
NNLM: A package For Fast And Versatile Nonnegative
Matrix Factorization

Eric Xihui Lin
2019-07-02

Contents
Abstract 1

Background 1

Software and implementation 1

Description 2
Sequential coordinate-wise descent (SCD) . 2
Alternating NNLS with regularization . 2
Sequential quadratic approximation for Kullback-Leibler divergence loss 4
Multiplicative updates with regularization . 5
Complexity and convergence speed . 5
Usage . 5
Compare different algorithms . 6

Applications 9
Pattern extraction . 9
Content deconvolution and designable factorization . 13
Missing value imputation and application in recommendation system 15
Determine rank k via missing value imputation . 20
Noise reduction . 23

NNLM vs NMF 23

Reference 25

Abstract

Background

Non-negative matrix factorization (NMF or NNMF) has been widely used as a general method for feature
extraction on non-negative data. For example, meta-gene discovery from gene expression profiles in Kim and
Park (2007), Brunet et al. (2004). There are currently a few algorithms for NMF decomposition, including
the multiplicative algorithms proposed by Lee and Seung (1999), gradient decent and alternating non-negative
least square (NNLS), which is getting popular recently, due to its speed to convergence.

Software and implementation

The most popular R implantation of NMF is the NMF package (Gaujoux and Seoighe (2010)) which was
first translated from a MATLAB package and later optimized via C++ for some algorithms. It implements

1

various algorithms, such as the Lee’s multiplicative updates based on square error and Kullback-Leibler
divergence distance, sparse alternating NNLS, etc. The sparse alternating NNLS (ALS) is supposed to be a
very fast algorithm, but in practice, when number of rows increased to tens of thousands, this package gets
very slow, probably due to its R implementation.

In NNLM, we adapt the ALS approach, but the NNLS problem is solved by a coordinate-wise algorithm
proposed by Franc, Navara, and Hlavac (2005), in which each unknown variable can be solved sequentially
and explicitly as simple quadratic optimization problems. Due to this efficient NNLS algorithm and the usage
of Rcpp, our NMF is fast. Choice of different regularizations and many other unique features like integrating
known profiles, designable factorization, missing value handling are also available.

Description

This package includes two main functions, nnlm and nnmf.

Sequential coordinate-wise descent (SCD)

nnlm solves the following non-negative least square (NNLS)

min
β≥0
||Y −Xβ||F ,

using the following sequentially coordinate-wise algorithm (Franc, Navara, and Hlavac (2005)).

0. Let V = XTX.
1. Initialize β(0) = 0, µ(0) = −XTY.
2. Repeat until converge: for k = 1 to p,

β
(t+1)
k = max

(
0, β(t)

k −
µ

(t)
k

vkk

)

µ(t+1) = µ(t) +
(
β

(t+1)
k − β(t)

k

)
V·k

where V·k is the kth coloum of V and p is the length of β.

Note that in this problem, Y and X are not necessary non-negative.

Alternating NNLS with regularization

A typical non-negative matrix factorization problem can be expressed as

min
W≥0,H≥0

1
2 ||A−WH||2F + JW (W) + JH(H)

where
JW (W) = α1J1(W) + α2J2(W) + α3J3(W)
JH(H) = β1J1(HT) + β2J2(HT) + β3J3(HT)

2

and
J1(X) := 1

2 ||X||
2
F = 1

2 tr(XX
T)

J2(X) :=
∑
i<j

(X·i)TX·j = 1
2 tr(X(E − I)XT)

J3(X) :=
∑
i,j

|xij | = tr(XE)

J4(X) := 1
2
∑
k

||Xk·||21 = 1
2 tr(XEX

T)

In the above, A ∈ Rn×m, W ∈ Rn×K , H ∈ RK×m, I is an identity matrix, E is a matrix of proper dimension
with all entries equal to 1, w·i and wi· are the ith column and row respectively, h·j is the j-th column of H.
Obviously, J4 = J1 + J2.

The above four types of regularizations can be used for different purposes. J1 is a ridge penalty to control
the magnitudes and smoothness. J2(X) is used to minimize correlations among columns, i.e., to maximize
independence or the angle between X·i, X·j (Zhang et al. (2008)). J3 and J4 (Kim and Park (2007)) is a
LASSO like penalty, which controls both magnitude and sparsity. However, J3(X) tends control matrix-wise
sparsity, but may also result in that some column of X have all entries equal to 0, while J4(X) forces sparsity
in a column-wise manner, which should seldom give zero column.

The alternative lease square (ALS) algorithm solves W and H iteratively. Due to the non-negative constraint,
the penalized NNLS is only slightly complicated. For example, When solving H with W fixed, i.e., minimizing
for H such that H ≥ 0, we have

1
2 ||A−WH||2F + JH(H)

= tr
{

1
2H

T
[
WTW + β1I + β2(E − I)

]
H −HT

[
WTA− β3E

]}
+ const.

Since E− I is semi-negative definite, therefore, to ensure the uniqueness and the convergence of the algorithm,
one has to ensure that WTW + β1I + β2(E − I) is positive definite. Indeed, we force a more stringent
constraint that β1 ≥ β2. Similarly, α1 ≥ α2, since the ma. When the equality is reached, it is the J4
constraint, i.e., row-wise LASSO for W and column-wise LASSO for H.

