Nothing
# PK MODELS
context(" Model PK 1cpt : Linear1BolusSingleDose_kV")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1BolusSingleDose_kV")
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 15,
omega = sqrt( 0.1 ),
distribution = LogNormalDistribution())
pk = ModelParameter( "k", mu = 0.25,
omega = sqrt( 0.25 ),
distribution = LogNormalDistribution())
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pk )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.5, sigma_slope = 0.15 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 200 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c( 0.33, 1.5, 5, 12) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det( matrixFisherPopulationFIM )
valueDetPopulationFim = 1.456485e+18
tol = 1e-6
expect_equal( detPopulationFim, valueDetPopulationFim, tol)
})
############################################################################################################################
context(" Model PK 1cpt : Linear1BolusSingleDose_ClV")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1BolusSingleDose_ClV")
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 15,
omega = sqrt( 0.10 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 3.75,
omega = sqrt( 0.25),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.5, sigma_slope = 0.15 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 200 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c( 0.33, 1.5, 5, 12) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 7.292816e+15
tol = 1e-6
expect_equal( detPopulationFim, valueDetPopulationFim, tol )
})
############################################################################################################################
context(" Model PK 1cpt : Linear1InfusionSingleDose_kV")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1InfusionSingleDose_kV")
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
#### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 3.5,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
pk = ModelParameter( "k", mu = 0.6,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pk )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.1, sigma_slope = 0.1 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 40 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0.5, 1, 4, 8) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", Tinf=c(2), time_dose = c(0) , amount_dose = c(30) ) )
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 3.414077e+13
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
############################################################################################################################
context(" Model PK 1cpt : Linear1InfusionSingleDose_ClV")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1InfusionSingleDose_ClV")
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
#### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 3.5,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 2.0,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.1, sigma_slope = 0.1 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 40 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0.5, 1, 4, 8) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", Tinf=c(2), time_dose = c(0) , amount_dose = c(30) ) )
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 1.558579e+17
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
############################################################################################################################
context(" Model PK 1cpt : Linear1FirstOrderSingleDose_kakV")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1FirstOrderSingleDose_kakV")
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
#### Set mu and omega for each parameter
pka = ModelParameter( "ka", mu = 2,
omega = sqrt( 1 ),
distribution = LogNormalDistribution() )
pk = ModelParameter( "k", mu = 0.25,
omega = sqrt( 0.25 ),
distribution = LogNormalDistribution() )
pV = ModelParameter( "V", mu = 15,
omega = sqrt( 0.1 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pk )
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.5, sigma_slope = 0.15 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 200 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0.33, 1.5, 5, 12) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0) , amount_dose = c(100) ) )
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 2.930397e+20
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
############################################################################################################################
context(" Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV")
test_that("", {
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "Linear1FirstOrderSingleDose_kaClV" )
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel)
### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 8,
omega = sqrt( 0.020 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 0.13,
omega = sqrt( 0.06 ),
distribution = LogNormalDistribution() )
pka = ModelParameter( "ka", mu = 1.6,
omega = sqrt( 0.7 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.6, sigma_slope = 0.07 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 32 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK",
sample_time = c( 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120 ) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK",
