
Whole genome analyses using PopGenome
and VCF files

Bastian Pfeifer

May 20, 2018

1



Contents
1 PopGenome classes 4

2 Reading tabixed VCF files (readVCF) 4
2.1 filename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 numcols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 tid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 frompos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 topos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 include.unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7 samplenames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.8 approx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.9 out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.10 parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.11 gffpath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Reading in VCF files via the function readData() 6

4 Set the populations 7

5 Set the outgroup 7

6 Verify synonymous and non-synonymous SNPs 8

7 Sliding window analyses 8

8 Splitting data into subsites (e.g genes) 9

9 Splitting data into GFF-attributes 9

10 Statistics 10
10.1 Neutrality statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10.2 FST measurenments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10.3 Diversities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.4 Linkage disequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.5 Site frequency spectrum (SFS) . . . . . . . . . . . . . . . . . . . . . . . . 11
10.6 Mcdonald-Kreitman test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

11 The slot region.data 12

12 The slot region.stats 12

13 How PopGenome handles missing data 12

2



14 Look up information stored in GFF files 13
14.1 Extract feature positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
14.2 Extract INFO fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

15 Examples 14
15.1 Sliding windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
15.2 Splitting data into genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
15.3 Synonymous and Non-synonymous SNPs . . . . . . . . . . . . . . . . . . . 21
15.4 Site frequency spectrum (SFS) . . . . . . . . . . . . . . . . . . . . . . . . 23
15.5 Composite Likelihood Ratio (CLR) test from Nielsen . . . . . . . . . . . . 25
15.6 Mcdonald-Kreitman test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

16 Graphical output: R package ggplot2 27
16.1 Creating data.frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

17 Performing readVCF in parallel 28

18 Pre-filtering VCF files 29
18.1 VCF tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
18.2 WhopGenome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3



1 PopGenome classes
PopGenome contains mainly three classes. The class GENOME and the two sub-classes
region.data and region.stats. The class GENOME includes all informations which are
representable as matrices and vectors; the two subclasses store informations about each
SNP seperately, e.g synonymous and non-synonymous SNP. This kind of data is stored
in lists as the values can differ between genomic windows/regions.

GENOME

region.data

region.stats

@

@

@

@

@

n.biallelic.sites [region]
n.unknowns [region]
n.gaps  [region]
Tajima.D [region]
FST [region]
.
.
.          

biallelic.sites [[region]]
biallelic.matrix [[region]]
transitions [[region]]
synonymous [[region]]
.
.
.          

multi-locus
   scale

site-specific

site-specific

minor.allele.freqs [[region]]
haplotype.counts [[region]]
.
.
.          

typeof::vector()

typeof::list()

typeof::list()

splitting.data
sliding.window.transform
MS/MSMS
create.PopGenome.method
extract.region.as.fasta
.
.
.

2 Reading tabixed VCF files (readVCF)
If one would like to perform population genomic analyses on VCF files storing whole
genome SNP data using the PopGenome framework, the function readVCF() can be used.
This function expects a gzipped VCF file which needs to be tabixed via the program
TABIX first. To do so see http://genome.ucsc.edu/goldenPath/help/vcf.html and
http://samtools.sourceforge.net/tabix.shtml. All reading functions provided by
PopGenome will create an object of class GENOME. This object is then the input for the
functions performing statistical tests on this data.
The following parameter can be set:

4

http://genome.ucsc.edu/goldenPath/help/vcf.html
http://samtools.sourceforge.net/tabix.shtml


2.1 filename
Here, the user have to set the path of the gzipped VCF file as a character string like
"chr6.vcf.gz". Note, the corresponding .tbi file have to be stored in the same folder.

2.2 numcols
This parameter defines the number of SNPs that should be read into the RAM at
once while streamline the whole data into the PopGenome framework. In other words,
numcols defines the SNP-chunk size. If alot of RAM is available we advise to increase
this parameter in order to accelerate computations. On a standard dektop computer (4
GB RAM) a value about 10.000 should be fine when a sample size of 1000 individuals
is considered.

2.3 tid
tid is the chromosome identifier and have to be defined as a character string like "chr6".
If this is not known you can choose any character string (e.g "?"). readVCF will print
out the available identifier after the function call.

2.4 frompos
Here the genomic position can be set from which the data should start to read in SNP
data information. frompos have to be a numeric value.

2.5 topos
topos defines the genomic position where readVCF should stop to read SNP data in-
formation. In the same way as frompos the parameter have to be set as a numeric
value.

2.6 include.unknown
The parameter include.unknown can be switched to TRUE in order to include miss-
ing/unknown gentotypes like ./. . As a default, sites including missing values are com-
pletely deleted and the positions of those sites are stored in the slot GENOME.class@region.data@unknowns.
How PopGenome does handle SNPs including missing nucleotides is described in the
statistics section in this manual.

2.7 samplenames
To read in SNP data from a subset of individuals the parameter samplenames requires
an character vector including the individual names. To extract the individual names
from the VCF file do the following:

5



vcf_handle <- .Call("VCF_open",filename)
ind <- .Call("VCF_getSampleNames",vcf_handle)
samplenames <- ind[1:10]

In this example we will extract the first 10 individuals from the VCF file.

