Nothing
#### All Methods in relation with the sparseVector (sub)classes
setAs("atomicVector", "sparseVector",
function(from) {
r <- new(paste0(.V.kind(from), "sparseVector"))
r@length <- length(from)
r@i <- ii <- which(isN0(from))
r@x <- from[ii]
r
})
setAs("atomicVector", "dsparseVector",
function(from) {
r <- new("dsparseVector")
r@length <- length(from)
r@i <- ii <- which(isN0(from))
r@x <- as.double(from)[ii]
r
})
setAs("nsparseVector", "lsparseVector",
function(from)
new("lsparseVector", length = from@length, i = from@i,
x = rep.int(TRUE, length(from@i))))
setAs("nsparseVector", "isparseVector",
function(from)
new("isparseVector", length = from@length, i = from@i,
x = rep.int(1L, length(from@i))))
setAs("nsparseVector", "dsparseVector",
function(from)
new("dsparseVector", length = from@length, i = from@i,
x = rep.int(1, length(from@i))))
setAs("nsparseVector", "zsparseVector",
function(from)
new("zsparseVector", length = from@length, i = from@i,
x = rep.int(1+0i, length(from@i))))
setAs("sparseVector", "nsparseVector",
function(from)
new("nsparseVector", length = from@length, i = from@i))
setAs("sparseVector", "lsparseVector",
function(from)
new("lsparseVector", length = from@length, i = from@i,
x = as.logical(from@x)))
setAs("sparseVector", "isparseVector",
function(from)
new("isparseVector", length = from@length, i = from@i,
x = as.integer(from@x)))
setAs("sparseVector", "dsparseVector",
function(from)
new("dsparseVector", length = from@length, i = from@i,
x = as.double(from@x)))
setAs("sparseVector", "zsparseVector",
function(from)
new("zsparseVector", length = from@length, i = from@i,
x = as.complex(from@x)))
##' Uniquify sparceVectors, i.e., bring them in "regularized" from,
##' --- similar in spirit (and action!) as uniqTsparse(.) for "TsparseMatrix"
##' __FIXME__ better name ?? , then export and document! __TODO__
uniqSpVec <- function(x) {
ii <- sort.list(x@i, method = "radix")
x@i <- x@i[ii]
x@x <- x@x[ii]
x
}
sp2vec <- function(x, mode = .type.kind[.M.kind(x)]) {
## sparseVector -> vector
has.x <- .hasSlot(x, "x")## has "x" slot
m.any <- (mode == "any")
if(m.any)
mode <- if(has.x) mode(x@x) else "logical"
else if(has.x) # is.<mode>() is much faster than inherits() | is():
xxOk <- switch(mode,
"double" = is.double(x@x),
"logical" = is.logical(x@x),
"integer" = is.integer(x@x),
"complex" = is.complex(x@x),
## otherwise (does not happen with default 'mode'):
inherits(x@x, mode))
r <- vector(mode, x@length)
r[x@i] <-
if(has.x) {
if(m.any || xxOk) x@x else as(x@x, mode)
} else TRUE
r
}
## so base functions calling as.vector() work too:
## S3 dispatch works for base::as.vector(), but S4 dispatch does not:
as.vector.sparseVector <- sp2vec
## work as in base:
as.matrix.sparseVector <- function(x, ...) as.matrix.default(sp2vec(x))
as.array.sparseVector <- function(x, ...) as.array.default (sp2vec(x))
##' Construct new sparse vector , *dropping* zeros
##' @param class character, the sparseVector class
##' @param x numeric/logical/...: the 'x' slot -- if missing ==> "nsparseVector"
##' @param i integer: index of non-zero entries
##' @param length integer: the 'length' slot
##' @return a sparseVector, with 0-dropped 'x' (and 'i')
newSpV <- function(class, x, i, length, drop0 = TRUE, checkSort = TRUE) {
if(has.x <- !missing(x)) {
if(length(x) == 1 && (li <- length(i)) != 1) ## recycle x :
x <- rep.int(x, li)
if(drop0 && isTRUE(any(x0 <- x == 0))) {
keep <- is.na(x) | !x0
x <- x[keep]
i <- i[keep]
}
}
if(checkSort && is.unsorted(i)) {
ii <- sort.list(i)
if(has.x) x <- x[ii]
i <- i[ii]
}
if(has.x)
new(class, x = x, i = i, length = length)
