R/chol.R

## METHODS FOR GENERIC: chol
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

## MJ: all of the C-level *_chol() functions need a second look ...
##     these methods feel much more complicated than they need to be ...

setMethod("chol", signature(x = "generalMatrix"),
	  function(x, ...) {
              ch <- chol(.M2symm(x, checkDN = FALSE), ...)
              ch@Dimnames <- x@Dimnames # restore asymmetric 'Dimnames'
              ch
          })

setMethod("chol", signature(x = "symmetricMatrix"),
	  function(x, ...) {
              if(is(x, "nMatrix"))
                  stop("symbolic factorization of nMatrix via chol() is not yet implemented") # TODO
              chol(as(x, "dMatrix"), ...)
          })

setMethod("chol", signature(x = "triangularMatrix"),
	  function(x, ...) {
              if(isDiagonal(x))
                  chol(.M2diag(x, check = FALSE), ...)
              else stop("chol(x) is undefined: 'x' is not symmetric")
          })

setMethod("chol", signature(x = "diagonalMatrix"),
	  function(x, ...) {
              x <- ..diag2d(x)
              if(x@diag == "N") {
                  if(any(x@x < 0))
                      stop("chol(x) is undefined: 'x' is not positive definite")
                  x@x <- sqrt(x@x)
              }
              x
          })

setMethod("chol", signature(x = "dgeMatrix"),
          function(x, cache = TRUE, ...) {
              if(!is.null(ch <- x@factors[["Cholesky"]]))
                  return(ch) # use the cache
              ch <- chol(.M2symm(x, checkDN = FALSE), ...)
              ch@Dimnames <- x@Dimnames # restore asymmetric 'Dimnames'
              if(cache) .set.factors(x, "Cholesky", ch) else ch
          })

setMethod("chol", signature(x = "dsyMatrix"),
          function(x, ...) {
              if(!is.null(ch <- x@factors[["Cholesky"]]))
                  return(ch) # use the cache
              tryCatch(.Call(dpoMatrix_trf, if(x@uplo == "U") x else t(x), 2L),
                       error = function(e) stop("chol(x) is undefined: 'x' is not positive definite"))
          })

setMethod("chol", signature(x = "dspMatrix"),
          function(x, ...) {
              if(!is.null(ch <- x@factors[["pCholesky"]]))
                  return(ch) # use the cache
              tryCatch(.Call(dppMatrix_trf, if(x@uplo == "U") x else t(x), 2L),
                       error = function(e) stop("chol(x) is undefined: 'x' is not positive definite"))
          })

## FIXME: Is there is a simple way at C-level to cache L' rather than L,
##        given that chol() is documented to return L'?  Then we wouldn't
##        need t() here.  Of course, we could construct L' as a dtRMatrix
##        "for free" with .tCR2RC() ...
for(.cl in paste0("dg", c("C", "R", "T"), "Matrix"))
setMethod("chol", signature(x = .cl),
	  function(x, pivot = FALSE, cache = TRUE, ...) {
              nm <- if(pivot) "sPdCholesky" else "spdCholesky"
              if(!is.null(ch <- x@factors[[nm]])) {
                  ch <- t(as(ch, "CsparseMatrix"))
                  ch@Dimnames <- x@Dimnames # as MF has no 'Dimnames' slot
                  return(ch)
              }
              ch <- chol(y <- .M2symm(x, checkDN = FALSE), pivot = pivot, ...)
              ch@Dimnames <- x@Dimnames # restore asymmetric 'Dimnames'
              if(cache)
                  ## dsCMatrix_chol() caches CHMfactor and returns dtCMatrix
                  .set.factors(x, nm, y@factors[[nm]])
              ch
          })
rm(.cl)

