio (β)
of a male siring an offspring if that male had been treated compared to if it had
been left untreated, where

β = log

[
θ

1− θ

]
= logit(θ) (17)

and θ is the probability if that male had been treated. A nice property of
posterior distributions is that we can take the inverse logit transformation of
the samples gathered for the posterior distribution of β to make valid inferences
about the posterior of θ.

When the number of treated (NE) and untreated (NC) potential fathers is
known, and does not vary between offspring we can derive the probability that
an offspring will be sired by a treated male (θo):
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θo =
θNE

θNE + (1− θ)NC
, (18)

and also the logs odd ratio

βo = logit(θo) (19)

By default MasterBayes estimates β, although βo can be estimated using
the argument merge=TRUE in varPed. When the number of experimental and
non-experimental males are known, and the sets of potential fathers for all
offspring are equal, there is no statistical reason for choosing β over βo since
they are functionally equivalent. However, there are cases when β and βo are not
equivalent and care needs to be taken when choosing between the two models.
A classic example of when βo may be favoured over β is when estimating the
level of extra-pair paternity.

3.6 Unsampled Parents with Known Phenotypes: Estimating Extra-
pair Paternity

Consider a study site with 50 territories, each of which contains a pair of adults.
We will assume that the mother of all offspring on a given territory is the terri-
torial female, but some offspring may be sired by males from another territory.
Let’s imagine that we have sampled all the individuals on half the territories,
and would like to know a) the extra-pair paternity rate, and b) the number of
unsampled territories, which in this case is 25. We will start by simulating a
pedigree with an extra-pair paternity rate of 20%.

> sex<-c(rep("Male", 50), rep("Female", 125))

> terr<-as.factor(c(1:50, 26:50, rep(26:50, each=4)))

> offspring<-c(rep(0,75), rep(1, 100))

> data_EPP<-as.data.frame(list(id=1:175, sex=sex,

+ offspring=offspring, terr=terr))

> res1<-expression(varPed(x="terr",gender="Female",relational="OFFSPRING", restrict="=="))

> var1<-expression(varPed(x="terr",gender="Male",relational="OFFSPRING"))

> res2<-expression(varPed(x="offspring",restrict=0))

> PdP<-PdataPed(formula=list(res1,var1,res2),data=data_EPP)

> EPP<-0.8/(0.8+(0.2/49))

> simped<-simpedigree(PdP, beta=logit(EPP))

> G<-simgenotypes(A=A,E1=0.01,E2=0.01,ped=simped$ped,no_dup=1)

> GdP<-GdataPed(G=G$Gobs,id=G$id)

> # remove unsampled males

>

> rm_males<-1:25

> data_EPP_miss<-data_EPP[-rm_males,]

> GdP_miss<-GdataPed(G=lapply(G$Gobs, function(x){x[-rm_males]}), id=G$id[-rm_males])

>
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Notice the argument merge=FALSE is passed to varPed for var1 indicating
that we are estimating β, not the log odds ratio of the within-pair paternity rate
which in this case is βo = logit−1(0.8). Also, we are treating the unsampled
males as if they came from the same statistical population as the sampled males
(USvar=NULL), although we know that the logical variable indicating whether
offspring and males are on the same territory should be FALSE for unsampled
males. In some of the following analyses problems may be encountered when
all fathers are assigned to the unsampled class during some iterations. At this
point the posterior distribution is no longer proper without prior information
because a) the most likely estimate of the unsampled population is infinity and
b) there is no information to estimate β. Therefore, we’ll also place a prior on
the number of unsampled males which has a mode equal to the true value, and
we’ll place a prior on β which is approximately uniform on the probability scale
θ.

> PdP_miss<-PdataPed(formula=list(res1, var1, res2),

+ data=data_EPP_miss, USsire=TRUE)

> pP <- priorPed(USsire = list(mu = log(25), sigma = 1), beta=list(mu = as.matrix(0), sigma = as.matrix(pi^2/3)))

> model.miss<-MCMCped(PdP=PdP_miss, GdP=GdP_miss, pP=pP, verbose=FALSE)

> plot(model.miss$beta)

> plot(model.miss$USsire)

The estimate of β seems reasonable given that logit(EPP)=5.28 (Figure
16), but the number of unsampled males is much smaller than we anticipated
despite the prior having a mode equal to the true number (Figure 17). This is
because we left USvar=NULL, and approximated the summed linear predictors of
unsampled males from the linear predictors of sampled males (see Section 2.5).
In fact the probability that an unsampled male gains paternity over a sampled
male are not equal, since unsampled males are always extra-pair fathers but
sampled males may be within-pair fathers.