else
new(class, i = i, length = length)
}
## a "version" of 'prev' with changed contents:
newSpVec <- function(class, x, prev)
newSpV(class, x=x, i=prev@i, length=prev@length)
## Exported:
sparseVector <- function(x, i, length) {
newSpV(class = paste0(if(missing(x)) "n" else .V.kind(x), "sparseVector"),
x=x, i=i, length=length)
}
setAs("sparseVector", "vector", function(from) sp2vec(from))
setMethod("as.vector", "sparseVector", sp2vec)
setMethod("as.numeric", "sparseVector", function(x) sp2vec(x, mode = "double"))
setMethod("as.logical", "sparseVector", function(x) sp2vec(x, mode = "logical"))
setAs("sparseVector", "numeric", function(from) sp2vec(from, mode = "double"))
setAs("sparseVector", "integer", function(from) sp2vec(from, mode = "integer"))
setAs("sparseVector", "logical", function(from) sp2vec(from, mode = "logical"))
## the "catch all remaining" method:
setAs("ANY", "sparseVector",
function(from) as(as.vector(from), "sparseVector"))
## "nsparse*" is special -- by default "lsparseVector" are produced
setAs("ANY", "nsparseVector",
function(from) as(as(from, "sparseVector"),"nsparseVector"))
setAs("diagonalMatrix", "sparseVector",
function(from) {
kind <- .M.kind(from) ## currently only "l" and "d" --> have 'x'
n <- nrow(from)
n2 <- as.double(n) * n
if(n2 > .Machine$integer.max) { ## double (i, length)
ii <- seq(1, by = n+1, length.out = n) ## 1-based indexing
} else { # integer ok
n2 <- as.integer(n2)
ii <- as.integer(seq(1L, by = n+1L, length.out = n))
}
new(paste0(kind, "sparseVector"),
length = n2, i = ii,
x = if(from@diag != "U") from@x else
rep.int(switch(kind, "d" = 1, "l" = TRUE, "i" = 1L, "z" = 1+0i), n))
})
setAs("sparseMatrix", "sparseVector",
function(from) as(as(from, "TsparseMatrix"), "sparseVector"))
setAs("CsparseMatrix", "sparseVector", ## could go via TsparseMatrix, but this is faster:
function(from) {
d <- dim(from)
n <- prod(d) # -> numeric, no integer overflow
if((int.n <- n <= .Machine$integer.max)) n <- as.integer(n)
kind <- .M.kind(from)
cld <- getClassDef(class(from))
from <-
if(extends(cld, "symmetricMatrix"))
.sparse2g(from)
else .Call(R_sparse_diag_U2N, from)
xj <- .Call(Matrix_expand_pointers, from@p)
ii <- if(int.n)
1L + from@i + d[1] * xj
else
1 + from@i + as.double(d[1]) * xj
cl <- paste0(kind, "sparseVector")
if(kind != "n") ## have 'x' slot
new(cl, i = ii, length = n, x = from@x)
else
new(cl, i = ii, length = n)
})
setAs("TsparseMatrix", "sparseVector",
function(from) {
d <- dim(from)
n <- prod(d) # -> numeric, no integer overflow
if((int.n <- n <= .Machine$integer.max)) n <- as.integer(n)
kind <- .M.kind(from)
cld <- getClassDef(class(from))
from <-
if(extends(cld, "symmetricMatrix"))
.sparse2g(from)
else .Call(R_sparse_diag_U2N, from)
if(anyDuplicatedT(from, di = d))
from <- uniqTsparse(from)
ii <- if(int.n)
1L + from@i + d[1] * from@j
else
1 + from@i + as.double(d[1]) * from@j
cl <- paste0(kind, "sparseVector")
if(kind != "n") ## have 'x' slot
new(cl, i = ii, length = n, x = from@x)
else
new(cl, i = ii, length = n)
})
##' <description>
##'
##' <details>
## Utility -- used in `dim<-` below, but also in Matrix(.) :
##' @title sparseVector --> sparseMatrix constructor
##' @param x "sparseVector" object
##' @param nrow integer or missing, as in matrix(), see ?matrix
##' @param ncol (ditto)
##' @param byrow logical (see ?matrix)
##' @param check logical indicating if it needs to be checked that 'x' is a sparseVector
##' @param symmetric logical indicating if result must be "symmetricMatrix"
##' @return an object inheriting from "TsparseMatrix"
##' @author Martin Maechler, May 2007 ff.