time_dose = c(0), amount_dose = c(100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
MyEvaluationInd <- EvaluateIndividualFIM( MyProject )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
matrixFisherIndividualFIM = getFim(MyEvaluationInd)
detPopulationFim = det(matrixFisherPopulationFIM)
detIndividualFim = det(matrixFisherIndividualFIM)
valueDetIndividualFim = 1532105538
valueDetPopulationFim = 7.503881e+22
tol = 1e-6
expect_equal(detIndividualFim,valueDetIndividualFim, tol)
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
############################################################################################################################
context(" Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV (BayesianFIM instead of PopulationFIM)")
test_that("", {
### Create a project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Defineequations of the model
# Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "Linear1FirstOrderSingleDose_kaClV" )
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel)
### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 8,
omega = sqrt( 0.020 ),
distribution = NormalDistribution() )
pCl = ModelParameter( "Cl", mu = 0.13,
omega = sqrt( 0.06 ),
distribution = NormalDistribution() )
pka = ModelParameter( "ka", mu = 1.6,
omega = sqrt( 0.7 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.6, sigma_slope = 0.07 ) ) )
### Assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 1 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c( 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120 ) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
MyEvaluationInd <- EvaluateIndividualFIM( MyProject )
MyEvaluationBayes <- EvaluateBayesianFIM( MyProject )
matrixFisherIndividualFIM = getFim(MyEvaluationInd)
matrixFisherBayesianFIM = getFim(MyEvaluationBayes)
detIndividualFim = det(matrixFisherIndividualFIM)
detBayesianFim = det(matrixFisherBayesianFIM)
valueDetIndividualFim = 1532105538
valueDetBayesianFim = 4428901
tol = 1e-6
expect_equal(detIndividualFim,valueDetIndividualFim, tol)
expect_equal(valueDetBayesianFim,detBayesianFim, tol)
})
###################################################################################################################################
context("Model PK 1cpt : Linear1InfusionSingleDose_ClV")
test_that("", {
### Create a project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Assign the equations to the statistical model
Linear1InfusionSingleDose_kVCl <- getModel( PFIMLibraryOfModels, "Linear1InfusionSingleDose_ClV" )
MyStatisticalModel = defineModelEquations( MyStatisticalModel, Linear1InfusionSingleDose_kVCl)
### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 3.5,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 2,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.1, sigma_slope = 0.1 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 40 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0, 1,2,5,7,8, 10,12,14, 15, 16, 20, 21, 30) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", Tinf=c(2), tau=c(12) , amount_dose = c(30,50,30,50) ) ) #brasTest <- addAdministration( brasTest, Administration( outcome = "Resp1", tinf=c(2,2,3,3), amount_dose = [100][c(30,30,50,50)] )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 1.634513e+19
tol = 1e-6
expect_equal(valueDetPopulationFim,detPopulationFim, tol)
})
###################################################################################################################################
context("Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV")
test_that("", {
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "Linear1FirstOrderSingleDose_kaClV" )
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel)
### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 8,
omega = sqrt( 0.020 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 0.13,
omega = sqrt( 0.06 ),
distribution = LogNormalDistribution() )
pka = ModelParameter( "ka", mu = 1.6,
omega = sqrt( 0.7 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.6, sigma_slope = 0.07 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 32 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c( 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120 ) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
MyEvaluationInd <- EvaluateIndividualFIM( MyProject )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
matrixFisherIndividualFIM = getFim(MyEvaluationInd)
detPopulationFim = det(matrixFisherPopulationFIM)
detIndividualFim = det(matrixFisherIndividualFIM)
valueDetIndividualFim = 1532105538
valueDetPopulationFim = 7.503881e+22
tol = 1e-6
expect_equal(detIndividualFim,valueDetIndividualFim, tol)
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context("Model PK 1cpt :Linear1FirstOrderSingleDose_kaClV")
test_that("", {
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "Linear1FirstOrderSingleDose_kaClV" )
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel)
### Set mu and omega for each parameter
pV = ModelParameter( "V", mu = 8,
omega = sqrt( 0.020 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 0.13,
omega = sqrt( 0.06 ),
distribution = LogNormalDistribution() )
pka = ModelParameter( "ka", mu = 1.6,