2.8 approx
If the parameter approx is switched to TRUE only SNPs (two variant positions) are
considered and a logical OR will be applied to the genotype fields. 0|0 goes to 0, 1|1
to 1, 0|1 to 1 and 1|0 to 1. If this approximation scheme is applicable approx should
definetly switched to TRUE as the computation speed will significantly be increased.

2.9 out
This parameter is only important if you intend to perform the readVCF in parallel (e.g
using the R-package parallel). readVCF writes temporary files on the hard drive while
interpreting the data. Thus, the parameter out should be set for each parallized job
differently. More about using readVCF in parallel is described in the section Performing
readVCF in parallel.

2.10 parallel
Parallel computation using mclapply provided by the R-package parallel. In this case the
data is splitted into subregions which are interpreted in parallel and afterwards automati-
cally concatenated via the functions concatenate.classes and concatenate.regions.

2.11 gffpath
If an GFF file is available it has to be specified via the gffpath parameter as a character
string. (gffpath="chr6.gff", for instance) Note, the chromosome identifier in the GFF
have to be identical to the identifier used in the VCF file.

A typical function call would be:

GENOME.class <- readVCF("chr1.vcf.gz",numcols=10000, tid="1",
from=1, to= 10000000, approx=FALSE, out="", parallel=FALSE, gffpath=FALSE)

GENOME.class is an object of class "GENOME"

3 Reading in VCF files via the function readData()
The main input of the readData function is a folder (e.g "VCF") containing the genomic
data. It can read in multiple "fairly-sized" VCF files iteratively. In case of VCF files

6



the parameter format have to be set to format="VCF". In contrast to the readVCF
function the data does not need to be compressed or tabixed and additionaly supports
polyploid (e.g tetraploid) genotypes. However, each VCF file is completely loaded into
the RAM and interpreted via efficient C Code which can increase computation perfor-
mance dramatically, but at the same time is not suitable for single big VCF files. If one
would like to performe whole genome analyses via the readData function the user could
split a whole genome VCF file into SNP chunks and analyse those chunks seperately or
concatenate them afterwards via the function concatenate.regions.

If GFF files for each VCF file are available they need to be stored in a seperate folder,
for instance "GFF". Note, the files in the VCF folder as well as the GFF folder have to
be EXACTLY the same names to ensure correct matching. For example, the file "chr1"
in the VCF folder corresponds to the GFF file "chr1" in the GFF folder.

GENOME.class <- readData("VCF", format="VCF", gffpath="GFF")

4 Set the populations
The population can be set via the set.population function. This function expects an
object of class GENOME and the populations defined as a list. Each element of the list
contains the individual names as a vector. In addition, the parameter diploid have
to be switched to TRUE in case of diploid organisms. If no population was defined all
individuals are treated as one population. The following function call will generate two
populations. The first population contains the individuals a,b and c. The second one d
and e.

GENOME.class <- set.populations(GENOME.class,
list(c("a","b","c"),c("d","e")), diploid=TRUE)

To re-check the setting one can have a look at the slots GENOME.class@populations or
GENOME.class@region.data@populations. The function get.individuals prints out
the individual names. Note, the populations should set BEFORE you transform or split
the data in sub-regions via the functions sliding.window.transform or splitting.data.
When the number of individuals is very high it might be useful to store the individuals
for one population in a seperat file in a way that the following line for instance works
without problems.

pop1 <- as.character(read.table("pop1.txt")[[1]])

The native R function scan can be also applied.

5 Set the outgroup
For some method modules provided by PopGenome it might be useful to define an
outgroup in order to specify the derived allele of each SNP site. To do so, only SNP

7



sites are considered where the outgroup is monomorph. The monomorphic value is then
defined as the non-derived allele. The following call will define the individual z as the
outgroup sequence.

GENOME.class <- set.outgroup(GENOME.class,c("z"), diploid =TRUE)

Note, the population or/and outgroup should be defined BEFORE you transform the
data via sliding.window.transform or splitting.data.

6 Verify synonymous and non-synonymous SNPs
PopGenome is able to verify if an SNP produces a synonymous or non-synonymous
codon change. PopGenome will perform the calculation for each SNP seperately with
the assumption that the probability to observe two SNPs in the same codon is small.
All we need is the reference sequence in fasta format. A typical function call would be
the following line:

GENOME.class <- set.populations(GENOME.class, ref.chr="chr1.fas")

In addition, one can switch on the parameter save.codons which will save the codons
in the slot GENOME.class@region.data@codons. To extract them, or to convert those
values into character strings the function get.codons can be applied afterwards. Note,
this function can only be performed when the data was read in together with the corre-
sponding GFF file, because PopGenome needs to have informations about the coding re-
gions, reading frames and informations about the reading directions. The function should
be performed before anything is done via the functions sliding.window.transform or
splitting.data. This function will not work on splitted data.

7 Sliding window analyses
Sliding windows can be generated via the function sliding.window.transform. This
function transforms the object of class "GENOME" in another object of the same class.
It can be used to scan only SNPs (type=1) or genomic regions (type=2). Furthermore
one can define window sizes and jump sizes. The windows can be consecutive as well as
overlapped.