spV2M <- function (x, nrow, ncol, byrow = FALSE, check = TRUE, symmetric = FALSE)
{
if(check && !is(x, "sparseVector"))
stop("'x' must inherit from \"sparseVector\"")
if(!missing(ncol)) { ncol <- as.integer(ncol)
if(ncol < 0) stop("'ncol' must be >= 0") }
if(!missing(nrow)) { nrow <- as.integer(nrow)
if(nrow < 0) stop("'nrow' must be >= 0") }
n <- length(x)
if(symmetric) {
if(missing(nrow)) stop("Must specify 'nrow' when 'symmetric' is true")
if(!missing(ncol) && nrow != ncol)
stop("'nrow' and 'ncol' must be the same when 'symmetric' is true")
## otherwise ncol will not used at all when (symmetric)
if(check && as.double(nrow)^2 != n)
stop("'x' must have length nrow^2 when 'symmetric' is true")
## x <- x[indTri(nrow, upper=TRUE, diag=TRUE)]
} else if(missing(nrow)) {
nrow <- as.integer(
if(missing(ncol)) { ## both missing: --> (n x 1)
ncol <- 1L
n
} else {
if(n %% ncol != 0) warning("'ncol' is not a factor of length(x)")
as.integer(ceiling(n / ncol))
})
} else if(missing(ncol)) {
ncol <- if(symmetric) nrow else {
if(n %% nrow != 0) warning("'nrow' is not a factor of length(x)")
as.integer(ceiling(n / nrow)) }
} else { ## both nrow and ncol specified
n.n <- as.double(ncol) * nrow # no integer overflow
if(n.n < n) stop("nrow * ncol < length(x)", domain = NA)
if(n.n != n) warning("nrow * ncol != length(x)", domain = NA)
}
## now nrow * ncol >= n (or 'symmetric')
## ~~~~~~~~~~~~~~~~
kind <- .M.kind(x) # "d", "n", "l", "i", "z", ...
has.x <- kind != "n"
clStem <- if(symmetric) "sTMatrix" else "gTMatrix"
## "careful_new()" :
cNam <- paste0(kind, clStem)
chngCl <- is.null(slotNames(newCl <- getClass(cNam, .Force=TRUE)))
if(chngCl) { ## e.g. "igTMatrix" is not yet implemented
if(kind == "z")
stop(gettextf("Class %s is not yet implemented", dQuote(cNam)),
domain = NA)
## coerce to "double":
newCl <- getClass(paste0("d", clStem))
}
r <- new(newCl, Dim = c(nrow, ncol))
## now "compute" the (i,j,x) slots given x@(i,x)
i0 <- x@i - 1L
if(byrow) { ## need as.integer(.) since <sparseVector> @ i can be double
j <- as.integer(i0 %% ncol)
i <- as.integer(i0 %/% ncol)
} else { ## default{byrow = FALSE}
i <- as.integer(i0 %% nrow)
j <- as.integer(i0 %/% nrow)
}
if(has.x)
x <- if(chngCl) as.numeric(x@x) else x@x
if(symmetric) { ## using uplo = "U"
i0 <- i <= j ## i.e., indTri(nrow, upper=TRUE, diag=TRUE)
i <- i[i0]
j <- j[i0]
if(has.x) x <- x[i0]
}
r@j <- j
r@i <- i
if(has.x) r@x <- x
r
}## {spV2M}
.sparseV2Mat <- function(from)
spV2M(from, nrow = from@length, ncol = 1L, check = FALSE)
setAs("sparseVector", "Matrix", .sparseV2Mat)
setAs("sparseVector", "sparseMatrix", .sparseV2Mat)
setAs("sparseVector", "TsparseMatrix", .sparseV2Mat)
setAs("sparseVector", "CsparseMatrix", function(from) .T2C(.sparseV2Mat(from)))
setAs("sparseVector", "RsparseMatrix", function(from) .T2R(.sparseV2Mat(from)))
setMethod("dim<-", signature(x = "sparseVector"),
function(x, value) {
if(!is.numeric(value) || length(value) != 2L)
stop("dimensions must be numeric of length 2")
if(anyNA(value))
stop("dimensions cannot contain NA")