omega = sqrt( 0.7 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.6, sigma_slope = 0.07 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 32 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c( 0.5, 1, 2, 6, 12, 48, 72, 120, 165, 220 ) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0, 80, 160), amount_dose = c(100,100,100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
MyEvaluationInd <- EvaluateIndividualFIM( MyProject )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
matrixFisherIndividualFIM = getFim(MyEvaluationInd)
detPopulationFim = det(matrixFisherPopulationFIM)
detIndividualFim = det(matrixFisherIndividualFIM)
valueDetIndividualFim = 618022401
valueDetPopulationFim = 2.304835e+22
tol = 1e-6
expect_equal(detIndividualFim,valueDetIndividualFim, tol)
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context(" Model PK 2cpts : Linear2BolusSingleDose_ClQV1V2")
test_that("", {
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "Linear2BolusSingleDose_ClQV1V2" )
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel )
### Set mu and omega for each parameter
pCl = ModelParameter( "Cl", mu = 0.4,
omega = sqrt( 0.2 ),
distribution = LogNormalDistribution() )
pV1 = ModelParameter( "V1", mu = 10,
omega = sqrt( 0.1 ),
distribution = LogNormalDistribution() )
pQ = ModelParameter( "Q", mu = 2,
omega = sqrt( 0.05 ),
distribution = LogNormalDistribution() )
pV2 = ModelParameter( "V2", mu = 50,
omega = sqrt( 0.4 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV1 )
MyStatisticalModel = defineParameter( MyStatisticalModel, pQ )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV2 )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.6, sigma_slope = 0.07 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 32 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 3.587146e+18
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context(" Model PK 2cpts : Linear2BolusSingleDose_kk12k21V")
test_that("", {
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "Linear2BolusSingleDose_kk12k21V" )
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel )
### Set mu and omega for each parameter
pk = ModelParameter( "k", mu = 0.25,
omega = sqrt( 0.25 ),
distribution = LogNormalDistribution() )
pV = ModelParameter( "V", mu = 15.00,
omega = sqrt( 0.10 ),
distribution = LogNormalDistribution() )
pk12 = ModelParameter( "k12", mu = 1.00,
omega = sqrt( 0.4 ),
distribution = LogNormalDistribution() )
pk21 = ModelParameter( "k21", mu = 0.80,
omega = sqrt( 0.3 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pk )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pk12 )
MyStatisticalModel = defineParameter( MyStatisticalModel, pk21 )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.5, sigma_slope = 0.15 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 200 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0.33, 1.5, 3, 5, 8, 12) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 2.137813e+24
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context(" Model PK 1cpt : MichaelisMenten1FirstOrderSingleDose_kaVmKmV")
test_that("", {
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "MichaelisMenten1FirstOrderSingleDose_kaVmKmV")
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel )
### Define the variables of the ode model
vC1 <- ModelVariable( "C1" )
MyModel = defineVariable( MyStatisticalModel, vC1 )
### Set fixed effects (mu), standard deviation of random effects (omega) and distribution of each parameter
pka <- ModelParameter( "ka", mu = 1.00,
omega = sqrt( 0.20 ),
distribution = LogNormalDistribution() )
pV <- ModelParameter( "V", mu = 15.00,
omega = sqrt( 0.25 ),
distribution = LogNormalDistribution() )
pVm <- ModelParameter( "Vm", mu = 0.08,
omega = sqrt( 0.10 ),
distribution = LogNormalDistribution() )
pKm <- ModelParameter( "Km", mu = 0.40,
omega = sqrt( 0.30 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel <- defineParameter( MyStatisticalModel, pka )
MyStatisticalModel <- defineParameter( MyStatisticalModel, pV )
MyStatisticalModel <- defineParameter( MyStatisticalModel, pVm )
MyStatisticalModel <- defineParameter( MyStatisticalModel, pKm )
### Error model (standard deviations)
MyModel <- addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.5, sigma_slope = 0.15 ) ) )
### Assign the model to the project
MyProject <- defineStatisticalModel( MyProject, MyModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 200, cond_init=list( "C1"=0 ))
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK",
sample_time = c(0, 0.33, 1.5, 3, 5, 8, 11, 12),
initialTime = 0 ) )
brasTest <- setInitialConditions( brasTest, list( "C1"=0.0) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 588037073988
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context(" Model PK 1cpt : MichaelisMenten1BolusSingleDose_VmKmV")
test_that("", {
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel <- StatisticalModel()
### Get Equations models
PKmodel <- getModel( PFIMLibraryOfModels, "MichaelisMenten1BolusSingleDose_VmKmV")
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKmodel )
### Define the variables of the ode model
vC1 <- ModelVariable( "C1" )
MyStatisticalModel = defineVariable( MyStatisticalModel, vC1 )
### Set fixed effects (mu), standard deviation of random effects (omega) and distribution of each parameter
pV <- ModelParameter( "V", mu = 15.00,
omega = sqrt( 0.25 ),
distribution = LogNormalDistribution() )
pVm <- ModelParameter( "Vm", mu = 0.08,
omega = sqrt( 0.10 ),
distribution = LogNormalDistribution() )
pKm <- ModelParameter( "Km", mu = 0.40,