The following algorithm is used to solved penalized NNLS.

0. Let V = WTW + β1I + β2(E − I).
1. Initialization. Set H(0) = 0, U (0) = −WTA+ β3E.
2. Repeat until converge: for j = 1 to m, k = 1 to K

h
(t+1)
kj = max

(
0, h(t)

kj −
u

(t)
kj

vkk

)

U
(t+1)
·j = U

(t)
·j +

(
h

(t+1)
kj − h(t)

kj

)
V·k

where V·k is the kth coloum of V .

The alternating NNLS algorithm fixes W and solve for H using NNLS, and then fixes H and solve for W .
This procedure is repeated until the change of A−WH is small enough.

Instead of initializing H(0) = 0 for every iteration, we use warm-start, i.e., make use of the previous iteration
result,

H(0) = H, U (0) = WTWH −WTA+ β3E,

where H is the solution from the previous iteration.

3

Sequential quadratic approximation for Kullback-Leibler divergence loss

A well known problem about square error loss is that it is not robust to skewed distribution (e.g., count data)
or outliers. An alternative choice of loss function is the Kullback-Leibler divergence “distance” defined as

L(A, Â) = KL(A|Â) =
∑
i,j

aij log aij
âij
− aij + âij .

It can be proved that KL(A|Â) ≥ 0 and equality is reached if and only if A = Â. In NMF, Â = WH.

One explanation of the the KL divergence is to assume that aij is some count drawn independently as

aij ∼ Poisson(λij).

The correspondent log likelihood is

l(Λ) =
∑
i,j

(aij log λij − λij) + const.

Maximizing this log likelihood with respect to Λ = {λij} is equivalent minimizing KL with respect to
Â. Assume that the observed aij comes from a mixture of independent Poisson distributions with rates
λ

(1)
ij , . . . , λ

(k)
ij , then

aij ∼ Poisson
(
λij =

K∑
l=1

λ
(l)
ij

)
.

If we force a structure λ(l)
ij = wilhlj , we get NMF with KL divergence loss.

With KL divergence loss, a non-negative matrix factorization problem can be expressed as

min
W≥0,H≥0

KL(A|WH) + JW (W) + JH(H).

This problem can be solved using a similar alternating coordinate-wise algorithm, by approximating
KL(A|WH) with a quadratic function (Taylor expansion up to second order around its current value).

Assume W is known and H is to be solved. Let

b :=∂KL
∂hkj

(
H0) =

∑
l

(
wlk −

aljwlk∑
q wlqh

0
qj

)

a :=∂2KL
∂h2

kj

(
H0) =

∑
l

alj

(
wlk∑
q wiqh

0
qj

)2

where H0 is the current value of H in the iteration procedure.

Therefore for hkj , with all other entries fixed,

KL(A|WH) + JH(H) ≈ 1
2a(hkj − h0

kj)2 + b(hkj − h0
kj) + 1

2β1h
2
kj + β2hkj

∑
l 6=k

h0
lj + β3hkj + const,

which can be minimized explicitly with constraint hkj ≥ 0, as

hkj = max
(

0,
ah0

kj − b− β2
∑
l 6=k h

0
lj − β3

a+ β1

)
.

Obviously, this update can be parallelled in a column-wise manner.

Note that when an entry of Â is 0, the KL divergence is infinity. To avoid this, we add a very small number
both to A and Â.

4

Multiplicative updates with regularization

Two multiplicative updating algorithms are proposed in Lee and Seung (1999) for square loss and KL
divergence loss. We modify these algorithms to integrate all the above regularizations as the followings.

With square loss

wik = wik
(AHT)ik

(W [HHT + α1I + α2(E − I)] + α3E)ik
,

hkj = hkj
(WTA)kj

([WTW + β1I + β2(E − I)]H + β3E)kj
.

With Kullback-Leibler divergence distance,

wik = wik

∑
l=1 hklail/

∑
q wiqhql

(
∑
l hkl + (α1 − α2)wik + α2

∑
l wil + α3) ,

hkj = hkj

∑
l wlkalj/

∑
q wlqhqj

(
∑
l wlk + (β1 − β2)hkj + β2

∑
l hlj + β3) .

When αi = 0, βi = 0, i = 1, 2, 3, these are the original multiplicative algorithms in Lee and Seung (1999).

This multiplicative algorithm is straight forward to implemented, but it has a drawback that when W or H
is initialized with a zero entry or positive, it remains 0 or positive through iterations. Therefore, true sparsity
can not be achieved generally, unless a hard-thresholding is forced, as many of entries should be small enough
to be thresholded as 0.