if(any(value < 0))
stop("dimensions cannot contain negative values")
if(!is.integer(value)) {
if(any(value > .Machine$integer.max))
stop("dimensions cannot exceed 2^31-1")
value <- as.integer(value)
}
if((p <- prod(value)) != (len <- length(x)))
stop(gettextf("assigned dimensions [product %.0f] do not match object length [%.0f]",
p, len, domain = NA))
spV2M(x, nrow = value[1L], ncol = value[2L])
})
setMethod("length", "sparseVector", function(x) x@length)
setMethod("t", "sparseVector",
function(x) spV2M(x, nrow = 1L, ncol = x@length, check = FALSE))
setMethod("show", signature(object = "sparseVector"),
function(object) {
n <- object@length
cl <- class(object)
cat(sprintf('sparse vector (nnz/length = %d/%.0f) of class "%s"\n',
length(object@i), as.double(n), cl))
maxp <- max(1, getOption("max.print"))
if(n <= maxp) {
prSpVector(object, maxp = maxp)
} else { # n > maxp : will cut length of what we'll display :
## cannot easily show head(.) & tail(.) because of "[1] .." printing of tail
prSpVector(head(object, maxp), maxp = maxp)
cat(" ............................",
"\n ........suppressing ", n - maxp,
" entries in show(); maybe adjust 'options(max.print= *)'",
"\n ............................\n\n", sep='')
}
invisible(object)
})
prSpVector <- function(x, digits = getOption("digits"),
maxp = getOption("max.print"), zero.print = ".")
{
cld <- getClassDef(class(x))
stopifnot(extends(cld, "sparseVector"), maxp >= 1)
if(is.logical(zero.print))
zero.print <- if(zero.print) "0" else " "
## kind <- .M.kindC(cld)
## has.x <- kind != "n"
n <- x@length
if(n > 0) {
if(n > maxp) { # n > maxp =: nn : will cut length of what we'll display :
x <- head(x, maxp)
n <- maxp
}
xi <- x@i
is.n <- extends(cld, "nsparseVector")
logi <- is.n || extends(cld, "lsparseVector")
cx <- if(logi) rep.int("N", n) else character(n)
cx[if(length(xi)) -xi else TRUE] <- zero.print
cx[ xi] <- {
if(is.n) "|" else if(logi) c(":","|")[x@x + 1L] else
## numeric (or --not yet-- complex): 'has.x' in any cases
format(x@x, digits = digits)
}
## right = TRUE : cheap attempt to get better "." alignment
print(cx, quote = FALSE, right = TRUE, max = maxp)
}
invisible(x) # TODO? in case of n > maxp, "should" return original x
}
## This is a simplified intI() {-> ./Tsparse.R } -- for sparseVector indexing:
intIv <- function(i, n, cl.i = getClass(class(i)))
{
### Note: undesirable to use this for negative indices;
### ---- using seq_len(n) below means we are NON-sparse ...
### Fixed, for "x[i] with negative i" at least.
## Purpose: translate numeric | logical index into 1-based integer
## --------------------------------------------------------------------
## Arguments: i: index vector (numeric | logical) *OR* sparseVector
## n: array extent { == length(.) }
if(missing(i))
seq_len(n)
else if(extends(cl.i, "numeric")) {
## not ok, when max(i) > .Machine$integer.max ! storage.mode(i) <- "integer"
int2i(i,n) ##-> ./Tsparse.R
}
else if (extends(cl.i, "logical")) {
seq_len(n)[i]
} else if(extends(cl.i, "nsparseVector")) {
i@i # the indices are already there !
