PalmTypeA: Non-Parametric and Parametric Estimate of the Palm Intensity...

Description Usage Arguments Value References Examples

View source: R/NScluster.R

Description

Calculate the non-parametric and parametric Palm intensity function of Type A model estimated directly from a set of point pattern data.

Usage

1
2
  PalmTypeA(xy.points, pars1 = NULL, pars2 = NULL, delta = 0.001, uplimit = 0.3,
            plot = TRUE)

Arguments

xy.points

a matrix containing the coordinates (x,y) of points in a unit square: W=[0,1]*[0,1].

pars1

a named vector of the true parameters (mu, nu, a, sigma1, sigma2), where mu is an intensity of parents, nu is an expected number of descendants for each parent, a is a mixture parameter, sigma1 and sigma2 are parameters of the dispersal kernel for each component.

pars2

a named vector of MPLEs (the maximum Palm likelihood estimates) (mu, nu, a, sigma1, sigma2).

delta

a width for the non-parametric Palm intensity function.

uplimit

upper limit value in place of .

plot

logical. If TRUE (default), the non-parametric estimate and the curves of true parameters and MPLEs are shown.

Value

r

the distance r=jΔ, where j=1,2,...,[R/Δ], where [ ] is the Gauss' symbol and R=1/2 is given in the program for the normalized rectangular region for the point pattern.

np.palm

the corresponding values of the non-parametric Palm intensity function of r, which is normalized by the total intensity estimate of the point pattern data.

palm.normal

the normalized Palm intensity functions λ_o(r)/λ^ calculated from the given sets of parameter values. See ../doc/NScluster-guide.pdf.

References

U. Tanaka, Y. Ogata and K. Katsura, Simulation and estimation of the Neyman-Scott type spatial cluster models, Computer Science Monographs No.34, 2008, 1-44. The Institute of Statistical Mathematics.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
## simulation
pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1)
z <- SimulateTypeA(pars, seed=575)

## estimation
## need very long c.p.u time in the minimization procedure
## Not run: 
init.pars <- c(mu=60.0, nu=40.0, a=0.5, sigma1=0.01, sigma2=0.1)
z1 <- EstimateTypeA(z$offspring$xy, init.pars, skip=100)
# Parameter              mu           nu            a       sigma1       sigma2
# Initial value     60.0000      40.0000       0.5000       0.0100       0.1000
# MPLE              51.2441      25.1439       0.3431       0.0054       0.0824

## End(Not run)

## Palm intensity
par1 <- c(50.0, 30.0, 0.3, 0.005, 0.1)  # pars
par2 <- c(51.2441, 25.1439, 0.3431, 0.0054, 0.0824)  # z1$mple
PalmTypeA(z$offspring$xy, par1, par2)

NScluster documentation built on March 19, 2018, 9:03 a.m.