R/loopcuts_onestep.R

Defines functions loopcuts_onestep

Documented in loopcuts_onestep

#' @title Change-point p-values at given time points
#' 
#' @description This function computes the p-values at the current time points in input "time"
#' 
#' @usage loopcuts_onestep(time,censor,cuttimes,mono)
#' 
#' @param time a sequence of time
#' @param censor a vector indicating censored or not at the given times, 0 = censored; 1 = uncensored
#' @param cuttimes unique, sorted, possible times to make the cuts, including 0 and the ending time
#' @param mono 0: 2-sided hypothesis: H0: lam1 is equal to lam2; H1: lam1 is not equal to lam2
#'             1: 1-sided hypothesis: H0: lam1 is greater than or equal to lam2; H1: lam1 is less than lam2
#'             2: 1-sided hypothesis: H0: lam1 is less than or equal to lam2; H1: lam1 is greater than lam2
#'
#' @return P-values at for all time points in "time"
#'
#' @export
#'
#' @examples
#' data(loopcuts_t_c)
#' time = loopcuts_t_c[,1]
#' censor = loopcuts_t_c[,2]
#' loopcuts_onestep(time, censor, 28.03013699, 1)
#' 
loopcuts_onestep <- function(time,censor,cuttimes,mono)
{
  # Sort cuttimes and find cutlen
  cuttimes=unique(sort(cuttimes))
  # print(cuttimes)
  cutlen=length(cuttimes)
  
  # prepare the death time, ttot, and the number of deaths.returnval_1 is the four returned valure from function totaltest
  returnval_1=totaltest(time,censor)
  m=dim(returnval_1)[2]/3
  time_die=returnval_1[,1:m]
  ttot=returnval_1[,(m+1):(2*m)]
  deaths=returnval_1[,(2*m+1):3*m]
  
  # Based on cuttimes, find out the corresponding totaltime on test and the number of deaths.
  
   if (cutlen==1)
  {
    for(j in 1:length(time_die)){
      if (time_die[j]==cuttimes)
      {
        ttot1 = sum(ttot[1:j])
        ttot2 = sum(ttot[-(1:j)])
        death1 = sum(deaths[1:j])
        death2 = sum(deaths[-(1:j)])
        returnval_2= exact_pvalue(ttot1,ttot2,death1,death2,mono)
        a2=returnval_2[1]
        p=returnval_2[2]
      }
    }
    allt= cuttimes
    pvalall = p
  }
  if (cutlen!=1)
  {
        ###initialize the matrix storing ttots and deaths and p values
        ttotvec= array(0,c(cutlen+1,1))
        deavec= array(0,c(cutlen+1,1))
        allt= cuttimes
        pvalall=array(0,c(cutlen,1))
        monall = mono
        for(ii in 1:cutlen){
          for(j in 1:length(time_die)){
            # print(cuttimes)
            if (time_die[j]==cuttimes[ii])
            {
              if (ii==1)
              {
                ttotvec[ii] = sum(ttot[1:j])
                deavec[ii]  = sum(deaths[1:j])
              }
              if(ii!=1)
              {
                ttotvec[ii] = sum(ttot[1:j])-sum(ttotvec[1:(ii-1)])
                deavec[ii]=sum(deaths[1:j])-sum(deavec[1:(ii-1)])
              }
            }
          }
        }
        #do the last item in ttotvec and deavec
        ttotvec[cutlen+1] = sum(ttot)-sum(ttotvec[1:cutlen])
        deavec[cutlen+1]  = sum(deaths)-sum(deavec[1:cutlen])
        #Compute ts(1) and pvalues(1)
        for (k in 1:length(allt))
        {
          ttot1 = ttotvec[k]
          ttot2 = ttotvec[k+1]
          dea1  = deavec[k]
          dea2  = deavec[k+1]
          returnval_3=exact_pvalue(ttot1,ttot2,dea1,dea2,monall[k])
          a2=returnval_3[1]
          pvalall[k]=returnval_3[2]
        }
  }
  return(pvalall)
}

Try the RPEXE.RPEXT package in your browser

Any scripts or data that you put into this service are public.

RPEXE.RPEXT documentation built on May 29, 2017, 12:40 p.m.