} else if(extends(cl.i, "lsparseVector")) {
i@i[i@x] # "drop0", i.e. FALSE; NAs ok
} else if (extends(cl.i, "sparseVector")) { ## 'i'sparse, 'd'sparse (etc)
as.integer(i@x[i@i])
}
else
stop("index must be numeric, logical or sparseVector for indexing sparseVectors")
} ## intIv()
setMethod("head", signature(x = "sparseVector"),
function(x, n = 6, ...) {
stopifnot(length(n) == 1)
if(n >= (nx <- x@length)) return(x)
if(is.integer(x@i)) n <- as.integer(n) else stopifnot(n == round(n))
if(n < 0) n <- max(0L, n + nx)
x@length <- n
if(length(x@i)) {
## now be careful *NOT* to use seq_len(n), as this be efficient for huge n
## As we *know* that '@i' is sorted increasingly: [x@i <= n] <==> [1:kk]
x@i <- x@i[ii <- seq_len(which.max(x@i > n) - 1L)]
if(.hasSlot(x, "x")) ## has.x: has "x" slot
x@x <- x@x[ii]
}
x
})
setMethod("tail", signature(x = "sparseVector"),
function(x, n = 6, ...) {
stopifnot(length(n) == 1)
if(n >= (nx <- x@length)) return(x)
if(is.integer(x@i)) n <- as.integer(n) else stopifnot(n == round(n))
if(n < 0) n <- max(0L, n + nx)
x@length <- n
if((N <- length(x@i))) {
## now be careful *NOT* to use seq_len(n) ... (see above)
n <- nx-n # and keep indices > n
ii <- if(any(G <- x@i > n)) which.max(G):N else FALSE
x@i <- x@i[ii] - n
if(.hasSlot(x, "x")) ## has.x: has "x" slot
x@x <- x@x[ii]
}
x
})
setMethod("[", signature(x = "sparseVector", i = "index"),
function (x, i, j, ..., drop) {
has.x <- .hasSlot(x, "x")## has "x" slot
n <- x@length
if(extends(cl.i <- getClass(class(i)), "numeric") && any(i < 0)) {
if(any(i > 0))
stop("you cannot mix negative and positive indices")
if(any(z <- i == 0)) i <- i[!z]
## all (i < 0), negative indices:
## want to remain sparse --> *not* using intIv()
##
## TODO: more efficient solution would use C ..
i <- unique(sort(-i)) # so we need to drop the 'i's
nom <- is.na(m <- match(x@i, i))
## eliminate those non-0 which do match:
x@i <- x@i[nom]
if(has.x) x@x <- x@x[nom]
## now all x@i "appear in 'i' but must be adjusted for the removals:
x@i <- x@i - findInterval(x@i, i)
x@length <- n - length(i)
} else { ## i >= 0 or non-numeric 'i'
ii <- intIv(i, n, cl.i=cl.i)
m <- match(x@i, ii, nomatch = 0)
sel <- m > 0L
x@length <- length(ii)
x@i <- m[sel]
if(any(iDup <- duplicated(ii))) {
i.i <- match(ii[iDup], ii)
jm <- lapply(i.i, function(.) which(. == m))
if (has.x) sel <- c(which(sel), unlist(jm))
x@i <- c(x@i, rep.int(which(iDup), lengths(jm)))
}
if(doSort <- is.unsorted(x@i)) {
io <- order(x@i, method="radix")
x@i <- x@i[io]
}
if (has.x)
x@x <- if(doSort) x@x[sel][io] else x@x[sel]
}
x
})
setMethod("[", signature(x = "sparseVector", i = "lsparseVector"),
function (x, i, j, ..., drop) x[sort.int(i@i[i@x])])
setMethod("[", signature(x = "sparseVector", i = "nsparseVector"),
function (x, i, j, ..., drop) x[sort.int(i@i)])
##--- Something else: Allow v[ <sparseVector> ] -- exactly similarly:
if(FALSE) { ## R_FIXME: Not working, as internal "[" only dispatches on 1st argument
setMethod("[", signature(x = "atomicVector", i = "lsparseVector"),
function (x, i, j, ..., drop) x[sort.int(i@i[i@x])])
setMethod("[", signature(x = "atomicVector", i = "nsparseVector"),
function (x, i, j, ..., drop) x[sort.int(i@i)])
}
##' Implement x[i] <- value
##' @param x a "sparseVector"
##' @param i an "index" (integer, logical, ..)