setMethod("chol", signature(x = "dsCMatrix"),
	  function(x, pivot = FALSE, ...) {
              nm <- if(pivot) "sPdCholesky" else "spdCholesky"
              if(!is.null(ch <- x@factors[[nm]])) {
                  ch <- t(as(ch, "CsparseMatrix"))
                  ch@Dimnames <- dimnames(x) # as MF has no 'Dimnames' slot
                  return(ch)
              }
              tryCatch(.Call(dsCMatrix_chol, x, pivot),
                       error = function(e) stop("chol(x) is undefined: 'x' is not positive definite"))
          })

setMethod("chol", signature(x = "dsRMatrix"),
	  function(x, pivot = FALSE, cache = TRUE, ...) {
              nm <- if(pivot) "sPdCholesky" else "spdCholesky"
              if(!is.null(ch <- x@factors[[nm]])) {
                  ch <- t(as(ch, "CsparseMatrix"))
                  ch@Dimnames <- dimnames(x) # as MF has no 'Dimnames' slot
                  return(ch)
              }
              ch <- chol(y <- .tCR2RC(x), pivot = pivot, ...)
              if(cache)
                  ## dsCMatrix_chol() caches CHMfactor and returns dtCMatrix
                  .set.factors(x, nm, y@factors[[nm]])
              ch
          })

setMethod("chol", signature(x = "dsTMatrix"),
	  function(x, pivot = FALSE, cache = TRUE, ...) {
              nm <- if(pivot) "sPdCholesky" else "spdCholesky"
              if(!is.null(ch <- x@factors[[nm]])) {
                  ch <- t(as(ch, "CsparseMatrix"))
                  ch@Dimnames <- dimnames(x) # as MF has no 'Dimnames' slot
                  return(ch)
              }
              ch <- chol(y <- .T2C(x), pivot = pivot, ...)
              if(cache)
                  ## dsCMatrix_chol() caches CHMfactor and returns dtCMatrix
                  .set.factors(x, nm, y@factors[[nm]])
              ch
          })


## METHODS FOR GENERIC: Cholesky
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

setMethod("Cholesky", signature(A = "denseMatrix"),
	  function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
              stop("Cholesky(A) is implemented for sparseMatrix 'A' only; consider chol(A) instead"))

setMethod("Cholesky", signature(A = "sparseMatrix"), # ->dsCMatrix
	  function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
              Cholesky(..sparse2d(.M2symm(as(A, "CsparseMatrix"))),
                       perm = perm, LDL = LDL, super = super, Imult = Imult,
                       ...))

setMethod("Cholesky", signature(A = "nsparseMatrix"),
	  function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
              stop("symbolic factorization of nsparseMatrix via Cholesky() is not yet implemented")) # TODO

setMethod("Cholesky", signature(A = "dsCMatrix"),
          function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
              .Call(dsCMatrix_Cholesky, A, perm, LDL, super, Imult))


## METHODS FOR GENERIC: chol2inv
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

setMethod("chol2inv", signature(x = "denseMatrix"), # ->dtrMatrix
	  function(x, ...)
              chol2inv(unpack(.M2tri(..dense2d(x))), ...))

setMethod("chol2inv", signature(x = "dtrMatrix"),
	  function (x, ...) {
	      if(x@diag != "N")
                  x <- ..diagU2N(x)
	      .Call(dtrMatrix_chol2inv, x)
	  })

setMethod("chol2inv", signature(x = "sparseMatrix"),
	  function (x, ...) {
	      chkDots(..., which.call = -2L)
	      tcrossprod(solve(.M2tri(x)))
	  })

setMethod("chol2inv", signature(x = "diagonalMatrix"),
	  function (x, ...) {
	      chkDots(..., which.call = -2L)
	      tcrossprod(solve(x))
	  })

setMethod("chol2inv", signature(x = "CHMfactor"),
	  function (x, ...) {
	      chkDots(..., which.call = -2L)
	      solve(x, system = "A")
	  })

Try the Matrix package in your browser

Any scripts or data that you put into this service are public.

Matrix documentation built on Nov. 11, 2022, 9:06 a.m.