
RcppOctave: Seamless Interface to Octave – And Matlab

Renaud Gaujoux

RcppOctave package – Version 0.18.1 [October 6, 2015]∗

Abstract

The RcppOctave package provides a direct interface to Octave from R. It allows
octave functions to be called from an R session, in a similar way C/C++ or Fortran func-
tions are called using the base function .Call. Since Octave uses a language that is mostly
compatible with Matlabr, RcppOctave may also be used to run Matlab m-files. This package
was originally developed to facilitate the port and comparison of R and Matlab code. In par-
ticular, it provides Octave modules that redefine Octave default random number generator
functions, so that they call R own dedicated functions. This enables to also reproduce and
compare stochastic computations.

Contents

1 Introduction 1

2 Objectives & Features 2

3 OS requirements 2
3.1 Linux 3
3.2 Windows 3
3.3 Mac OS 3

4 Accessing Octave from R 4
4.1 Core interface: .CallOctave . . 4

4.1.1 Overview 4
4.1.2 Controlling output values 4
4.1.3 Examples 5

4.2 Direct interface: the .O object . . 8
4.2.1 Manipulating variables . . 9
4.2.2 Calling functions 9
4.2.3 Auto-completion 10

4.3 Utility functions 10

4.3.1 Assign/get variables . . . 10
4.3.2 Evaluate single statements 11
4.3.3 Source m-files 13
4.3.4 List objects 14
4.3.5 Browse documentation . . 14

4.4 Errors and warning handling . . 15
4.5 Low-level C/C++ interface . . . 15

5 Calling R functions from Octave 15

6 Examples 15
6.1 Comparing implementations . . . 15
6.2 Random computations 16

7 Known issues 17

8 News and changes 17

References 19

1 Introduction

In many research fields, source code of algorithms and statistical methods are published as
Matlab files (the so called m-files). While such code is generally released under public Open
Source licenses like the GNU Public Licenses (GPLs) [3], effectively running or using it require

∗This vignette was built using Octave 3.8.1

1

either to have Matlabr, which is a nice but expensive proprietary software1, or to be/get – at
least – a bit familiar with Octave [1], which is free and open source, and is able to read and
execute m-files, as long as they do not require Matlab-specific functions. However, R users may
have neither Matlab license, nor the time/will to become Octave-skilled, and yet want to use
algorithms written in Matlab/Octave for their analyses and research.

Being able to run m-files or selectively use Octave functionalities directly from R can greatly
alleviate a process that otherwise typically implies exporting/importing data between the two
environments via files on disk, as well as dealing with a variety of issues including rounding errors,
format compatibility or subtle implementation differences, that all may lead to intricate hard-to-
debug situations. Even if one eventually wants to rewrite or optimise a given algorithm in plain
R or in C/C++, and therefore remove any dependency to Octave, it is important to test the
correctness of the port by comparing its results with the original implementation. Also, a direct
interface allows users to stick to their preferred computing environment, in which they are more
comfortable and productive.

An R package called ROctave 2 does exist, and intends to provide an interface between R
and Octave, but appears to be outdated (2002), and does not work out of the box with recent
version of Octave. A more recent forum post3 brought back some interest on binding these two
environments, but apparently without any following.

The RcppOctave package4 [4] described in this vignette aims at filling the gap and facilitating
the usage of Octave/Matlab code from R, by providing a lean interface that enables direct and easy
interaction with an embedded Octave session. The package’s name was chosen both to differentiate
it from the existing ROctave package, and to reflect its use and integration of the C++ framework
defined by the Rcpp package5 [2].

2 Objectives & Features

The ultimate objective of RcppOctave is to provide a two-way interface between R and Octave,
i.e. that allows calling Octave from R and vice-versa. The interface intends to be lean and as
transparent as possible, as well as providing convenient utilities to perform commonly needed tasks
(e.g. source files, browse documentation).

Currently, the package focuses on accessing Octave functionalities from R with:

• An out-of-the-box-working embedded Octave session;

• Ability to run/source m-files from R;

• Ability to evaluate Octave statements and function calls from R;

• Ability to call R functions in Octave code6;

• Transparent passage of variables between R and Octave;

• Reproducibility of computations, including stochastic computations, in both environment;

Future development should provide similar reverse capabilities, i.e. an out of the box embedded
R session, typically via the RInside package7.