##' @param value
##' @return a "sparseVector" of the same length as 'x'
## This is much analogous to replTmat in ./Tsparse.R:
replSPvec <- function (x, i, value)
{
n <- x@length
ii <- intIv(i, n)
lenRepl <- length(ii)
if(!lenRepl) return(x)
## else: lenRepl = length(ii) > 0
lenV <- length(value)
if(lenV == 0)
stop("nothing to replace with")
## else: lenV := length(value) > 0
if(lenRepl %% lenV != 0)
stop("number of items to replace is not a multiple of replacement length")
if(anyDuplicated(ii)) { ## multiple *replacement* indices: last one wins
## TODO: in R 2.6.0 use duplicate(*, fromLast=TRUE)
ir <- lenRepl:1
keep <- match(ii, ii[ir]) == ir
ii <- ii[keep]
lenV <- length(value <- rep(value, length.out = lenRepl)[keep])
lenRepl <- length(ii)
}
has.x <- .hasSlot(x, "x")## has "x" slot
m <- match(x@i, ii, nomatch = 0)
sel <- m > 0L
## the simplest case
if(all0(value)) { ## just drop the non-zero entries
if(any(sel)) { ## non-zero there
x@i <- x@i[!sel]
if(has.x)
x@x <- x@x[!sel]
}
return(x)
}
## else -- some( value != 0 ) --
if(lenV > lenRepl)
stop("too many replacement values")
else if(lenV < lenRepl)
value <- rep(value, length.out = lenRepl)
## now: length(value) == lenRepl > 0
v0 <- is0(value)
## value[1:lenRepl]: which are structural 0 now, which not?
v.sp <- inherits(value, "sparseVector")
if(any(sel)) {
## indices of non-zero entries -- WRT to subvector
iN0 <- m[sel] ## == match(x@i[sel], ii)
## 1a) replace those that are already non-zero with new val.
vN0 <- !v0[iN0]
if(any(vN0) && has.x) {
vs <- value[iN0[vN0]]
x@x[sel][vN0] <- if(v.sp) sp2vec(vs, mode=typeof(x@x)) else vs
}
## 1b) replace non-zeros with 0 --> drop entries
if(any(!vN0)) {
i <- which(sel)[!vN0]
if(has.x)
x@x <- x@x[-i]
x@i <- x@i[-i]
}
iI0 <- if(length(iN0) < lenRepl) seq_len(lenRepl)[-iN0] # else NULL
} else iI0 <- seq_len(lenRepl)
if(length(iI0) && any(vN0 <- !v0[iI0])) {
## 2) add those that were structural 0 (where value != 0)
ij0 <- iI0[vN0]
ii <- c(x@i, ii[ij0]) # new x@i, must be sorted:
iInc <- sort.list(ii)
x@i <- ii[iInc]
if(has.x) # new @x, sorted along '@i':
x@x <- c(x@x, if(v.sp)
sp2vec(value[ij0], mode=typeof(x@x))
else value[ij0]
)[iInc]
}
x
}
setReplaceMethod("[", signature(x = "sparseVector", i = "index", j = "missing",
value = "replValueSp"),
replSPvec)
setReplaceMethod("[", signature(x = "sparseVector",
i = "sparseVector", j = "missing",
value = "replValueSp"),
## BTW, the important case: 'i' a *logical* sparseVector
replSPvec)
## Something else: Also allow x[ <sparseVector> ] <- v e.g. for atomic x :
if(FALSE) { ## R_FIXME: Not working, as internal "[<-" only dispatches on 1st argument
## Now "the work is done" inside intIv() :
setReplaceMethod("[", signature(x = "atomicVector",
i = "sparseVector", j = "missing",
value = "replValue"),
function (x, i, value)
callGeneric(x, i = intIv(i, x@length), value=value))
}
## a "method" for c(<(sparse)Vector>, <(sparse)Vector>):
## FIXME: This is not exported, nor used (nor documented)
c2v <- function(x, y) {
## these as(., "sp..V..") check input implicitly:
cx <- class(x <- as(x, "sparseVector"))
cy <- class(y <- as(y, "sparseVector"))
if(cx != cy) { ## find "common" class; result does have 'x' slot
cxy <- c(cx,cy)
commType <- {
if(all(cxy %in% c("nsparseVector", "lsparseVector")))
"lsparseVector"
else { # ==> "numeric" ("integer") or "complex"
xslot1 <- function(u, cl.u)
if(cl.u != "nsparseVector") u@x[1] else TRUE
switch(typeof(xslot1(x, cx) + xslot1(y, cy)),
## "integer", "double", or "complex"
"integer" = "isparseVector",
"double" = "dsparseVector",
"complex" = "zsparseVector")
}
}
if(cx != commType) x <- as(x, commType)
if(cy != commType) y <- as(y, commType)
cx <- commType
}
## now *have* common type -- transform 'x' into result:
nx <- x@length
x@length <- nx + y@length
x@i <- c(x@i, nx + y@i)
if(cx != "nsparseVector")
x@x <- c(x@x, y@x)