When USvar=NULL, the records of unsampled fathers do not enter into the
likelihood equation for β, and so β is valid. However, our primary interest was
in the within-pair paternity rate, θo, and we can use equation 18 to obtain the
posterior

> theta<-inv.logit(model.miss$beta)

> NW<-1

> NE<-24

> # unsampled males are presumed to be present in

> # the same ratios so do not enter into the equation

>

> theta_o<-(NW*theta)/(NW*theta+NE*(1-theta))

> plot(mcmc(theta_o))

Given the mode of the posterior of β is very close to 5.28 (Figure 16), it seems
surprising that the mode of the within-pair paternity rate is not 0.8 (Figure 18).
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Figure 16: The marginal posterior distribution of β from model.miss. This is
the log odds ratio of a male scoring paternity if it had been on the offspring’s
territory compared to if it had been on a different territory. The pedigree is
sampled assuming that the phenotypes of unsampled males are unknown.

We can go one step better and specify that the phenotypes of the unsampled
males are known

> var2<-expression(varPed(x="terr", gender="Male",

+ relational="OFFSPRING", USvar=FALSE))

> PdP_miss2<-PdataPed(formula=list(res1, var2, res2),

+ data=data_EPP_miss, USsire=TRUE)

> model.miss2<-MCMCped(PdP=PdP_miss2, GdP=GdP_miss,

+ pP=pP, verbose=FALSE)

> plot(model.miss2$beta)

> plot(model.miss2$USsire)

Once again β is estimated correctly (Figure 19), but this time the number of
unsampled males is estimated correctly, although considerable uncertainty re-
mains (Figure 20). In part this is due to the moderate levels of genotyping error.
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Figure 17: The marginal posterior distribution of the number of unsampled
males from model.miss, when the pedigree is sampled assuming that the phe-
notypes of unsampled males are unknown. The actual number is 25!

We can derive the posterior distribution for within-pair paternity by combin-
ing the posterior distribution of β with the number of unsampled males, which
we have assumed are extra-territorial males.

> theta<-inv.logit(model.miss2$beta)

> NW<-1

> NE<-24+model.miss2$USsire

> theta_o<-(NW*theta)/(NW*theta+NE*(1-theta))

> plot(mcmc(theta_o))

The estimate of within-pair paternity from model.miss2 is plotted in Figure
21. Alternatively we can fit within-pair paternity explicitly using the argument
merge=TRUE.

> var3<-expression(varPed(x="terr", gender="Male",

+ relational="OFFSPRING", USvar=FALSE, merge=TRUE))

> PdP_miss3<-PdataPed(formula=list(res1, var3, res2),
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Figure 18: The marginal posterior distribution of θo derived from model.miss.
θo should be the level of within pair paternity in the population (80%) but we
can see that this value has a small posterior probability. This may be down
to sampling error alone, but in fact the estimate is consistently biased upwards
because the pedigree is sampled assuming that the phenotypes of unsampled
males are unknown.

+ data=data_EPP_miss, USsire=TRUE)

> model.miss3<-MCMCped(PdP=PdP_miss3, GdP=GdP_miss,

+ pP=pP, verbose=FALSE)

> theta_o<-inv.logit(model.miss3$beta)

> plot(mcmc(theta_o))

In this example the estimate of within-pair paternity in model.miss2 (Fig-
ure 21) and model.miss3 (Figure 22) are equivalent, but for analyses where the
set of males varies between offspring the two models would not be equivalent.
For example, if the aim was to model a constant extra-pair paternity rate across
years but the male population size fluctuated between years then the argument
merge=TRUE would have to be specified. In this instance, a post-hoc transforma-
tion of β and the number of unsampled males would not yield a valid posterior
for βo as it did in the simple example above (Figure 21).
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Figure 19: The marginal posterior distribution of β derived from model.miss2.
As in Figure 16 this is the log odds ratio of a male scoring paternity if it had been
on the offspring’s territory compared to if it had been on a different territory.
However, in this model the pedigree is sampled assuming that the unsampled
males have to be extra-pair, and these males contribute to the likelihood of β.