GENOME.class.slide <- sliding.window.transform(GENOME.class,10000,10000, type=2)

will scan the data with 10.000 consecutive nucleotide windows. The slot GENOME.class@regions
will store the genomic regions of each window as a character string. To convert those
strings into a genomic numeric position we can apply the following script:

genome.pos <- sapply(GENOME.class.slide@region.names, function(x){
split <- strsplit(x," ")[[1]][c(1,3)]

8



val <- mean(as.numeric(split))
return(val)
})

plot(genome.pos, <slide.statistic.values>)

This script will return the mean position of each window.

8 Splitting data into subsites (e.g genes)
The splitting.data function works very similar to the sliding.window.transform
function. Via the parameter positions one can define genomic or SNP windows using
numeric values defined as a list. The following line will split the data into the genomic
regions from 10 to 30 and 1000 to 12000.

GENOME.class.split <- splitting.data(GENOME.class,
positions=list(c(10:30),c(1000:12000)), type=2)

is(GENOME.class.split)

If a GFF file was specified as part of the readVCF function, PopGenome automatically
can split the data into exon, gene, coding and intron regions. Note, those features must
be annotated in the corresponding GFF file. The following line of code splits the data
into genes.

genes <- splitting.data(GENOME.class, subsites="gene")
is(genes)

The slot GENOME.class@regions will store the genomic regions of each window as
a character string. Note, the user might be interested in other features which are not
labeled as exon, intron, gene or CDS. In this case the get_gff_info can be used. More
about this function the section Look up information stored in GFF files.

The function get.feature.names might be a useful method to extract additional
informations (like gene names) from the given GENOME object. The returned character
string will exactly match the data stored in the slot genes@region.names.

9 Splitting data into GFF-attributes
The function split_data_into_GFF_attributes allows the user to split the data into
user-defined subsites based on the attributes stored in a GFF file (last column). The
following commands split the Human chromosome 1 variant data into genes.

9



GENOME.class <- readVCF("chr1.vcf.gz",10000,"1",1,100000)
GENOME.class.split <-

split_data_into_GFF_attributes(GENOME.class,"GRCh37.73.gtf", "1", "gene_name")
GENOME.class.split@region.names
GENOME.class.split@feature.names

Note, the data should also be read in with the corresponding GFF file (readVCF) be-
fore splitting the data if one would like to verify syn/nonsyn sites via the function
set.synnonsyn().

10 Statistics
PopGenome provides a wide range of methods which can also be applied to transformed
GENOME class objects (e.g subregions like genes or diverse genomic windows). We have
pooled those statistics into modules. However, specific statistics can be switched off to in-
crease computational power. In some cases also slots in the class GENOME.class@region.stats
are filled (see the PopGenome manual). The main modules are described in the following
subsections. The statistics and methods for each module as well as the corresponding
references are listed in the CRAN manual !

10.1 Neutrality statistics
In the PopGenome manual, available on CRAN, one can find the statistics which are
included in this module. Note, some of those will need an outgroup. When an outgroup is
specified the Tajima’s D, for instance will only be applied on sites where the outgroup is
monomorph and the non-derived allele is specified as the monomorphic nucleotide given
in the outroup sequence. We also provide efficient compiled C implementations which
will be applied when the parameter FAST is set to TRUE. This will speed up calculations
but might be a bit unstable in some cases. A typical function call would be:

GENOME.class <- neutrality.stats(GENOME.class, FAST=TRUE)
get.neutrality(GENOME.class)[[1]]

[[1]] will extract the results of the first population. Also try to use GENOME.class@Tajima.D,for
instance, which will give you a population and statistic specific view on the data.

10.2 FST measurenments
This module provides a wide range of FST as well as diversity measurenments. There ex-
ists two main classes. First, calculations which are either based on haplotypes mode=ḧaplotype¨
or second, the sequence based methods focussing on nucleotides mode="nucleotide".
Note, be careful with haplotype based methods if missing data is included as in this
module those sites will be excluded from the analyses. If fixation indices should be cal-
culated the user have to define more than one population via set.populations, in cases

10



where only one population is defined the module will calculate the within diversities for
this single population. Please also have look at the module F_ST.stats.2.

GENOME.class <- F_ST.stats(GENOME.class)
get.F_ST(GENOME.class)[[1]]
GENOME.class@nucleotide.F_ST

Note, the nucleotide diversities GENOME.class@nuc.diversity.within have to nor-
malized/devided by the total number of nucleotides considered in a given window/region
!

10.3 Diversities
We have implemented some within diversity measurenments like pi in the module diversity.stats.
In principle this can also be done via F_ST.stats but this will slightly slow down data
analyses if one would like to perform only diversities within the populations.

GENOME.class <- diversity.stats(GENOME.class)
get.diversity(GENOME.class)
GENOME.class@nuc.diversity.within

10.4 Linkage disequilibrium
The main module for linkage disequilibrium statistics is the module linkage.stats.
Moreover, the module R2.stats is designed for fast compution of the correlation coeffi-
cient r2.