Complexity and convergence speed

One can easily see that both the sequential coordinate descent (SCD) and Lee’s multiplictive algorithms
using MSE have complexity of O

((
(m+ n)k2Ni + 2nmK

)
No
)
, while their KL counterparts have complexity

of O
(
nmk2NiNo

)
. Here Ni is the number of inner iterations to solve the non-negative linear model and No

is the number of outer iteration to alternate W and H. NixNo is the total number of epochs, i.e., swaps over
W and H matrices. Obviously algorithm with MSE are faster then the KL based ones (by a factor of k) in
terms of complexity, and can benefit from multiple inner iterations Ni (reducing the expensive computation
of WTA and AHT) as typically k � m,n, which generally should reduce No. On the contrast, algorithm
with KL has not benefit from Ni due to the re-calculation of WH on each inner iteration. Though the SCD
and Lee’s algorithm are close in terms of complexity, one can stil expect that SCD will converge much faster
in practice. This is because Lee’s multiplicative algorithm is indeed a gradient descent with a special step
size (Lee and Seung (1999)) which is first order method, while the sequential coordinate-wise is a second
order approach like the Newton-Raphson algorithm.

Usage

One can install NNLM like
install.packages("NNLM");

or get a dev-version from Github
library(devtools);
install_github('linxihui/NNLM')

5

Interface

nnlm(x, y, alpha = rep(0,3), method = c('scd', 'lee'), loss = c('mse', 'mkl'), init = NULL,
mask = NULL, check.x = TRUE, max.iter = 10000L, rel.tol = 1e-12, n.threads = 1L)

nnmf(A, k = 1L, alpha = rep(0,3), beta = rep(0,3), method = c("scd", "lee"), loss = c("mse", "mkl"),
init = NULL, mask = NULL, W.norm = -1L, check.k = TRUE, max.iter = 500L, rel.tol = 1e-4,
n.threads = 1L, trace = 10L, verbose = 1L, show.warning = TRUE,
inner.max.iter = ifelse('mse' == loss, 50L, 1L), inner.rel.tol = 1e-09)

• x : design matrix.
• y : a vector or matrix of responses.
• A : matrix to decompose.
• k : rank of NMF.
• method: sequential coordinate descent ("scd") or Lee’s multiplicative algorithm ("lee").
• metric: loss function, mean square error or KL-divergence.
• init:

– nnlm: a non-negative matrix of initials.
– nnmf: a list of named initial matrices for W and H. One can also supply known matrices W0, H0,

and initialize their correspondent matrices H1 and W1.
• mask:

– nnlm: a logical matrix indicating if entries are fixed to 0 or initials if available.
– nnmf: a list of named mask matrices forW, H, H1 (if init$W0 supplied),W1 (if init$H0 supplied),

which should have the same shapes asW, H, H1 andW1 if specified. If initial matrices not specified,
masked entries are fixed to 0.

• alpha and beta: a vector of length equal to or less than 3, indicating α1, α2, α3 and β1, β2, β3. If latter
entries are missing, 0 is assumed.

• trace: an integer n indicating how frequent the error should be checked, i.e., n-iterations.
• verbose: either 0/FALSE, 1/TRUE or 2, indicating no printing, progression bar or iteration details.
• n.threads: number of openMP threads.
• max.iter and rel.tol: number of outer alternating iterations and the relative tolerance.
• inner.max.iter and inner.rel.tol: number of inner iterations for solving NNLM and the relative

tolerance. Default to 50 if loss == 'mse' and 1 if loss == 'mkl'.

Compare different algorithms

library(NNLM);
set.seed(123);

k <- 15;
init <- list(W = matrix(runif(nrow(nsclc)*k), ncol = k),

H = matrix(runif(ncol(nsclc)*k), nrow = k));
Set rel.tol = -1 to prevent from early stop, just for comparison purpose
scd.mse <- nnmf(nsclc, k, init = init, max.iter = 100, rel.tol = -1, show.warning = FALSE);
lee.mse <- nnmf(nsclc, k, init = init, max.iter = 100, rel.tol = -1, method = 'lee', show.warning = FALSE);
scd.mkl <- nnmf(nsclc, k, init = init, max.iter = 5000, rel.tol = -1, loss = 'mkl', show.warning = FALSE);
lee.mkl <- nnmf(nsclc, k, init = init, max.iter = 5000, rel.tol = -1, loss = 'mkl',

method = 'lee', show.warning = FALSE);
lee.mse1 <- nnmf(nsclc, k, init = init, max.iter = 5000, rel.tol = -1, method = 'lee',

inner.max.iter = 1, show.warning = FALSE);

plot(NULL, xlim = c(1, 3000), ylim = c(0.15, 0.45), xlab = 'Epochs', ylab = 'MSE');

6

lines(cumsum(scd.mse$average.epochs), scd.mse$mse, col = 'firebrick1');
lines(cumsum(lee.mse$average.epochs), lee.mse$mse, col = 'orange');
lines(cumsum(scd.mkl$average.epochs), scd.mkl$mse, col = 'chartreuse3');
lines(cumsum(lee.mkl$average.epochs), lee.mkl$mse, col = 'deepskyblue4');
lines(cumsum(lee.mse1$average.epochs), lee.mse1$mse, col = 'orange', lty = 2);
legend('topright', bty = 'n', lwd = 1, lty = c(1,1,2,1,1),

legend = c('SCD-MSE', 'LEE-MSE', 'LEE-MSE-1', 'SCD-MKL', 'LEE-MKL'),
col = c('firebrick1', 'orange', 'orange', 'chartreuse3', 'deepskyblue4'));