3.7 Assortative Mating and Heritability

Assortative and disassortative mating can modelled using the argument rela-

tional="MATE" in varPed. This sets up a variable for the distance between
male and female phenotypes. If the variable is numeric then this distance is
Euclidean, if the variable is categorical then the distance is simply one or zero,
depending on whether the sexes belong to the same category or not. Below we
will consider a population of 10 males, 10 females, and 30 offspring. There are
2 mating types, + and -, and they are distributed evenly across and within the
sexes. The aim is to test whether unions such +/+ and -/- occur more often
than +/- unions, than would be expected by chance. We will simulate data
where assortative unions are 3 times more likely than disassortative unions than
would be expected under random mating.
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Figure 20: The marginal posterior distribution of the number of unsampled
males from model.miss2. The true number is 25.

p
(o)
i,j ∝ exp(β1δi,j) (20)

δi,j takes on the value one when the mating type of female i matches the
mating type of male j. In this example β1 is set to log(3)=1.10, and the results
of the analysis shown in Figure 23.

> id<-1:50

> sex<-rep(c("Male", "Female"),each=10, length=50)

> offspring<-c(rep(0,20),rep(1,30))

> MT<-gl(2,1,50, labels=c("+", "-"))

> test.data<-data.frame(id, offspring, MT, sex)

> res1<-expression(varPed("offspring", restrict=0))

> var2<-expression(varPed(c("MT"), gender="Female",

+ relational="MATE"))

> PdP<-PdataPed(formula=list(res1, var2), data=test.data)

> simped<-simpedigree(PdP, beta=logit(0.75))

> table(MT[as.numeric(simped$ped[,2])]==MT[as.numeric(simped$ped[,3])])
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Figure 21: The marginal posterior distribution of within-pair paternity (θo)
estimated from the posterior distributions of β and the number of unsampled
males from model.miss2.

FALSE TRUE

7 23

> # offspring produced by +/- unions should make up (on average) a

> # quarter of the total offspring, and offspring produced by +/+

> # and -/- unions should make up the remaining 75%. Note this is

> # only because the frequency of + and - mating types are equal

>

> G<-simgenotypes(A=A, E1=0.005, E2=0.005, ped=simped$ped, no_dup=1)

> GdP<-GdataPed(G=G$Gobs, id=G$id)

> model.ass.mat<-MCMCped(PdP=PdP, GdP=GdP, verbose=FALSE)

> plot(mcmc(inv.logit(model.ass.mat$beta)))

Mating types may well be inherited, and if we had data on the mating
types of offspring we may be inclined to also model the distance between off-
spring and parental phenotypes using the argument relational="OFFSPRING".
A cautionary note should be made about using relational="OFFSPRING" to
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Figure 22: The marginal posterior distribution of within-pair paternity (θo) esti-
mated directly in model.miss3. The posterior distribution is exactly equivalent
to that shown in Figure 21.

model the transmission of phenotypes between parents and offspring. If the
individuals in the above example were haploid, and mating type was under the
control of a single locus then the function relational="OFFSPRING" may cap-
ture the genetic process quite well. On the other hand, if the organisms were
diploid then the model would certainly not be consistent with a genetic process.
Likewise, parameters associated with continuous variables derived using rela-

tional="OFFSPRING" should not be interpreted as a measure of heritability in
the quantitative genetic sense, although they will be related. Future work is
planned in this direction.