x
}
## sort.default() does
## x[order(x, na.last = na.last, decreasing = decreasing)]
## but that uses a *dense* integer order vector
## ==> need direct sort() method for "sparseVector" for mean(*,trim), median(),..
sortSparseV <- function(x, decreasing = FALSE, na.last = NA) {
if(length(ina <- which(is.na(x)))) {
if(is.na(na.last)) x <- x[-ina]
}
## TODO
.NotYetImplemented()
}
all.equal.sparseV <- function(target, current, ...)
{
if(!is(target, "sparseVector") || !is(current, "sparseVector")) {
return(paste0("target is ", data.class(target), ", current is ",
data.class(current)))
}
lt <- length(target)
lc <- length(current)
if(lt != lc) {
return(paste0("sparseVector", ": lengths (", lt, ", ", lc, ") differ"))
}
t.has.x <- .hasSlot(target, "x")## has "x" slot
c.has.x <- .hasSlot(current, "x")## has "x" slot
nz.t <- length(i.t <- target @i)
nz.c <- length(i.c <- current@i)
t.x <- if(t.has.x) target@x else rep.int(TRUE, nz.t)
c.x <- if(c.has.x) current@x else rep.int(TRUE, nz.c)
if(nz.t != nz.c || any(i.t != i.c)) { ## "work" if indices are not the same
i1.c <- setdiff(i.t, i.c)# those in i.t, not yet in i.c
i1.t <- setdiff(i.c, i.t)
if((n1t <- length(i1.t))) {
target@i <- i.t <- c(i.t, i1.t)
t.x <- c(t.x, rep.int(if(t.has.x) 0 else 0L, n1t))
}
if((n1c <- length(i1.c))) {
current@i <- i.c <- c(i.c, i1.c)
c.x <- c(c.x, rep.int(if(c.has.x) 0 else 0L, n1c))
}
}
if(is.unsorted(i.t)) { ## method="quick" {"radix" not ok for large range}
ii <- sort.list(i.t, method = "quick", na.last=NA)
target@i <- i.t <- i.t[ii]
t.x <- t.x[ii]
}
if(is.unsorted(i.c)) {
ii <- sort.list(i.c, method = "quick", na.last=NA)
current@i <- i.c <- i.c[ii]
c.x <- c.x[ii]
}
## Now, we have extended both target and current
## *and* have sorted the respective i-slot, the i-slots should match!
stopifnot(all(i.c == i.t))
if(is.logical(t.x))
all.equal.raw(t.x, c.x, ...)
else
all.equal.numeric(t.x, c.x, ...)
} ## all.equal.sparseV
## For these, we remain sparse:
setMethod("all.equal", c(target = "sparseVector", current = "sparseVector"),
all.equal.sparseV)
setMethod("all.equal", c(target = "sparseVector", current = "sparseMatrix"),
function(target, current, ...)
all.equal.sparseV(target, as(current, "sparseVector"), ...))
setMethod("all.equal", c(target = "sparseMatrix", current = "sparseVector"),
function(target, current, ...)
all.equal.sparseV(as(target, "sparseVector"), current, ...))
## For the others, where one is "dense", "go to" dense rather now than later:
setMethod("all.equal", c(target = "ANY", current = "sparseVector"),
function(target, current, ...)
all.equal(target, as.vector(current), ...))
setMethod("all.equal", c(target = "sparseVector", current = "ANY"),
function(target, current, ...)
all.equal(as.vector(target), current, ...))