plot(NULL, xlim = c(1, 3000), ylim = c(0.01, 0.034), xlab = 'Epochs', ylab = 'MKL');
lines(cumsum(scd.mse$average.epochs), scd.mse$mkl, col = 'firebrick1');
lines(cumsum(lee.mse$average.epochs), lee.mse$mkl, col = 'orange');
lines(cumsum(scd.mkl$average.epochs), scd.mkl$mkl, col = 'chartreuse3');
lines(cumsum(lee.mkl$average.epochs), lee.mkl$mkl, col = 'deepskyblue4');
lines(cumsum(lee.mse1$average.epochs), lee.mse1$mkl, col = 'orange', lty = 2);
legend('topright', bty = 'n', lwd = 1, lty = c(1,1,2,1,1),

legend = c('SCD-MSE', 'LEE-MSE', 'LEE-MSE-1', 'SCD-MKL', 'LEE-MKL'),
col = c('firebrick1', 'orange', 'orange', 'chartreuse3', 'deepskyblue4'));

summary.nnmf <- function(x) {
if (x$n.iteration < 2) {

rel.tol <- NA_real_;
} else {

err <- tail(x$target.loss, 2);
rel.tol <- diff(err)/mean(err);
}

return(c(
'MSE' = tail(x$mse, 1), 'MKL' = tail(x$mkl, 1), 'Target' = tail(x$target.loss, 1),
'Rel. tol.' = abs(rel.tol), 'Total epochs' = sum(x$average.epochs),
'# Interation' = x$n.iteration, x$run.time[1:3]));

};

library(knitr);
kable(

sapply(
X = list(

'SCD-MSE' = scd.mse,
'LEE-MSE' = lee.mse,
'LEE-MSE-1' = lee.mse1,
'SCD-MKL' = scd.mkl,
'LEE-MKL' = lee.mkl
),

FUN = function(x) {z <- summary(x); sapply(z, sprintf, fmt = '%.4g')}
),

align = rep('r', 5),
caption = 'Compare performance of different algorithms'
);

Table 1: Compare performance of different algorithms

SCD-MSE LEE-MSE LEE-MSE-1 SCD-MKL LEE-MKL
MSE 0.155 0.1565 0.1557 0.1574 0.1579
MKL 0.01141 0.01149 0.01145 0.01119 0.01122

7

SCD-MSE LEE-MSE LEE-MSE-1 SCD-MKL LEE-MKL
Target 0.07749 0.07825 0.07783 0.01119 0.01122
Rel. tol. 1.325e-05 0.0001381 0.000129 6.452e-08 9.739e-05
Total epochs 5000 5000 5000 5000 5000
Interation 100 100 5000 5000 5000
user.self 1.682 3.85 9.764 37.11 33.84
sys.self 2.103 4.605 10.94 25.21 24.68
elapsed 1.058 2.61 10.18 28.84 25.38

0 500 1000 1500 2000 2500 3000

0.
15

0.
25

0.
35

0.
45

Epochs

M
S

E

SCD−MSE
LEE−MSE
LEE−MSE−1
SCD−MKL
LEE−MKL

8

0 500 1000 1500 2000 2500 3000

0.
01

0
0.

02
0

0.
03

0

Epochs

M
K

L

SCD−MSE
LEE−MSE
LEE−MSE−1
SCD−MKL
LEE−MKL

One can see from the above summary, the SCD and Lee’s algorithms have roughly the same run time for
each epoch, i.e., updating W and H entries once. However, SCD generally converges much faster than Lee’s,
i.e., achieving the same accuracy in less epochs/iterations and thus shorter time. Obviously, algorithms with
mean KL loss are slower than those with MSE for each epoch, but reducing error a bit more in each epoch.
Lee’s multiplicative algorith with MSE is faster when multiple epochs used in each outer alternating iteration
(LEE-MSE vs LEE-MSE-1).

Applications

Pattern extraction

In Lee and Seung (1999), NMF is shown to be able to learn sparse basis images (column of W) that represent
facial parts , like mouses, noses and eyes of different shapes. Each face (column of A) is a positive combinations
of a few of these basis images. In topic discovery, NMF can learn to group documents into topics, where
A is a bag-of-word representation (count of a word in a document) of a batch of documents, with rows =
vocabulary, and columns = documents. In NMF, the columns of W (after normalization) represent topics (a
topic is represented as the distribution over vocabulary), and a column of H shows the topics a document
covered.

In bioinformatics, NMF can be used to discover ‘meta-genes’ from expression profile, which are linear
combinations of genes that may or may not related to some biology path ways. In this case, A is usually
arranged as rows = genes and columns = patients. The columns of W can then be interpreted as meta-genes,
and H are said to be the expression profile of meta-genes (Brunet et al. (2004), Kim and Park (2007)).
Alexandrov et al. (2013) used NMF to extract trinucleotide mutational signatures (basis) from next generation
sequencing data (NGS) for human genes and discovered that each cancer type is combination of these basis.