As noted in Section 3.2, when the number of potential mothers and fathers is
large, models in which the distance between mates is included may be very slow.
This is because for each offspring at each iteration the multinomial denominator
must be calculated by exponentiating and summing over the linear predictors
of all parental combinations. The likelihood of the data given β is
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Figure 23: The posterior distribution of logit−1(β). In this instance the frequen-
cies of the two mating types are exactly 0.5 both within sexes, and between the
sexes, and this is the expected proportion of offspring resulting from the union
of +/+ and -/- parents. The data were simulated with logit−1(β) = 0.75

no∏
o

 exp(η
(o)
d,s)∑n

(o)
i

i=1

∑n
(o)
j

j=1 exp(η
(o)
i,j )

 (21)

where η(o) are linear predictors for offspring o. d and s are the dam and

sire assigned as parents, and n
(o)
i and n

(o)
j are the total number of potential

dams and sires for offspring o. The argument DSapprox=TRUE can be passed to
MCMCped which uses an approximation for this likelihood which can be orders of
magnitude faster for large problems. The approximate likelihood has the form:

no∏
o

 exp(η
(o)
d,s)∑n

(o)
i

i=1 exp(η
(o)
i,s ) +

∑n
(o)
j

j=1 exp(η
(o)
d,j )− exp(η

(o)
d,s)

 (22)

How well this approximation works is not entirely known, but for such a
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small problem as this we can easily do it both ways and see:

> model.ass.mat.approx<-MCMCped(PdP=PdP, GdP=GdP, verbose=FALSE, DSapprox=TRUE)

> plot(mcmc.list(model.ass.mat$beta,model.ass.mat.approx$beta))
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Figure 24: The posterior distribution of logit−1(β) using the exact likelihood
(black) and an approximate likelihood (red).

The saving in time is marginal for such a small model (18 seconds ver-
sus 21) although for very large models using the approximation together with
jointP=FALSE may be the only feasible way of performing the analysis in real
time. At least for this example the approximation seems to work reasonably
well (See Figure 24 and also Section 3.9).

3.8 Longitudinal Data and Multigenerational Pedigrees

MasterBayes is able to work with longitudinal data, allowing the possibility of
reconstructing multigenerational pedigrees. To work with longitudinal data a
time variable needs to be passed to PdataPed. It is important to ensure that
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individuals with offspring records do not appear as potential parents of off-
spring with records in the same cohort, or a previous cohort When appropriate
cohort or age data exist the argument restrict can be passed to varPed to
ensure this does not happen. In the absence of age or cohort data the argu-
ment checkP=TRUE can be passed to MCMCped. This relaxes the restriction that
potential parents do not appear in the set of potential offspring, but in such
cases the probability that individual i is the offspring of individual j often has
a similar posterior probability to the reverse scenario where individual j is the
offspring of individual i. The function post.pairs will calculate posterior prob-
abilities for 2 individuals falling into a certain relationship (e.g. parent-offspring
or offspring-parent) when the joint posterior distribution of pedigrees are stored
(i.e. write_postP="TRUE" is passed to MCMCped). However, in this example we
will assume that appropriate cohort data exists.

> id<-1:50

> year<-rep(1:4,each=50)

> for(yr in 1:3){

+ id<-c(id, sample(id[year==yr], 25))

+ id<-c(id, max(id)+1:25)

+ }

> # A founding population of 50 individuals is set up.

> # Each year 25 adults pass through to the next year

> # adn 25 die. The 25 deaths are replaced by 25

> # offspring

>

> sex<-rep(c("Male", "Female"), max(id))[id]

> off.within.cohort<-c(rep(0,25), rep(1,25))

> offspring<-c(rep(0,50), rep(off.within.cohort,3))

> lat<-runif(200)

> long<-runif(200)

> data.ped<-data.frame(id,sex,offspring,lat,long,year)

> res1<-expression(varPed(x="offspring", restrict=0))

> res2<-expression(varPed(x="year", relational="OFFSPRING", restrict="=="))

> #parents must be recorded in the year the offspring was born

> #but must not be born in that year

>

> var1<-expression(varPed(x=c("lat", "long"), lag=c(0,0), relational="OFFSPRING"))

> # both maternity and paternity is a function of distance beween parents

> # and offspring in the year the offspring was born.

