Summary Function

Share:

Description

S3-generic summary function to summarize the main parameters used to generate the PRSP object.

Usage

1
2
  ## S3 method for class 'PRSP'
summary(object, ...)

Arguments

object

Object of class PRSP as generated by the main function sbh.

...

Further generic arguments passed to the summary function.

Value

Summarizes the main parameters used to generate its argument.

Note

End-user summary function.

Author(s)

Maintainer: "Jean-Eudes Dazard, Ph.D." jxd101@case.edu

Acknowledgments: This project was partially funded by the National Institutes of Health NIH - National Cancer Institute (R01-CA160593) to J-E. Dazard and J.S. Rao.

References

  • Dazard J-E., Choe M., LeBlanc M. and Rao J.S. (2015). "Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods." Statistical Analysis and Data Mining (in press).

  • Dazard J-E., Choe M., LeBlanc M. and Rao J.S. (2014). "Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods." In JSM Proceedings, Survival Methods for Risk Estimation/Prediction Section. Boston, MA, USA. American Statistical Association IMS - JSM, p. 3366-3380.

  • Dazard J-E., Choe M., LeBlanc M. and Rao J.S. (2015). "R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival, Regression and Classification." In JSM Proceedings, Statistical Programmers and Analysts Section. Seattle, WA, USA. American Statistical Association IMS - JSM, (in press).

  • Dazard J-E. and J.S. Rao (2010). "Local Sparse Bump Hunting." J. Comp Graph. Statistics, 19(4):900-92.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#===================================================
# Loading the library and its dependencies
#===================================================
library("PRIMsrc")

#=================================================================================
# Simulated dataset #1 (n=250, p=3)
# Non Replicated Combined Cross-Validation (RCCV)
# Peeling criterion = LRT
# Optimization criterion = LRT
#=================================================================================
CVCOMB.synt1 <- sbh(dataset = Synthetic.1, 
                    cvtype = "combined", cvcriterion = "lrt",
                    B = 1, K = 5, 
                    vs = TRUE, cpv = FALSE, 
                    decimals = 2, probval = 0.5, 
                    arg = "beta=0.05,
                           alpha=0.1,
                           minn=10,
                           L=NULL,
                           peelcriterion=\"lr\"",
                    parallel = FALSE, conf = NULL, seed = 123)

summary(CVCOMB.synt1)