1http://www.mathworks.com
2http://www.omegahat.org/ROctave
3http://octave.1599824.n4.nabble.com/ROctave-bindings-for-2-1-73-2-9-x-td1602060.html
4http://cran.r-project.org/package=RcppOctave
5http://cran.r-project.org/package=Rcpp
6Currently only when run from R through RcppOctave.
7http://cran.r-project.org/package=RInside

2

http://cran.r-project.org/package=RcppOctave
http://cran.r-project.org/package=Rcpp
http://cran.r-project.org/package=RInside
http://www.mathworks.com
http://www.omegahat.org/ROctave
http://octave.1599824.n4.nabble.com/ROctave-bindings-for-2-1-73-2-9-x-td1602060.html
http://cran.r-project.org/package=RcppOctave
http://cran.r-project.org/package=Rcpp
http://cran.r-project.org/package=RInside

3 OS requirements

The package has been developped and tested under Linux (Ubuntu), and has notably been
reported to work fine on other Linux distributions. Developments to make it run on Windows and
Mac recently started, and has been so far relatively successful.

3.1 Linux

The only requirement on Linux machines is to have Octave ≥ 3.2.4 and its development files
installed, although a more recent version (≥ 3.6) is recommended to get full functionnalities.

On Debian/Ubuntu this amounts to:

Octave ≥ 3.6: (works out of the box):

install octave and development files

sudo apt-get install octave liboctave-dev

install as usual in R

Rscript -e "install.packages('RcppOctave')"

Octave 3.2.4: (might require extra command)

install octave and development files

sudo apt-get install octave3.2 octave3.2-headers

requires to explicitly export Octave lib directory

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:`octave-config -p OCTLIBDIR`

install as usual in R

Rscript -e "install.packages('RcppOctave')"

3.2 Windows

Support for Windows started with version 0.11. Developments and tests are performed on
Windows 7 using the following settings:

Rtools: the package contains C++ source files that need to be compiled, which means that Rtools
needs to be installed, with its bin/ sub-directory in the system PATH.

See http://cran.r-project.org/bin/windows/Rtools/ for how to install the version of
Rtools compatible with your R version;

Octave: development was performed using the mingw version of Octave, which can be installed
as decribed in the Octave wiki:

http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_

pkgs

Octave binary bin/ sub-directory (e.g., C:\Octave\Octave3.6.4 gcc4.6.2\bin) must be
in the system PATH as well, preferably after Rtools own bin/ sub-directory.

3.3 Mac OS

Support for Mac OS is not yet official, but is currently being investigating. Discussion(s) on
how to install and run under Mac can be found here:

http://lists.r-forge.r-project.org/pipermail/rcppoctave-user/2013-October/000024.

html and https://github.com/renozao/RcppOctave/issues/1

The main installation procedure is based on the Octave version provided by homebrew8, which
works with the binary build provided by CRAN9:

8http://brew.sh/
9http://cran.r-project.org/bin/macosx/

3

http://cran.r-project.org/bin/windows/Rtools/
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs
http://lists.r-forge.r-project.org/pipermail/rcppoctave-user/2013-October/000024.html
http://lists.r-forge.r-project.org/pipermail/rcppoctave-user/2013-October/000024.html
https://github.com/renozao/RcppOctave/issues/1
http://brew.sh/
http://cran.r-project.org/bin/macosx/

1. install XCode and its Command Line Tools

2. install homebrew

3. add the homebrew/science repository (tap in brewing language):

brew tap homebrew/science

brew update && brew upgrade

brew tap --repair #may not be necessary

brew install gfortran

brew install octave

4 Accessing Octave from R

The RcppOctave package defines the function .CallOctave, which acts as a single entry point
for calling Octave functions from R. In order to make common function calls easier (e.g. eval),
other utility functions are defined, which essentially wraps a call to .CallOctave, but enhance
argument handling and result formating.

4.1 Core interface: .CallOctave

The function .CallOctave calls an Octave function from R, mimicking the way native C/C++
functions are called with .Call.

4.1.1 Overview

The function .CallOctave takes the name of an Octave function (in its first argument .NAME)
and pass the remaining arguments directly to the Octave function – except for the two special
arguments argout (see next section) and unlist. Note that Octave function arguments are not
named and positional, meaning that they must be passed in the correct order. Input names are
simply ignored by .CallOctave. Calling any Octave function is then as simple as:

.CallOctave('version')

[1] "3.8.1"

.CallOctave('sqrt', 10)

[1] 3.162278

.CallOctave('eye', 3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

.CallOctave('eye', 3, 2)

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

4

4.1.2 Controlling output values

Octave functions have the interesting feature of being able to compute and return a variable
number of output values, depending on the number of output variables specified in the statement.
Hence, a call to an Octave function requires passing both its parameters and the number of desired
output values.

The following sample code illustrates this concept using the function svd10:

% single output variable: eigen values only

S = svd(A);

% 3 output variables: complete SVD decomposition

[U, S, V] = svd(A);

The default behaviour of .CallOctave is to try to detect the maximum number of output
variables, as well as their names, and return them all. This should be suitable for most common
cases, especially for functions defined by the user in plain m-files, but does not work for functions
defined in compiled modules (see examples with in the next section). Hence the default is to
return the maximum number of output values if it can be detected, or only the first one.