>

> PdP<-PdataPed(formula=list(res1, res2, var1), data=data.ped, timevar=year)

> P<-simpedigree(PdP, beta=-1)$ped

> G<-simgenotypes(A=A, ped=P)

> GdP<-GdataPed(G=G$Gobs, id=G$Gid)

> model.ped<-MCMCped(PdP,GdP,mm.tol=1,verbose=FALSE)

> plot(model.ped$beta)
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Figure 25: The posterior distribution of beta, the rate at which the probabil-
ity of parentage drops with distance from the offspring. This parameter was
estimated from a multigenerational pedigree where longitudinal data had been
collected.

Several problems currently exist with reconstructing multigenerational pedi-
grees using MasterBayes. In reality, these problems exist for all MasterBayes
analyses although the problem only becomes apparent when the notion of an
arbitrary pedigree structure is entertained. The first, and perhaps the biggest
problem is the assumption that those individuals classed as coming from the
base population (including unsampled individuals) are actually unrelated. For
example, if the mother of two sisters (A and B) was not sampled, but sister B
was in the set of potential mothers for sister A, then there is a high chance that
sister B would be picked as sister A’s mother [Thompson, 1976]. Modelling the
possibility that sampled individuals may be related through unsampled individ-
uals is a challenging problem with a long history. A partial solution if potential
parents are known but ungenotyped is to include them even though they have
completely missing genotype information. If estG=TRUE MasterBayes will up-
date that individuals genotype much like the algorithm proposed by Emery et al.
[2001] although a lot of care needs to be taken that the chain converges and mixes
well . A second problem with the reconstruction of multigenerational pedigrees,
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which has received much less attention is the problem of inbreeding avoidance.
The likelihood of a genotype configuration given a pedigree can be calculated
using the Elston-Stewart algorithm [Elston and Stewart, 1971], which is based
on the product of the Mendelian transition probabilities across offspring. Most
parentage and sib analyses are special cases or approximations of this algorithm.
However, a pedigree has both marriages and births, and an implicit assumption
when calculating the likelihood of genotypes in this way is that marriages are
independent of genotype. When inbreeding avoidance, or selfing is practiced,
this assumption breaks down, and could compromise pedigree reconstruction.

3.9 Hermaphrodites and Selfing Rates

An extreme form of inbreeding is selfing in hermaphrodites. MasterBayes is
able to work with hermaphrodite systems by not passing a sex vector to Pdat-

aPed. Currently, MasterBayes can be forced to model selfing in hermaphrodites
although it is inefficient (the following example took 4 minutes).

> id<-as.factor(1:100)

> offspring<-c(rep(0,25), rep(1,75))

> Herm<-data.frame(id, offspring)

> res1<-expression(varPed(x="offspring", restrict=0))

> var1<-expression(varPed(x="id", relational="MATE"))

> PdP<-PdataPed(formula=list(res1, var1), data=Herm)

> P<-simpedigree(PdP, beta=logit(0.9))$ped

> G<-simgenotypes(A=A, ped=P)

> GdP<-GdataPed(G=G$Gobs, id=G$Gid)

> model.herm<-MCMCped(PdP,GdP,verbose=FALSE)

> plot(inv.logit(model.herm$beta))

The model is essentially one of assortative mating for id, although the geno-
type updating algorithm becomes a little more complex. logit(beta) should
be interpreted as the probability that an individual mates with itself compared
to another random individual (Figure 26). As in Section 3.6, Equation 18 can
be used to get the posterior distribution for the expected proportion of offspring
produced by selfing. An important consideration when the system does not mate
randomly is the assumption of Hardy-Weinberg equilibrium. When evaluating
Equation 14, genotype frequencies enter into the probability for the true geno-
types of base individuals and also those offspring with one or more unsampled
parents. These genotype frequencies are calculated from the allele frequencies
under the assumption of Hardy-Weinberg equilibrium. For sampled individuals,
the probability distribution of the true genotypes is largely dominated by the
observed genotype data rather than the genotype frequencies, and violations of
Hardy-Weinberg equilibrium may not be that important. However, when un-
sampled parents are present an approximation for the genetic likelihood is used
(see Section 2.5) that is more reliant on the information imparted by genotype
frequencies, and care needs to be taken.
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Figure 26: The posterior distribution of logit−1β: the probability that an
individual mates with itself compared to another random individual in a
hermaphrodite system.