10.5 Site frequency spectrum (SFS)
We include the SFS calculation together with some other calculations in the module
detail.stats. If an outgroup is defined only sites where the outgroup is monorphic are
considered.

10.6 Mcdonald-Kreitman test
PopGenome enables to perform the Mcdonald-Kreitman test on SNP data. Our al-
gorithm assumes that the probability that a SNP occurs in the same codon is quite
low. Thus, PopGenome treats each SNP independently and verifies if the Codon change
is synonymous or non-synonymous with respect to the reference genome. Before the
MKT test can be performed we have to set the syn/non-syn SNPs via the function
set.synnonsyn. The outgroup can be defined as a population as the MKT module
performs the statistic on ALL pairwise population comparisons.
A typical function call would be:

GENOME.class <- set.synnonsyn(GENOME.class, ref.chr="twoL.fas")
GENOME.class <- set.populations(GENOME.class,list(c(...),c(...)), diploid=TRUE)

11



# twoL.fas is the reference chromosome the data has been mapped
# against to create the VCF file
GENOME.class <- MKT(GENOME.class)
get.MKT(GENOME.class)

Note, when more than two populations are defined get.MKT(GENOME.class) will return
a list. To access the results from the second region/window we have to do:

get.MKT(GENOME.class)[[2]]

See also the example section.

11 The slot region.data
During the reading process PopGenome will store some SNP specific information in the
slot GENOME.class@region.data. This slot will for example store the genomic posi-
tion of each SNP GENOME.class@region.data@biallelic.sites. In general, all in-
formations here are stored as numeric vectors of length = n.biallelic.sites. Just typing
GENOME.class@region.data will print a summary of the available slots. When multi-
ple files have been read in the slots of the object of class region.data are organized
as lists. Each element of the list is accessible via [[region.id]], where region.id
is the identifier of the file of interest. The corresponding information is stored in the
slot GENOME.class@region.names. In case of transformed GENOME objects e.g per-
formed by sliding.window.transform [[region.id]] will be the identifier for the window
of interest.

12 The slot region.stats
In some cases a multi-locus-scale representation of the statistic values is not possible and
we were forced to organize those values as a list. In the slot GEOME.class@region.stats
for example we can find the slot haplotype.counts which contains the haplotype distri-
bution of each population. Here, the haplotypes regarding the whole population (whole
data set) was specified (n.haplotypes=n.columns). Each row corresponds to one pop-
ulation and the sum of each line is the sample size of each population. Obviously,
the dimension of this matrix can differ between regions/windows. As described in the
previous section specific files or regions/windows are accessible via [[region.id]].

13 How PopGenome handles missing data
VCFs often contain gentypes with missing nucleotides like ./.. When the parameter
include.unknown=TRUE was set, those positions are included and stored as NaNs in
the biallelic.matrix (see get.biallelic.matrix). However, haplotype based methods
should be not applied to those sites as it can lead to misleading results. The following
methods should be performed with caution:

12



• F_ST.stats(...,mode="haplotype") can be applied, but this module will auto-
matically remove SNPs containing missing data

• diversity.stats: pi and haplotype diversity should not be used

In case of site by site calculations as provided by the module F_ST.stats(...,
mode="nucleotide") everthing should work fine. PopGenome calculates the site specific
diversity as follows:

# Lets assume we have an biallelic vector b
b <- c(1,0,NaN,0)
# The nucleotide diversity is then all pairwise
# comparisons exluding those which would compare a value
# with a NaN entry

1 vs 0 -> mismatch
1 vs NaN -> not count
1 vs 0 -> mismatch
0 vs NaN -> not count
0 vs 0 -> match
Nan vs 0 -> not count

We have 3 valid comparisons and 2 mismatches.
So, the average nucleotide diversity is 2/3.

# The minor allele frequency of this vector would be 1/5
# as NaN is excluded from the sample

Also lingage disequilibrium measurenments will only compare nucleotide pairs without
any NaN entry. For example:

SNP1 0 NaN 1 0
SNP2 0 1 1 0

Those two sites are completely identical in the PopGenome framework.

14 Look up information stored in GFF files
The function get_gff_info is a flexible tool to extract some informations out of a GFF
file.

13



14.1 Extract feature positions
To extract the genomic positions of a feature of interest one can use the following line:

gene.positions <- get_gff_info(gff.file="twoL.gff", chr="2L", feature="gene")
is(gene.positions)

gene.positions is a list containing the genomic positions for each gene annotated in
the GFF file. This list can be parsed to the function splitting.data in order to scan
the data by genes.

GENOME.class.split <- splitting.data(GENOME.class, positions=gene.positions, type = 2)

We have to set type=2 as gene.positions contains genomic positions. The following
line will extract the corresponding gene IDS.

gene.ids <- get_gff_info(gff.file="twoL.gff", chr="2L", extract.gene.names=TRUE )

Note, in principle this can also be done via readVCF(...,gffpath="twoL.gff") and
splitting.data(..., subsites="gene"). But, in this case genes which are annotated
before the first SNP and those genes after the last SNP are not considered. In this case
the SNP data is always the reference and it might be difficult to map the gene.ids to
the regions specified by PopGenome.