9

library(NNLM);
set.seed(123);

data(nsclc, package = 'NNLM')
str(nsclc)

num [1:200, 1:100] 7.06 6.41 7.4 9.38 5.74 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:200] "PTK2B" "CTNS" "POLE" "NIPSNAP1" ...
..$: chr [1:100] "P001" "P002" "P003" "P004" ...
decomp <- nnmf(nsclc[, 1:80], 3, rel.tol = 1e-5);
decomp

Non-negative matrix factorization:
Algorithm: Sequential coordinate-wise descent
Loss: Mean squared error
MSE: 0.3481353
MKL: 0.02518784
Target: 0.1740676
Rel. tol.: 9.41e-06
Total epochs: 2551
Interation: 81
Running time:
user system elapsed
0.119 0.000 0.135
heatmap(decomp$W, Colv = NA, xlab = 'Meta-gene', ylab = 'Gene', margins = c(2,2),

labRow = '', labCol = '', scale = 'column', col = cm.colors(100));
heatmap(decomp$H, Rowv = NA, ylab = 'Meta-gene', xlab = 'Patient', margins = c(2,2),

labRow = '', labCol = '', scale = 'row', col = cm.colors(100));

10

Meta−gene

G
en

e

11

Patient

M
et

a−
ge

ne

We can also use the derived meta-genes and find their expressions in new patients, using nnlm which is
wrapped as by predict for convenience .
find the expressions of meta-genes for patient 81-100
newH <- predict(decomp, nsclc[, 81:100], which = 'H');
str(newH)

List of 5
$ coefficients: num [1:3, 1:20] 0.00576 0.00568 0.00539 0.00595 0.00337 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:20] "P081" "P082" "P083" "P084" ...
$ n.iteration : int 10041
$ error : Named num [1:3] 0.374 0.027 0.187
..- attr(*, "names")= chr [1:3] "MSE" "MKL" "target.error"
$ options :List of 4
..$ method : chr "scd"
..$ loss : chr "mse"
..$ max.iter: int 10000
..$ rel.tol : num 1e-12
$ call : language nnlm(x = object$W, y = newdata, method = method, loss = loss)
- attr(*, "class")= chr "nnlm"

12

Content deconvolution and designable factorization

There are several researches (Zhang et al. (2008), Pascual-Montano et al. (2006)) shown the capacity of NMF
in blind signal separation similar to independent component analysis (ICA). Here, we aim to focus on the
application to tumor content deconvolution in the area of bioinformatics, in which one of the signal is known.

Microarray is a popular technique for collecting mRNA expression. Indeed, a mRNA profile (tumor profile) is
typically a mixture of cancer specific profile and healthy profile as the collected tumor tissues are ‘contaminated’
by healthy cells. To exact the pure cancer profile for down-stream analysis, an NMF can be utilized. One can
this NMF as

A ≈WH +W0H1,

where W is unknown cancer profile, and W0 is known healthy profile. The task here is to deconvolute W , H
and H1 from A and W0.

A more general deconvolution task can be expressed as

A ≈WH +W0H1 +W1H0,

where H0 is known coefficient matrix, e.g. a column matrix of 1. In this scenario, W1 can be interpreted
as homogeneous cancer profile within the specific cancer patients, and W is heterogeneous cancer profile of
interest for downstream analysis, such as diagnostic or prognostic capacity, sub-type clustering.

This general deconvolution is implemented in nnmf via the alternating NNLS algorithm. The known profile
W0 and H0 can be passed via arguments W0 and H0. L2 and L1 constrain for unknown matrices are also
supported.

Once can add mask matrices for W and H, where the masked entries are fixed to 0. Indeed, this is a form
of hard-regularization. The above known-profile feature is a special case of this mask technique, in which
masked entries are fixed to their initial values. This feature is designed to incorporate domain knowledge,
like gene sub-networks, path ways, etc.

Assume S = {S1, ..., SL}, where Sl, l = 1, ..., L is a set of genes in sub-network Sl. One can design W as a
matrix of L columns (or more), with Wi,l = 0, i 6∈ Sl. Then the NMF factorization will learn the weights of
real genes in expression profile Wi,l, i ∈ Sl from the data. This is implemented in nnmf with a logical mask
matrix MW = {δi∈Sl,l}. Similar mask matrix MH with the same shape of H can be specified in the nnmf
function.

This feature can be used for meta-analysis of different cancer types, to force some of the k meta-genes to
be cancer specific (and others are shared). For example, assume A1, A2 are expressions of lung cancer and
prostate cancer microarray. By setting parts of the coefficient matrix H to 0 like

(A1 A2) = (W0 W1 W2)

 H01 H02
H1 0
0 H2

 ,

we can expect that W1 and W2 are lung and prostate cancer specific profiles.