Although more efficient methods could be developed for modelling inbreed-
ing, alternative sampling schemes and approximations that are already imple-
mented can increase efficiency considerably. For example specifying jointP=FALSE

and DSapprox=TRUE reduce the computation time from 4 minutes to 50 seconds:

> model.herm.approx<-MCMCped(PdP,GdP,verbose=FALSE, jointP=FALSE, DSapprox=TRUE)

> plot(mcmc.list(model.herm$beta, model.herm.approx$beta))

and the posterior distributions from the the two analyses are in good agree-
ment (See Figure 27)

3.10 Schrodinger’s Hermaphrodite Cat

Monoecy in plants is a common phenomenon; each flower is unisexual but flow-
ers of both sex can be found on the same plant. The genotype data (unless
the fruit or organelles have been typed) provide no information as to whether
an offspring is produced from the male or female flowers of an individual. The
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Figure 27: Posterior distribution of β: the log odds ratio that an individual
mates with itself compared to another random individual in a hermaphrodite
system. The black trace is the posterior using the exact likelihood, and the red
trace is the posterior using an alternative sampling scheme and an approxima-
tion to the true likelihood.

only information the genotype data provide is whether the individual is a parent.
However, let’s say we measure the proportion of male flowers on the adult plants
and this measure positively covaries with pollen production but negatively co-
varies with seed production. Alternatively, we could have measured something
less suggestive like the distance between offspring and parents. MasterBayes can
fit gender specific variables to hermaphrodite data but the resulting posteriors
are ambiguous with respect to any notion of gender.

To illustrate, we will simulate data from a monoecious population in which
the proportion of male flowers on each individual varies substantially. The
number of offspring produced by each individual is independent of the proportion
of male flowers, but individuals with proportionally more male flowers produce
more offspring through pollination. We will start with a very strong relationship
between ’paternity’ and the number of male flowers.
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> id<-as.factor(1:100)

> offspring<-c(rep(0,25), rep(1,75))

> Prop.male.flowers<-rbeta(100, 10,10)

> SeedPollen<-data.frame(id, offspring, Prop.male.flowers)

> res1<-expression(varPed(x="offspring", restrict=0))

> var1<-expression(varPed(x="Prop.male.flowers", gender="Male"))

> var2<-expression(varPed(x="Prop.male.flowers", gender="Female"))

> PdP<-PdataPed(formula=list(res1, var1, var2), data=SeedPollen)

> P<-simpedigree(PdP, beta=c(-7.5,7.5))$ped

> G<-simgenotypes(A=A, ped=P)

> GdP<-GdataPed(G=G$Gobs, id=G$Gid)

> model.mon<-MCMCped(PdP,GdP,mm.tol=1,verbose=FALSE)

> plot(model.mon$beta)
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Figure 28: The posterior distribution of β: the parameters of the log-linear re-
lationship between the number of male flowers on a monoecious plant and the
probability of producing offspring from female and male flowers, respectively.
The relationships are very strong and the chain gets stuck in a region of param-
eter space of high probability. A mirror image of this distribution exists outside
of the parameter space sampled.
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Figure 28 looks reasonable but what happens if we simulate some data
where the proportion of male flowers is not such a good predictor of ’pater-
nity/maternity’?

> P<-simpedigree(PdP, beta=c(-4,4))$ped

> G<-simgenotypes(A=A, ped=P)

> GdP<-GdataPed(G=G$Gobs, id=G$Gid)

> model.mon2<-MCMCped(PdP,GdP,mm.tol=1,verbose=FALSE)

> plot(model.mon2$beta)
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Figure 29: The posterior distribution of β: the parameters of the log-linear
relationship between the number of male flowers on a monoecious plant and the
probability of producing offspring from female and male flowers, respectively.
The relationships are not so strong as in Figure 28, and the chain is able to
sample from the full posterior, albeit with a lot of autocorrelation.