14.2 Extract INFO fields
Lets assume we have scaned the data with windows and detect interesting values in the
5th window containing 8 SNPs. To extract the INFO field of each SNP in this region
we could use the following line:

GENOME.class <- readVCF(...)
GENOME.class.slide <- sliding.window.transform(...)
get_gff_info(GENOME.class.slide, position= 5, gff.file="twoL.gff", chr="2L")

This function call would print the INFO field information found in the GFF for each
SNP (in total 8) of window 5.

15 Examples
# Reading in the data via readVCF

GENOME.class <- readVCF("AGC_refHC_bialSNP_AC2_2DPGQ.2L_V2.CHRcode2.vcf.gz",
10000,"2",1,50000000,include.unknown=TRUE)

GENOME.class@n.biallelic.sites
[1] 1740885

14



# Set the populations (in this example: 3 populations)
# population M: 11 individuals (8 from cameroon, 3 from burkina)
# population S: 15 samples (4 from burkina, 8 from cameroon, 3 from tanzania)
# population X: 12 arabiensis individuals (4 tanzania, 4 burkina, 4 cameroon)

M <- c("X4631","X4634","X4691","X4697","X5090","X5107",
"X5108","X5113","A7.4","C27.2","C27.3")

S <- c("X40.2","X44.4","X45.3","X4696","X4698","X4700","X4701",
"X5091","X5093","X5095","X5109","M20.7","TZ102","TZ65","TZ67")

X <- c("SRS408146","SRS408148","SRS408154","SRS408183","SRS408970","SRS408984",
"SRS408985","SRS408987","SRS408989","SRS408990","SRS408991","SRS408993")

GENOME.class <- set.populations(GENOME.class,list(M,S,X), diploid=TRUE)

15.1 Sliding windows
# split the data in 10kb consecutive windows
slide <- sliding.window.transform(GENOME.class,10000,10000, type=2)

# total number of windows
length(slide@region.names)
[1] 5000

# Statistics
slide <- diversity.stats(slide)

nucdiv <- slide@nuc.diversity.within
# the values have to be normalized by the number of nucleotides in each window
nucdiv <- nucdiv/5000
head(nucdiv)

pop 1 pop 2 pop 3
[1,] 0.0006600000 0.0005838095 0.0003312447
[2,] 0.0001200000 0.0002071429 0.0004343523
[3,] 0.0003666667 0.0001666667 0.0002505013
[4,] 0.0000000000 0.0000000000 0.0003287257
[5,] 0.0002200000 0.0001666667 0.0005232758
[6,] 0.0006600000 0.0002357143 0.0001756433

15



# Generate output
# Smoothing lines via spline interpolation

ids <- 1:5000
loess.nucdiv1 <- loess(nucdiv[,1] ~ ids, span=0.05)
loess.nucdiv2 <- loess(nucdiv[,2] ~ ids, span=0.05)
loess.nucdiv3 <- loess(nucdiv[,3] ~ ids, span=0.05)

plot(predict(loess.nucdiv1), type = "l", xaxt="n", xlab="position (Mb)",
ylab="nucleotide diversity", main = "Chromosome 2L (10kb windows)", ylim=c(0,0.01))

lines(predict(loess.nucdiv2), col="blue")

lines(predict(loess.nucdiv3), col="red")

axis(1,c(1,1000,2000,3000,4000,5000),
c("0","10","20","30","40","50"))

# create the legend
legend("topright",c("M","S","X"),col=c("black","blue","red"), lty=c(1,1,1))

16



0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Chromosome 2L (10kb windows)

position (Mb)

nu
cl

eo
tid

e 
di

ve
rs

ity

0 10 20 30 40 50

M
S
X

slide <- F_ST.stats(slide, mode="nucleotide")

# Lets have a look at the pairwise nucleotide FST

pairwise.FST <- t(slide@nuc.F_ST.pairwise)
head(pairwise.FST)

pop1/pop2 pop1/pop3 pop2/pop3
[1,] 0.0115421 0.9153987 0.9306777
[2,] -0.6357143 0.9860194 0.9878351
[3,] 0.2098765 0.9771882 0.9847311
[4,] NaN 0.5434366 0.5434366
[5,] 0.1407407 0.8785497 0.8807703
[6,] 0.1667774 0.9795149 0.9899651

# Here i used the function t() to transpose the matrix
# To extract the data for the pop1/pop3 comparison
# we can use the following function call

head(pairwise.FST[,"pop1/pop3"])

17



[1] 0.9153987 0.9860194 0.9771882 0.5434366 0.8785497 0.9795149

# or

pairwise.FST[,2]

# Lets plot some data for the nucleotide FST ONE vs. ALL slot

head(slide@nuc.F_ST.vs.all)

pop 1 pop 2 pop 3
[1,] 0.8277415 0.8506838 0.9234930
[2,] 0.9778805 0.9817008 0.9870558
[3,] 0.9585102 0.9660492 0.9809781
[4,] 0.5434366 0.5434366 0.5434366
[5,] 0.8280148 0.8273743 0.8796289
[6,] 0.9586470 0.9689294 0.9847528

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosome 2L (10kb windows)

position (Mb)

nu
cl

eo
tid

e 
F

S
T

 o
ne

 v
s.

al
l

0 10 20 30 40 50

M
S
X

18



15.2 Splitting data into genes
If one would like to use informations about subsites like exon or coding regions the data
should be read in with the corresponding GFF file. However, we are still working on a
set_gff_info function in order to provide an meachanism which allows the user to set
the infomrations stored in a GFF file afterwards. Also have a look at the get_gff_info
function, which can extract positions based on feature identifier. The returned list
containing numeric vetors can be parsed to the splitting.data function defined as the
parameter positions and type=2. An short example is also given in this section.