ISOpureR (Anghel et al. (2015)) is an R package for tumor content deconvolution based on a graphic model
introduced in Quon et al. (2013). As argued in the above, NMF can also be used for this purpose.
set.seed(123);
if (!require(ISOpureR)) {

install.packages('ISOpureR', repos = "http://cran.stat.sfu.ca/");
library(ISOpureR);
}

Loading required package: ISOpureR

13

path.to.data <- file.path(system.file(package = 'ISOpureR'), 'extdata/Beer');
normal profile
load(file.path(path.to.data, 'beer.normaldata.250.transcripts.RData'));
transcriptome of 30 patients (part of the Beer dataset)
load(file.path(path.to.data, 'beer.tumordata.250.transcripts.30.patients.RData'));

assume k = 3, beer.normaldata is the known healthy profile
beer.nmf <- nnmf(beer.tumordata, k = 3, init = list(W0 = beer.normaldata));

compute proportion of tumor content
tm.frac.nmf <- with(beer.nmf, colSums(W[,1:3] %*% H[1:3,])/colSums(W %*% H));

tumor content from ISOpureR using the full dataset
tm.frac.full <- read.delim(file.path(path.to.data, "alphapurities_full_dataset.txt"));

plot(tm.frac.full$alphapurities*100, tm.frac.nmf*100,
xlim = c(20, 100), ylim = c(20, 100), col = 'firebrick1',
xlab = "% tumor from ISOpureR full data",
ylab = "% tumor from NMF partial data");

abline(a = 0, b = 1, lty = 2)

20 40 60 80 100

20
40

60
80

10
0

% tumor from ISOpureR full data

%
 tu

m
or

 fr
om

 N
M

F
 p

ar
tia

l d
at

a

14

Missing value imputation and application in recommendation system

Since matrix A is assumed to have a low rank K, information in A is redundant for such a decomposition.
Hence it is possible to allow some entries in A to be absent. Such an observation implies that on can used
complete entries to impute the missing ones in A, which is a classic task in recommendation system. For
example, on Netflix, each customer scores only a small proportion of the movies and each movie is scored by
a fraction of customers. Once can expect that such a movie-customer score matrix is fairly sparse (lots of
missings). Using a NMF that allows missing values, one can predict a customer’s scores on movies he/she
has not watched. A recommendation can be made simply based on the predicted scores. In addition, the
resulting W and H can be used to further cluster movies and customers. This feature is implemented in the
nnmf function and used whenever there is a missing in A by using only complete entries.

The advantage of NMF imputation, compared to other model based methods, is that it takes into account all
the complete entries when imputing a single missing entry, which means it can capture complex dependency
among entries. While a typical missing value imputation algorithm usually models missings in a feature-by-
feature (column-by-column or row-by-row) manner, and iterates over all features multiple times to capture
complex dependency.

The following example shows the capacity of NMF for imputation. We use the NSCLC microarray data as an
example and set 30% percent of the entries to NA. One can see that NMF imputation is faster and better
than tradition imputation algorithm like median substitution and MICE (multivariate imputation by chained
equations Van Buuren (2011)), and close to result from missForest (Stekhoven and Buehlmann (2012)) which
utilizes the black-box random forest algorithm that is highly nonlinear. NMF imputation is the fastest which
makes it suitable for big matrix.
set.seed(123);
nsclc2 <- nsclc;
index <- sample(length(nsclc2), length(nsclc2)*0.3);
nsclc2[index] <- NA;

NMF imputation
system.time(nsclc2.nmf <- nnmf(nsclc2, 2));
nsclc2.hat.nmf <- with(nsclc2.nmf, W %*% H);

user system elapsed
0.384 0.024 0.449
multivariate imputation by chained equations (MICE)
if(!require(mice)) {

install.packages('mice', repos = "http://cran.stat.sfu.ca/");
library(mice);
}

logarithm for positivity and the normality assumption
system.time(nsclc2.mice <- mice(log(nsclc2), m = 1, printFlag = FALSE)); # one imputation

Warning: Number of logged events: 493
nsclc2.hat.mice <- exp(as.matrix(complete(nsclc2.mice)));

user system elapsed
198.122 259.207 142.822
imputation using random forest
if(!require(missForest)) {

install.packages('missForest', repos = "http://cran.stat.sfu.ca/");
library(missForest);
}

15

system.time(capture.output(nsclc2.missForest <- missForest(log(nsclc2))));
nsclc2.hat.missForest <- exp(nsclc2.missForest$ximp);

user system elapsed
70.954 0.052 71.243
simple imputation, fill-in median expression values of genes
nsclc2.hat.median <- matrix(

apply(nsclc2, 1, median, na.rm = TRUE),
nrow = nrow(nsclc2), ncol = ncol(nsclc2)
);

compare different imputations
library(knitr);
kable(

sapply(
X = list(

Baseline = mean(nsclc2, na.rm = TRUE),
Medians = nsclc2.hat.median[index],
MICE = nsclc2.hat.mice[index],
MissForest = nsclc2.hat.missForest[index],
NMF = nsclc2.hat.nmf[index]
),

FUN = mse.mkl, # mean square error, mean KL-divergence
obs = nsclc[index]
),

caption = "A comparison of different imputation methods",
digits = 4
);