## S3 method for 'c' [but only for dispatch on 1st arg, hence also exported as fn]
c.sparseVector <- function(...) {
svl <- lapply(list(...), as, Class = "sparseVector")
## cls <- unique(unlist(lapply(svl, is)))
ns <- vapply(svl, slot, 1, "length")
if((N <- sum(ns)) < .Machine$integer.max) { # some purism ..
ns <- as.integer(ns)
N <- as.integer(N)
}
narg <- length(ns)
iss <- lapply(svl, slot, "i")
## new 'i' slot:
ii <- unlist(iss) + rep(cumsum(c(0L, ns[-narg])), lengths(iss))
## result must have 'x' slot if we have any
has.x <- any(have.x <- vapply(svl, .hasSlot, logical(1L), name = "x"))
if(has.x) {
cls <- if (any(vapply(svl, is, NA, "zsparseVector"))) "zsparseVector"
else if(any(vapply(svl, is, NA, "dsparseVector"))) "dsparseVector"
else if(any(vapply(svl, is, NA, "isparseVector"))) "isparseVector"
else "lsparseVector"
if(!(all.x <- all(have.x)))
one <- if (identical(cls, "lsparseVector")) TRUE
else if(identical(cls, "isparseVector")) 1L else 1.
xx <- unlist(if(all.x) lapply(svl, slot, "x")
else lapply(seq_len(narg), function(i) {
if(have.x[[i]]) svl[[i]]@x
else rep_len(one, length(iss[[i]]))
}))
new(cls, x = xx, i = ii, length = N)
} else ## no "x" slot
new("nsparseVector", i = ii, length = N)
}
### rep(x, ...) -- rep() is primitive with internal default method with these args:
### -----------
### till R 2.3.1, it had rep.default() which we use as 'model' here.
repSpV <- function(x, times) {
## == rep.int(<sparseVector>, times)"
times <- as.integer(times)# truncating as rep.default()
n <- x@length
has.x <- .hasSlot(x, "x")## has "x" slot
## just assign new correct slots:
if(times <= 1) { ## be quick for {0, 1} times
if(times < 0) stop("'times >= 0' is required")
if(times == 0) {
x@length <- 0L
x@i <- integer(0)
if(has.x) x@x <- rep.int(x@x, 0)
}
return(x)
}
n. <- as.double(n)
if(n. * times >= .Machine$integer.max)
n <- n. # so won't have overflow in subsequent multiplys
x@length <- n * times
x@i <- rep.int(x@i, times) + n * rep(0:(times-1L), each=length(x@i))
## := outer(x@i, 0:(times-1) * n, "+") but a bit faster
if(has.x) x@x <- rep.int(x@x, times)
x
}
setMethod("rep", "sparseVector",
function(x, times, length.out, each, ...) {
if (length(x) == 0)
return(if(missing(length.out)) x else head(x, length.out))
if (!missing(each)) {
tm <- rep.int(each, length(x))
x <- rep(x, tm) # "recursively"
if(missing(length.out) && missing(times))
return(x)
} ## else :
if (!missing(length.out)) # takes precedence over times
times <- ceiling(length.out/length(x))
r <- repSpV(x, times)
if (!missing(length.out) && length(r) != length.out) {
if(length.out > 0) head(r, length.out) else r[integer(0)]
}
else r
})
### Group Methods (!)
## "Ops" : ["Arith", "Compare", "Logic"]: ---> in ./Ops.R
## -----
## "Summary" ---> ./Summary.R
## ---------
## "Math", "Math2": ./Math.R
## -------
##' indices of vector x[] to construct Toeplitz matrix
##' FIXME: write in C, port to R('stats' package), and use in stats::toeplitz()
ind4toeplitz <- function(n) {
A <- matrix(raw(), n, n)
abs(as.vector(col(A) - row(A))) + 1L
}
.toeplitz.spV <- function(x, symmetric=TRUE, repr = c("C","T","R"), giveCsparse) {
## semantically "identical" to stats::toeplitz
n <- length(x)
r <- spV2M(x[ind4toeplitz(n)], n,n, symmetric = symmetric, check = FALSE)
## ^^^^^ returning TsparseMatrix
if(!missing(giveCsparse)) {
if(missing(repr)) {
repr <- if(giveCsparse) "C" else "T"
warning(gettextf("'giveCsparse' has been deprecated; setting 'repr = \"%s\"' for you",
repr),
domain = NA)
} else ## !missing(repr)
Matrix.msg("'giveCsparse' has been deprecated; will use 'repr' instead")
}
switch(match.arg(repr), "C" = .T2C(r), "T" = r, "R" = .T2R(r))
}
setMethod("toeplitz", "sparseVector", .toeplitz.spV)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.