omega = sqrt( 0.30 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel <- defineParameter( MyStatisticalModel, pV )
MyStatisticalModel <- defineParameter( MyStatisticalModel, pVm )
MyStatisticalModel <- defineParameter( MyStatisticalModel, pKm )
### Error model (standard deviations)
MyModel <- addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.5, sigma_slope = 0.15 ) ) )
### Assign the model to the project
MyProject <- defineStatisticalModel( MyProject, MyModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 200 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK",
sample_time = c(0, 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120),
initialTime = 0 ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0), amount_dose = c(100) ) )
brasTest <- setInitialConditions( brasTest, list( "C1"= expression( dose_RespPK/V) ) )
### Add the arm to the design
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the PopulationFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 5.742082e+12
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context(" Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1FirstOrderSingleDose_kaClV")
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
#### Set mu and omega for each parameter
pka = ModelParameter( "ka", mu = 1.050,
omega = sqrt( 0.1 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 0.513,
omega = 0,
distribution = LogNormalDistribution() )
pV = ModelParameter( "V", mu = 63.000,
omega = 0,
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0, sigma_slope = 0.0676 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 25 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0.01, 1, 3, 5, 7, 10, 13, 17, 24) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK", time_dose = c(0) , amount_dose = c(5500) ) )
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 8.835413e+13
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context(" Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1FirstOrderSingleDose_kaClV")
### Assign the equations to the statistical model
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
#### Set mu and omega for each parameter
pka = ModelParameter( "ka", mu = 1.0,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 2.0,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
pV = ModelParameter( "V", mu = 3.5,
omega = sqrt( 0.09 ),
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.1, sigma_slope = 0.1 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 40 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK",
sample_time = c(0.5, 1, 4, 8, 12.5, 13, 16, 20, 24.5, 25, 28, 32, 36.5, 37, 40, 44, 48.5, 49, 52, 56) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK",
time_dose = c(0,12,24,36,48) , amount_dose = c(30,30,30,30,30) ) )
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 2.835909e+24
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
###################################################################################################################################
context(" Model PK 1cpt : Linear1FirstOrderSteadyState_kaClVtau")
test_that("", {
### Create PFIM project
MyProject<-PFIMProject(name = "Test PFIM")
### Create the statistical model
MyStatisticalModel<-StatisticalModel()
### Create PK model
PKModel = getModel(PFIMLibraryOfModels, "Linear1FirstOrderSteadyState_kaClVtau")
MyStatisticalModel = defineModelEquations( MyStatisticalModel, PKModel)
### Set mu and omega for each parameter
pka = ModelParameter( "ka", mu = 1.050,
omega = sqrt( 0.1 ),
distribution = LogNormalDistribution() )
pCl = ModelParameter( "Cl", mu = 0.513,
omega = 0,
distribution = LogNormalDistribution() )
pV = ModelParameter( "V", mu = 63.000,
omega = 0,
distribution = LogNormalDistribution() )
### Assign the parameters to the statistical model
MyStatisticalModel = defineParameter( MyStatisticalModel, pka )
MyStatisticalModel = defineParameter( MyStatisticalModel, pCl )
MyStatisticalModel = defineParameter( MyStatisticalModel, pV )
### Create and add the responses to the statistical model
MyStatisticalModel = addResponse( MyStatisticalModel, Response( "RespPK", Combined1( sigma_inter = 0.0, sigma_slope = 0.0676 ) ) )
### Finaly assign the statistical model to the project
MyProject = defineStatisticalModel( MyProject, MyStatisticalModel )
### Create a design
MyDesign<- Design()
### For each arm create and add the sampling times for each response
brasTest <- Arm( name="Bras test", arm_size = 25 )
brasTest <- addSampling( brasTest, SamplingTimes( outcome = "RespPK", sample_time = c(0.01, 1, 3, 5, 7, 10, 13, 17, 24) ) )
brasTest <- addAdministration( brasTest, Administration( outcome = "RespPK",
tau = c(24),
amount_dose = c(5500 ) ) )
MyDesign <- addArm( MyDesign, brasTest )
### Add the design to the project
MyProject <- addDesign( MyProject, MyDesign )
### Evaluate the Fisher Information Matrix for the IndividualFIM
MyEvaluationPop <- EvaluatePopulationFIM( MyProject )
# show( MyEvaluationPop )
matrixFisherPopulationFIM = getFim(MyEvaluationPop)
detPopulationFim = det(matrixFisherPopulationFIM)
valueDetPopulationFim = 119307107189
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tol)
})
############################################################################################################################
# END CODE
############################################################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.