Table 2: A comparison of different imputation methods

Baseline Medians MICE MissForest NMF
MSE 4.4272 0.5229 1.0075 0.4188 0.4191
MKL 0.3166 0.0389 0.0696 0.0299 0.0301

plot(nsclc[index], nsclc2.hat.median[index], col = 'chartreuse3', cex = 0.3, pch = 20,
ylim = c(2, 14), xlab = "Observed", ylab = "Medians")

abline(a = 0, b = 1, lwd = 2, lty = 2)

plot(nsclc[index], nsclc2.hat.mice[index], col = 'orange', cex = 0.3, pch = 20,
ylim = c(2, 14), xlab = "Observed", ylab = "MICE imputed")

abline(a = 0, b = 1, lwd = 2, lty = 2)

plot(nsclc[index], nsclc2.hat.missForest[index], col = 'darkorchid', cex = 0.3, pch = 20,
ylim = c(2, 14), xlab = "Observed", ylab = "MissForest imputed")

abline(a = 0, b = 1, lwd = 2, lty = 2)

plot(nsclc[index], nsclc2.hat.nmf[index], col = 'deepskyblue', cex = 0.3, pch = 20,
ylim = c(2, 14), xlab = "Observed", ylab = "NMF imputed")

abline(a = 0, b = 1, lwd = 2, lty = 2)

16

4 6 8 10 12 14

2
4

6
8

10
12

14

Observed

M
ed

ia
ns

17

4 6 8 10 12 14

2
4

6
8

10
12

14

Observed

M
IC

E
 im

pu
te

d

18

4 6 8 10 12 14

2
4

6
8

10
12

14

Observed

M
is

sF
or

es
t i

m
pu

te
d

19

4 6 8 10 12 14

2
4

6
8

10
12

14

Observed

N
M

F
 im

pu
te

d

Determine rank k via missing value imputation

Tuning hyper-parameter is a typical challenge for all unsupervised learning algorithms. The rank k is the only
but very crucial parameter, which is unknown before hand. Brunet et al. (2004) suggests to run multiple times
of k and uses a consensus matrix to determine k. This idea assumes that sample assignment to clusters would
vary little from run to run if a clustering into k classes is strong. However, this assumption is not validated
and the purpose of NMF is not always for clustering. Another idea, brought from denoising autoencoder
(Vincent et al. (2008)), is to add noise to matrix A, factorize the noisy version and compare the reconstructed
matrix to the original A, and the k that gives the smallest error is picked. This could a general approach for
many unsupervised learning algorithms, but in NMF, the choice of ‘noise’ is not easy as the noisy version of
A has to be non-negative as well, which implies ‘noise’ may introduce bias.

Given the powerful missing value imputation in NMF, we come up with a novel idea, adapting the well known
training-validation split idea in supervised learning. Some entries are randomly deleted from A and then
imputed by NMF with a set of k’s. These imputed entries are later compared to their observed values, and the
k that gives the smallest error will be our choice, as only the correct k, if exists, has the right decomposition
that recovers the missing entries. As contrast to training-validation split in supervised learning, due the
typically big number of entries in A, we have a much large sample size. One can also easily adapt the idea of
cross validation to this approach. This idea should be applicable to any unsupervised learning methods that
supports missing value imputation.

To illustrate, we do a simulation study as follows. As we could see, different runs give consistent results. The
mean square errors(MSEs) decrease as rank k increase, but the increases rate slows down when k = 3 (the
true rank). Meanwhile, the MSEs for imputed values are minimized at k = 3 for all runs.

20

set.seed(678);

n <- 400;
m <- 50;
k <- 3;
W <- matrix(runif(n*k), n, k);
H <- matrix(10*runif(k*m), k, m);
noise <- matrix(rnorm(n*m), n, m);
A <- W %*% H + noise;
A[A < 0] <- 0;

plot(-1, xlim = c(1,6), ylim = c(0.5, 2.5), xlab = "Rank", ylab = "MSE")
cols <- c('deepskyblue', 'orange', 'firebrick1', 'chartreuse3');
for (col in cols) {

ind <- sample(length(A), 0.3*length(A));
A2 <- A;
A2[ind] <- NA;
err <- sapply(X = 1:6,

FUN = function(k) {
z <- nnmf(A2, k);
c(mean((with(z, W %*% H)[ind] - A[ind])^2), tail(z$mse, 1));
}

);
invisible(lines(err[1,], col = col, type = 'b'));
invisible(lines(err[2,], col = col, type = 'b', lty = 2));
}

21

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

Rank

M
S

E

For imputation, as in the previous example for NSCLC, we chose k = 2. But why? To determine the rank,
we set a fraction of the complete entries to missing, and impute them. MSEs are computed to determine the
optimal rank. As from the resulting graph below, one can tell that k = 2 is the optimal.
set.seed(567);

plot(0, xlim = c(1,10), ylim = c(0.4, 1.4), xlab = "Rank", ylab = "MSE")
cols <- c('deepskyblue', 'orange', 'firebrick1', 'chartreuse3');
for (col in cols) {

index2 <- sample(which(!is.na(nsclc2)), 2000);
nsclc3 <- nsclc2;
nsclc3[index2] <- NA;
err <- sapply(X = 1:10,

FUN = function(k, A) {
z <- nnmf(A, k, verbose = FALSE);
mean((with(z, W%*%H)[index2] - nsclc2[index2])^2)
},

A = nsclc3
);

invisible(lines(err, col = col, type='b', lwd = 2, cex = 1));
}

22

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Rank

M
S

E

Noise reduction

This is obvious as the reconstruction from W and H lies on a smaller dimension, and should therefore give a
smoother reconstruction. This noise reduction is particularly useful when the noise is not Gaussian which
cannot be done using many other methods where Gaussian noise is usually assumed.