# Reading in the data with the corresponding GFF file

GENOME.class <- readVCF("AGC_refHC_bialSNP_AC2_2DPGQ.2L_V2.CHRcode2.vcf.gz",
10000,"2",1,50000000, include.unknown=TRUE, gffpath="twoL.gff")

GENOME.class <- set.populations(GENOME.class,list(M,S,X), diploid=TRUE)

genes <- splitting.data(GENOME.class, subsites="gene")

# An alternative approach would be, if the data was not
# read in with a GFF file

genePos <- get_gff_info(gff.file="twoL.gff",chr="2L", feature="gene")

genes <- splitting.data(GENOME.class, positions=genePos, type=2)
# --------------------------------

length(genes@region.names)
[1] 3105

genes <- F_ST.stats(genes, mode="nucleotide")

plot(genes@nucleotide.F_ST, ylim=c(0,1), xlab="genes", ylab="Hudson’s FST",pch=3)

# Get the region/window ids with max FST values

maxFSTgenes <- which(genes@nucleotide.F_ST==1)
[1] 3 8 32 42 116 142 151 202 240 252 423 925 1148 1150 1166
[16] 1252 1922 1936 2119 2120 2226 2259 2530 2596 3085

genes@region.names[maxFSTgenes]

[1] "207894 - 210460" "493039 - 493543" "2482553 - 2483310"
[4] "2714472 - 2719933" "3574266 - 3575387" "3839485 - 3840411"
[7] "4066369 - 4068651" "4830049 - 4830309" "5862276 - 5863688"

19



[10] "6099934 - 6100005" "10058609 - 10058681" "17320615 - 17321803"
[13] "20649734 - 20650289" "20669715 - 20671003" "21351719 - 21351782"
[16] "23189286 - 23189439" "34125951 - 34126410" "34152345 - 34152618"
[19] "37757406 - 37757494" "37757408 - 37757496" "39200923 - 39201294"
[22] "39359058 - 39359155" "43600970 - 43601852" "44412534 - 44412731"
[25] "49171517 - 49173289"

# Looking up the gene ID
head(get_gff_info(genes, position=3, chr="2L", gff.file="twoL.gff")[[1]])

208143 208162
"ID=AGAP004679;biotype=protein_coding" "ID=AGAP004679;biotype=protein_coding"

208164 208170
"ID=AGAP004679;biotype=protein_coding" "ID=AGAP004679;biotype=protein_coding"

208176 208178
"ID=AGAP004679;biotype=protein_coding" "ID=AGAP004679;biotype=protein_coding"

Here, for each SNP in the region 3 of the object of class GENOME (genes) the
INFO field is printed.

The third gene corresponds to the ID:AGAP004679

20



0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosome 2L: Genes

genes

H
ud

so
n'

s 
F

S
T

15.3 Synonymous and Non-synonymous SNPs
As long as a set.gff function is not implemented we have to read in the data with the
corresponding GFF file in order to verify syn & nonsyn SNPs afterwards.

# Reading in the data with the corresponding GFF file

GENOME.class <- readVCF("AGC_refHC_bialSNP_AC2_2DPGQ.2L_V2.CHRcode2.vcf.gz",
10000,"2",1,50000000, include.unknown=TRUE, gffpath="twoL.gff")

# Set syn & nonsyn SNPs: The results are stored
# in the slot GENOME.class@region.data@synonymous
# The input of the set.synnonsyn function is an object of
# class GENOME and a reference chromosome in FASTA format.

GENOME.class <- set.synnonsyn(GENOME.class, ref.chr="twoL.fas")

# number of synonymous changes
sum(GENOME.class@region.data@synonymous[[1]]==1, na.rm=TRUE)
[1] 74195

21



# number of non-synonymous changes
sum(GENOME.class@region.data@synonymous[[1]]==0, na.rm=TRUE)
[1] 28726
# Here, we have to define the parameter na.rm=TRUE because NaN values in this slot
# indicate that the observed SNP is in a non-coding region

# We now could split the data into gene regions again
genes <- splitting.data(GENOME.class, subsites="gene")

# Now we perform The Tajima’s D statistic on the whole data set and
# consider only nonsyn SNPs in each gene/region.

genes <- neutrality.stats(genes, subsites="nonsyn", FAST=TRUE)

nonsynTaj <- genes@Tajima.D

# The same now for synonymous SNPs
genes <- neutrality.stats(genes, subsites="syn", FAST=TRUE)

synTaj <- genes@Tajima.D

# To have a look at the differences of syn and nonsyn Tajima D values in each gene we
# could do the following plot:

plot(nonsynTaj, synTaj, main="2L: Genes : Tajima’s D ")

22



●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●
●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

● ●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

−1 0 1 2 3 4

−
1

0
1

2
3

4

2L: Genes : Tajima's D 

nonsynTaj

sy
nT

aj

15.4 Site frequency spectrum (SFS)
The SFS is the default calculation in the module detail.stats and can be computed
quite fast. In this example we will perform the computation on sliding windows. For
each window we will take the mean of the corresponding SFS values to plot a figure with
smoothed lines.

