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The QICD algorithm combines the idea of the Majorization Minimization (MM) algorithm with
that of the coordinate descent algorithm. More specifically, we first replace the non-convex
penalty function by its majorization function to create a surrogate objective function. Then we
minimize the surrogate objective function with respect to a single parameter at each time and
cycle through all parameters until convergence. For each univariate minimization problem, we
only need to compute a one-dimensional weighted median, which ensures fast computation. See
Peng and Wang (2014), for more details. We introduce a new R package QICD which implements
this iterative coordinate descent algorithm on non-convex penalized quantile regression model.
The QICD package implements High dimensional BIC (HBIC, see Lee,Noh and Park (2014)) and
k fold cross validation as tuning parameter selection criterion.

This vignette contains only a brief introduction to utilize QICD to solve non-convex penalized
quantile regression under high-dimensional settings. We consider a random sample {Yi,xi}, i =
1, 2, . . . , n and assume Yi = xTi β + εi, where xi = (xi0, xi1, . . . , xip)

T is a (p+1)-dimensional
vector of covariates with xi0 = 1, β = (β0, β1, . . . , βp)

T is the vector of parameters, and εi is
the random error.The true value β is assumed to be sparse in the sense most of its components
are equal to zero. We are interested in identifying and estimating the nonzero component of β
when p >> n.

A popular approach of solving this problem is to use penalized quantile regression for large-
scale data analysis. The penalized quantile regression estimator for β is obtained by minimizing

Q(β) = n−1
n∑
i=1

ρτ (Yi − xTi β) +

p∑
j=1

pλ(|βj |)

where ρτ (u) = u{τ − I(u < 0)} is the check loss funtion. The tuning parameter λ in the penalty
function pλ(·) controls the model complexity and goes to zero at an approriate rate. In this
vignette, we only consider a general class of nonconvex penalty function, which in particular
includes the two popular nonconvex penaltyies: SCAD and MCP. The SCAD penalty function
Fan and Li (2001) is defined by

pλ(|β|) = λ|β|I(0 ≤ |β| < λ) +
aλ|β| − (β2 + λ2)/2

a− 1
I(λ ≤ |β| ≤ aλ) +

(a+ 1)λ2

2
I(|β > aλ|)

for some a > 2; while the MCP penalty function Zhang (2010) has the form

pλ(|β|) = λ(|β| − β2

2aλ
)I(0 ≤ |β| < aλ) +

aλ2

2
I(|β| ≥ aλ)

for some a > 1. Both penalty functions are singular at the origin to achieve sparsity of estima-
tion. They also both remain constant when |β| exceeds aλ, which avoids over-penalizing large
coefficients and alleviates the bias problem associated with Lasso.

To implement our package, we use the same setting in Peng and Wang (2014). To generate
the covariates X1, X2, . . . , Xp, we first generate (X̃1, X̃2, . . . , X̃p)

T from the multivariate normal
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distribution Np(0,Σ) with Σ = (σjk)p×p and σjk = 0.5|j−k|. Then we set X1 = φ(X̃1) and
Xj = X̃j for j = 2, 3, . . . , p, where φ(·) is the cumulative distribution function of the standard
normal distribution. Then we can generate the response variable from the following location-
scale regression model:

Y = X6 +X12 +X15 +X20 + 0.7X1ε

where the random error ε ∼ N(0, 1) is independent of the covariates. It is noteworthy that in
this model, the τth quantile function is X6 + X12 + X15 + X20 + 0.7X1φ

−1(τ), where φ−1(τ)
denotes the τth conditional quantile of the standard normal distribution. Hence, X1 does not
influence the center of the conditional distribution, but plays an important role when considering
other conditional quantiles.

In this example, we consider sample size n = 300, covariates dimension p = 1000 and three
different quantiles τ = 0.3, 0.5, 0.7. We use different tuning paramerter λ for different quantiles
as follows.

> library(QICD)

> library(mvtnorm)

> set.seed(123)

> n <- 300

> p <- 1000

> Sigma=0.5^abs(outer(1:p,1:p,'-'))
> X=rmvnorm(n,mean=rep(0,p),sigma=Sigma)

> epsilon=rnorm(n)

> Y=X[,6]+X[,12]+X[,15]+X[,20]+0.7*pnorm(X[,1])*epsilon

> intercept<-1

> #include intercept

> beta1=rep(0,p+1)

> #initial value to be zero

> obj_tau3=QICD(Y,X,beta1,tau=0.3,lambda=9,funname="scad")

> obj_tau5=QICD(Y,X,beta1,tau=0.5,lambda=15,funname="scad")

> obj_tau7=QICD(Y,X,beta1,tau=0.7,lambda=8.5,funname="scad")

Then we can compare the coefficient estimates for different quantiles τ = 0.3, 0.5, 0.7. The
results, actually, are very close to the true parameter. Also,since X1 does not influence the center
of the conditional distribution, but plays an important role when considering other conditional
quantiles. The coefficient for X1 is zero for quantile τ = 0.5 but none zero for other quantiles.

> res=data.frame(

+ V1=obj_tau3$beta_final[c(1,6,12,15,20)]

+ ,V2=obj_tau5$beta_final[c(1,6,12,15,20)]

+ ,V3=obj_tau7$beta_final[c(1,6,12,15,20)]

+ )

> colnames(res)=c("tau=0.3","tau=0.5","tau=0.7")

> rownames(res)=c(1,6,12,15,20)

> print(res,digits=6)

tau=0.3 tau=0.5 tau=0.7

1 -9.76954e-05 0.000000 0.000114096

6 9.42517e-01 0.973327 0.832316420

12 8.96578e-01 0.987515 0.881342040

15 1.00279e+00 1.014146 1.044361246

20 1.00318e+00 1.029070 1.013159680
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However, the tuning parameter λ is always unknow in reality. Cross-validation and High-
dimensional BIC (HBIC) Lee,Noh and Park (2014) are used for tuning parameter selection. In
practice, we prefer the HBIC since Cross-validation is time-consuming when p is notably large
and may result in overfitting (see Wang (Li and Tsai)). For HBIC, let βλ = (βλ,1, . . . , βλ,p) be the
penalized estimator obtained with the tuning parameter λ; and let S ≡ {j : βλ,j 6= 0, 1 ≤ j ≤ p}
be the index set of covariates with nonzero coefficients. Define

HBIC(λ) = log
( n∑
i=1

ρτ (Yi − xTi βλ)
)

+ |Sλ|
log(log n)

n
Cn,

where |Sλ| is the cardinality of the set Sλ, and Cn is a sequence of positive constants diverging
to infinity as n increases. We select the value of λ that minimizes HBIC(λ). In practice, we
recommend to take Cn = O(log(p)), which we find to work well in a variety of settings. However,
the adjustment for Cn is still not easy in real application cases. A HBIC curve is displayed in
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Figure 1: HBIC trends for τ = 0.5

Figure 1. The best λ is around 22. Figure 2 presents the cross-validation results. This process
is time-consuming, but the optimal λ seems close to the one selected by HBIC.
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Figure 2: cross validation trends for τ = 0.5
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