NNLM vs NMF

The R package NMF by Gaujoux and Seoighe (2010) is an excellent and complete suite for basic NMF
decomposition. It has a careful design, various choices of different algorithms (some of which are implemented
in C for speed), different built-in initializations, a large amount of utility functions to process resulting NMF
object, such as visualization, meta-gene thresholding. It supports multiple runs via the foreach framework,
which parallels multiple runs on a multiple-cores machine and HPC cluster.

One the other hand, NNLM does not provide any functionality other than NMF decomposition. It focuses
on speed and applications. The built-in coordinate NNLS solver is highly efficient to solve NMF via the
alternating scheme. The algorithm is parallelled within a single run via openMP. Thus it is fast for a single
NMF, which makes NMF suitable for big matrix. We believe our users can parallel multiple runs via foreach,
doMC and doMPI without much effort, thanks to the simplicity of foreach. The NMF algorithms in NNLM
are given more choices of regularizations, both traditional penalty methods and hard regularization like
partially known W and H, which can be powerful to integrate previous or domain knowledge into NMF. All

23

built-in NMF algorithms are capable for matrices with missing values, which is desirable in some applications
like recommendation system and imputation. Although only random initialization is built-in, user specified
initial matrices is accepted, which can come from an SVD, ICA, etc.

24

Reference

Alexandrov, Ludmil B., Serena Nik-Zainal, David C. Wedge, Peter J. Campbell, and Michael R. Stratton.
2013. “Deciphering Signatures of Mutational Processes Operative in Human Cancer.” Cell Rep. 3: 246–59.

Anghel, Catalina V, Gerald Quon, Syed Haider, Francis Nguyen, Amit G Deshwar, Quaid D Morris, and Paul
C Boutros. 2015. “ISOpureR: An R Implementation of a Computational Purification Algorithm of Mixed
Tumor Profiles.” BMC Bioinformatics 16: 156.

Brunet, Jean-Philippe, Pablo Tamayo, Todd R. Golub, and Jill P. Mesirov. 2004. “Metagenes and Molecular
Pattern Discovery Using Matrix Factorization.” Proc Natl Acad Sci U S A 101 (12): 4164–9.

Franc, Vojtech, Mirko Navara, and Vaclav Hlavac. 2005. “Sequential Coordinate-Wise Algorithm for
Non-Negative Least Squares Problem.” Research Reports of CMP 6.

Gaujoux, Renaud, and Cathal Seoighe. 2010. “A Flexible R Package for Nonnegative Matrix Factorization.”
BMC Bioinformatics 11: 367.

Kim, Hyunsoo, and Haesum Park. 2007. “Sparse Non-Negative Matrix Factorizations via Alternating
Non-Negative-Constrained Least Squares for Microarray Data Analysis.” Bioinformatics 23 (12): 1495–1502.

Lee, Daniel D., and H. Sebastian Seung. 1999. “Learning the Parts of Objects by Non-Negative Matrix
Factorization.” Nature 401: 788–91.

Pascual-Montano, Alberto, J.M. Carazo, Kieko Kochi, Dietrich Lehmann, and Roberto D.Pascual-Marqui.
2006. “Nonsmooth Nonnegative Matrix Factorization (nsNMF).” IEEE Transactions on Pattern Analysis
and Machine Intelligence 28 (3): 403–14.

Quon, Gerald, Syed Haider, Amit G Deshwar, Ang Cui, Paul C Boutros, and Quaid Morris. 2013. “Compu-
tational Purification of Individual Tumor Gene Expression Profiles Leads to Significant Improvements in
Prognostic Prediction.” Genome Medicine 5 (3): 29.

Stekhoven, D.J., and P. Buehlmann. 2012. “MissForest - Nonparametric Missing Value Imputation for
Mixed-Type Data.” Bioinformatics 28 (1): 112–18.

Van Buuren, Groothuis-Oudshoorn, S. 2011. “Mice: Multivariate Imputation by Chained Equations in R.”
Journal of Statistical Software 45 (3): 1–67.

Vincent, P., H. Larochelle, Y. Bengio, and P.A. Manzagol. 2008. “Extracting and Composing Robust Features
with Denoising Autoencoders.” Proceedings of the Twenty-Fifth International Conference on Machine Learning,
1096–1103.

Zhang, Junying, Le Wei, Xuerong Feng, Zhen Ma, and Yue Wang. 2008. “Pattern Expression Nonnegative
Matrix Factorization: Algorithm and Applications to Blind Source Separation.” Computational Intelligence
and Neuroscience 2008.

25

	Abstract
	Background
	Software and implementation
	Description
	Sequential coordinate-wise descent (SCD)
	Alternating NNLS with regularization
	Sequential quadratic approximation for Kullback-Leibler divergence loss
	Multiplicative updates with regularization
	Complexity and convergence speed
	Usage
	Compare different algorithms

	Applications
	Pattern extraction
	Content deconvolution and designable factorization
	Missing value imputation and application in recommendation system
	Determine rank k via missing value imputation
	Noise reduction

	NNLM vs NMF
	Reference