# Reading in the data

GENOME.class <- readVCF("AGC_refHC_bialSNP_AC2_2DPGQ.2L_V2.CHRcode2.vcf.gz",
15000,"2",1,50000000, include.unknown=TRUE)

# set the populations (M,S,X as defined above)
GENOME.class <- set.populations(GENOME.class,list(M,S,X), diploid=TRUE)

# check if the settings worked correctly
GENOME.class@populations

# slide the object in 1 kb windows

23



slide <- sliding.window.transform(GENOME.class,1000,1000,type=2)

# calculate SFS: The results are stored in the slot
# slide@region.stats@minor.allele.freqs

slide <- detail.stats(slide)

# Lets have a look at the second window
slide@region.stats@minor.allele.freqs[[2]]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
pop 1 0 0.0 0 0 0 0 0 0 0 0 0 0.250 0.5000000
pop 2 0 0.0 0 0 0 0 0 0 0 0 0 0.125 0.1666667
pop 3 0 0.5 0 0 0 0 0 0 0 0 0 NaN NaN

# There are 13 SNPs in this window. NaN indicates that only unknown positions
# where detected in pop 3 for SNP 12 and 13.
# As we read in more samples then defined individuals in our example,
# 0 indicates that no minor allele is present at the given SNP.

# calculate the mean SFS for each window and each population
# To extrect the results we could use the following script:

SFSmeanPop1 <- sapply(slide@region.stats@minor.allele.freqs, function(x){
if(length(x)==0){return(0)}
return(mean(x[1,], na.rm=TRUE))
})

SFSmeanPop2 <- sapply(slide@region.stats@minor.allele.freqs, function(x){
if(length(x)==0){return(0)}
return(mean(x[2,], na.rm=TRUE))
})

SFSmeanPop3 <- sapply(slide@region.stats@minor.allele.freqs, function(x){
if(length(x)==0){return(0)}
return(mean(x[3,], na.rm=TRUE))
})

# Now, lets smooth the lines and plot the results

ids <- 1:length(slide@region.names)

loess.SFSmeanPop1 <- loess(SFSmeanPop1~ids, span=0.02)
loess.SFSmeanPop2 <- loess(SFSmeanPop2~ids, span=0.02)

24



loess.SFSmeanPop3 <- loess(SFSmeanPop3~ids, span=0.02)

plot(predict(loess.SFSmeanPop1), type = "l", xaxt="n", xlab="position (Mb)",
ylab="mean(SFS)", main = "Chromosome 2L (1kb windows)", ylim=c(0,0.2))

lines(predict(loess.SFSmeanPop2), col="blue")

lines(predict(loess.SFSmeanPop3), col="red")

axis(1,c(1,10000,20000,30000,40000,50000),
c("0","10","20","30","40","50"))

# create the legend
legend("topright",c("M","S","X"),col=c("black","blue","red"), lty=c(1,1,1))

15.5 Composite Likelihood Ratio (CLR) test from Nielsen
# Lets assume we have an object of class GENOME (GENOME.class) and the corresponding
# populations M,S,X are already set.

25



# Lets apply the CLR test on genes and define a global set of the SFS
# based on all Coding SNPs

# extract the genomic positions of the genes out of the corresponding GFF file
genes <- get_gff_info(gff.file="twoL.gff",chr="2L", feature="genes")

# splitting the data into gene regions
# type=2 have to be set because the values are genomic positions
split <- splitting.data(GENOME.class, positions=genes, type=2)

# calculate the minor allele frequencies
split <- detail.stats(split)

# extract the minor allele frequencies from all gene regions for each population
freqM <- sapply(split@region.stats@minor.allele.freqs,function(x){return(x[1,])})
freqS <- sapply(split@region.stats@minor.allele.freqs,function(x){return(x[2,])})
freqX <- sapply(split@region.stats@minor.allele.freqs,function(x){return(x[3,])})

# Create the global frequencies table which are neccessary for the CLR test.
freqM <- table(unlist(freqM))
freqS <- table(unlist(freqS))
freqX <- table(unlist(freqX))

# Now, lets calculate the CLR test using the module sweeps.stats

split <- sweeps.stats(split, freq.table=list(freqM,freqS,freqX))

head(split@CLR)

pop 1 pop 2 pop 3
[1,] 126.53772 187.70825 316.40969
[2,] 10.93362 13.37492 34.85426
[3,] 22.07749 25.43857 42.07533
[4,] NA NA NA
[5,] 10.93362 13.11267 16.18083
[6,] 254.16225 303.04791 352.00897