We see that the posterior distribution is actually bimodal (Figure 29)! We
can be fairly confident that the proportion of male flowers indicates the probabil-
ity of pollination versus seed production, but we have no way of saying what the
sign of the relationship is: whether the proportion of male flowers is positively
correlated with pollination and negatively correlated with seed production or
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vica versa. We could probably make an informed guess, but with more ambigu-
ous variables it may not be possible to do so. If any one has any idea on how
to set up a sensible prior for this type of model, please email me.
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A A Lightning Tour of Model Specification

p
(o)
i,j is the probability that female i and male j are the parents of offspring o.
x are explanatory variable(s), and β the vector of associated parameter(s). t
indicates the time (timevar in a PdataPed object) to which the offspring record
belongs. For continous variables...

varPed(x, gender="Female")

p
(o)
i,j ∝ exp(β1xi...) (23)

varPed(x, gender="Male")

p
(o)
i,j ∝ exp(β1xj ...) (24)

varPed(x)

p
(o)
i,j ∝ exp(β1(xi + xj)...) (25)

varPed(x, gender="Female", relational="OFFSPRING")

p
(o)
i,j ∝ exp(β1(|xi − xo|)...) (26)

varPed(x, gender="Female", relational="OFFSPRINGV")

p
(o)
i,j ∝ exp(β1(xi − xo)...) (27)

varPed(x, gender="Female", relational="MATE")

p
(o)
i,j ∝ exp(β1(|xi − xj |)...) (28)

varPed(x, gender="Female", relational="MATEV")

p
(o)
i,j ∝ exp(β1(xi − xj)...) (29)

varPed(x, gender="Female", lag=c(-1,-1))

p
(o)
i,j ∝ exp(β1xi,t−1...) (30)

varPed(x, gender="Female", lag=c(-1,-1), relational="OFFSPRING")

p
(o)
i,j ∝ exp(β1(|xi,t−1 − xo,t|)...) (31)

varPed(x, gender="Female", lag=c(0,0), relational="MATE",

lag_relational=c(-1,-1))

p
(o)
i,j ∝ exp(β1(|xi,t − xj,t−1|)...) (32)

varPed(x, gender="Male", lag=c(0,0), relational="OFFSPRING",

lag_relational=c(-1,-1))
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p
(o)
i,j ∝ exp(β1(|xj,t − xo,t−1|)...) (33)

For a categorical variable with two levels (A and B) the model specified by
varPed(x, gender="Female") takes on the form

p
(o)
i,j ∝ exp(β1δi...) (34)

where δi is an indicator variable taking the value 1 if xi is equal to the first
level of x and zero otherwise. β1 is then the log odds ratio of the two levels of x
with respect to maternity. If merge=TRUE is specified then β1 may vary across
offspring, and βo is estimated. βo is related to β1:

βo = logit

[
θNA

θNA + (1− θ)NB

]
(35)

where θ is the inverse logit transformation of β1, and NA and NB are the
number of potential mothers that have level A and B for x. If NA and NB are
invariant over offspring the models are functionally equivalent.

The denominator of the multinomial likelihood is the summed linear pre-
dictors of all possible parents (after setting up a contrast with the baseline
parents) [Smouse et al., 1999]. Designating the first set of parents as baseline,
the contrast for each set of parents is simply:

η
(o)
i,j = log

[
p
(o)
i,j

p
(o)
1,1

]
(36)

and the likelihood of β

Pr(x|β) =

no∏
o

 exp(η
(o)
d,s)∑n

(o)
i

i=1

∑n
(o)
j

j=1 exp(η
(o)
i,j )

 (37)

where no, n
(o)
i and n

(o)
j are the number of offspring, the number of poten-

tial mothers for offspring o, and the number of potential fathers for offspring o,
respectively. d and s are the actual parents of offspring o. The set of possible
parents in the denominator of the multinomial likelihood are those that are not
excluded using the argument restrict. However, if the argument keep=TRUE

is used then the denominator of the likelihood will include excluded parents
depsite the fact that d 6= i and s 6= j.

DSapprox=TRUE can be passed to MCMCped which approximates the likelihood
when a variable specifies the distance between mates (i.e relational="MATE").
This approximation reduces the computational burden by fixing i = d or i = s
in the denominator of the multinomial likelihood. The parent defined as the
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”MATE” is fixed, so that a varPed expression with gender="Male" has the
approximated likelihood:

Pr(x, i = d|β) =

no∏
o

 exp(η
(o)
d,s)∑n

(o)
j

j=1 exp(η
(o)
d,j )

 (38)
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