15.6 Mcdonald-Kreitman test
# Read in the data with the corresponding GFF file
GENOME.class <- readVCF("twoL.vcf.gz",15000,"2L",1,50000000,
include.unknown=TRUE, gffpath="twoL.gff")

26



# Verify the syn/non-syn SNPs
GENOME.class <- set.synnonsyn(GENOME.class, ref.chr="twoL.fas")
# Set the populations
GENOME.class <- set.populations(GENOME.class, list(M,S,X), diploid=TRUE)
# Splitting the data into genes
split <- splitting.data(GENOME.class, subsites="gene")

# Peform the MKT
split <- MKT(split)

# To look at gene 9 we can do the following:
split@MKT[[9]]

P_nonsyn P_syn D_nonsyn D_syn neutrality.index alpha
pop1/pop2 3 2 0 0 NaN NaN
pop1/pop3 7 2 5 4 2.8 -1.8
pop2/pop3 6 2 5 4 2.4 -1.4

# or alternatively
get.MKT(split)[[9]]

16 Graphical output: R package ggplot2
16.1 Creating data.frames
Lets assume we have transformed the data into sliding windows or specific regions and
already performed the Fixation index FST. To create an compact data representation
of the most informative values we could do the following:

# Extracts the information stored in the slot region.names
# and converts the strings to numeric values (start position of the
# region and end position)

from.pos <- sapply(split@region.names,function(x)
{return(as.numeric(strsplit(x," ")[[1]][1]))})

to.pos <- sapply(split@region.names,function(x)
{return(as.numeric(strsplit(x," ")[[1]][3]))})

# Lets concatenate the values into a matrix
DATA <- cbind(from.pos, to.pos, split@nucleotide.F_ST)

27



# Converting into a data.frame
DATA <- as.data.frame(DATA)

The native R function sapply is a very performant approach to extract values also stored
in the region.data or region.stats slots where data is mostly organized as lists.

17 Performing readVCF in parallel
To accelerate computations for the readVCF function the mechanism provided by the
function mclapply from the package parallel might be a good option. readVCF can
be applied to different regions of the VCF file so that we can contribute the reading
process on different nodes. The returned object is a list of classes from the type GENOME.
Note, the ff-package which is used for storing whole genome variation data is limited
by n.individuals * n.snps <= Maschine$integer.max. If the data is bigger than
that the bigmemory package will be applied. The corresponding access function are
much slower than those provided by the ff-package. As an example we read in data via
readVCF from the region 1-10.000.000, but parallize the reading process on two nodes.
(1-5.000.000 and 5.000.001-10.000.000).

# Loading the R-package parallel
require(parallel)

# Lets define the two regions

cregions <- character(2)
cregions[1] <- "1-5000000"
cregions[2] <- "5000001-10000000"

GENOME.classes <- parallel::mclapply(as.list(cregions),

function(x){

From <- as.numeric(strsplit(x,"-")[[1]][1])
To <- as.numeric(strsplit(x,"-")[[1]][2])

return(readVCF(
filename="AGC_refHC_bialSNP_AC2_2DPGQ.2L_V2.CHRcode2.vcf.gz",
numcols=1000, tid="2", frompos=From, topos=To, samplenames=NA,
gffpath=FALSE, include.unknown=TRUE,
approx=FALSE, out=x, parallel=FALSE))
},

mc.cores = 2, mc.silent = TRUE, mc.preschedule = TRUE)

28



> GENOME.classes[[1]]@region.names
[1] "2 : 1 - 5000000"
> GENOME.classes[[2]]@region.names
[1] "2 : 5000001 - 10000000"

The splitted classes can now be used seperately.

slide <- sliding.window.transform(GENOME.classes[[1]],1000,1000)
slide <- diversity.stats(slide)

Also we can concatenate those classes:
GENOME.class <- concatenate.classes(GENOME.classes)
GENOME.class <- concatenate.regions(GENOME.class)

18 Pre-filtering VCF files
18.1 VCF tools

18.2 WhopGenome

29


	PopGenome classes
	Reading tabixed VCF files (readVCF)
	filename
	numcols
	tid
	frompos
	topos
	include.unknown
	samplenames
	approx
	out
	parallel
	gffpath

	Reading in VCF files via the function readData()
	Set the populations
	Set the outgroup
	Verify synonymous and non-synonymous SNPs
	Sliding window analyses
	Splitting data into subsites (e.g genes)
	Splitting data into GFF-attributes
	Statistics
	Neutrality statistics
	FST measurenments
	Diversities
	Linkage disequilibrium
	Site frequency spectrum (SFS)
	Mcdonald-Kreitman test

	The slot region.data
	The slot region.stats
	How PopGenome handles missing data
	Look up information stored in GFF files
	Extract feature positions
	Extract INFO fields

	Examples
	Sliding windows
	Splitting data into genes
	Synonymous and Non-synonymous SNPs
	Site frequency spectrum (SFS)
	Composite Likelihood Ratio (CLR) test from Nielsen
	Mcdonald-Kreitman test

	Graphical output: R package ggplot2
	Creating data.frames

	Performing readVCF in parallel
	Pre-filtering VCF files
	VCF tools
	WhopGenome