For some functions, however, this behaviour may not be ideal, and complete control on the
return values is possible via the special argument argout. The next section illustrates different
situations and use case scenarios.

4.1.3 Examples

A sample m-file (i.e. a function definition file) is shipped with any RcppOctave installation in
the “scripts/” sub-directory and provides some examples of different types of Octave functions:

%%

% Example file for the R package RcppOctave

%%

function [a] = fun1()

a = rand(1,4);

end

function [a,b,c] = fun2()

a = rand(1,4);

b = rand(2,3);

c = "some text";

end

function fun_noargout(x)

% no effect outside the function

y = 1;

printf("%% Printed from Octave: x="), disp(x);

end

function [s] = fun_varargin(varargin)

if (nargin==0)

s = 0;

else

s = varargin{1} + varargin{2} + varargin{3};

10This sample code is extracted from the manpage for svd. See o help(svd) for more details.

5

endif

end

function [u, s, v] = fun_varargout()

if (nargout == 1) u = 1;

elseif (nargout == 3)

u = 10; s = 20; v = 30;

else usage("Expecting 1 or 3 output variables.");

endif;

end

These definitions can be loaded in the Octave session via the function sourceExamples.

source example function definitions from RcppOctave installation

sourceExamples('ex_functions.m')

several functions are now defined

o_ls()

[1] "fun1" "fun2" "fun_noargout" "fun_varargin"

[5] "fun_varargout"

The functions fun1, fun2, fun noargout, and fun varargin perform the same computations
independently of the number of output. For these a default call to .CallOctave is enough to get
their full functionalities:

single output value

.CallOctave('fun1')

[1] 0.6776693 0.7570356 0.6148638 0.3308931

3 output values

.CallOctave('fun2')

$a

[1] 0.8452558 0.4754382 0.4435868 0.2553756

##

$b

[,1] [,2] [,3]

[1,] 0.4847515 0.9711548 0.7379941

[2,] 0.4536776 0.9089370 0.9022478

##

$c

[1] "some text"

no output value

.CallOctave('fun_noargout', 1)

% Printed from Octave: x= 1

.CallOctave('fun_noargout', 'abc')

% Printed from Octave: x=abc

6

variable number of arguments

.CallOctave('fun_varargin')

[1] 0

.CallOctave('fun_varargin', 1, 2, 3)

[1] 6

The function fun varargout however, behaves differently when called with 1, 2 or 3 output
variables, performing different computations. Since it is defined in a m-file, the maximum set
of output variables is detectable and the default behaviour is then to call it asking for 3 output
variables. The other types of computations can be obtained using argument argout:

.CallOctave('fun_varargout')

$u

[1] 10

##

$s

[1] 20

##

$v

[1] 30

.CallOctave('fun_varargout', argout=1)

[1] 1

this should throw an error

try(.CallOctave('fun_varargout', argout=2))

Error in .CallOctave("fun varargout", argout = 2): RcppOctave - error in Octave

function ‘fun varargout‘:

usage: Expecting 1 or 3 output variables.

fun varargout at line 34, column 7

Argument argout may also be used to specify names for the output values. This is useful for
functions defined in compiled modules (e.g. svd) for which expected outputs are not detectable
(output names in particular), or when limiting the number of output variables in functions defined
in m-files. Indeed, in this latter case, it is not safe to infer the names based on those defined for
the complete output, as these may not be relevant anymore:

single output variable: result is S

.CallOctave('svd', matrix(1:4, 2))

[,1]

[1,] 5.4649857

[2,] 0.3659662

3 output variables: results is [U,S,V]

.CallOctave('svd', matrix(1:4, 2), argout=3)

[[1]]

[,1] [,2]

7

[1,] -0.5760484 -0.8174156

[2,] -0.8174156 0.5760484

##

[[2]]

[,1] [,2]

[1,] 5.464986 0.0000000

[2,] 0.000000 0.3659662

##

[[3]]

[,1] [,2]

[1,] -0.4045536 0.9145143

[2,] -0.9145143 -0.4045536

specify output names (and therefore number of output variables)

.CallOctave('svd', matrix(1:4, 2), argout=c('U', 'S', 'V'))

$U

[,1] [,2]

[1,] -0.5760484 -0.8174156

[2,] -0.8174156 0.5760484

##

$S

[,1] [,2]

[1,] 5.464986 0.0000000

[2,] 0.000000 0.3659662

##

$V

[,1] [,2]

[1,] -0.4045536 0.9145143

[2,] -0.9145143 -0.4045536

Note that it is quite possible for a compiled function to only accept calls with at least 2 output
variables. In such cases, .CallOctave calls must always specify argument argout.

4.2 Direct interface: the .O object

An alternative and convenient shortcut interface is defined by the S4-class Octave. At load
time, an instance of this class, an object named .O, is initialised and exported from RcppOctave’s
namespace. Using the .O object, calls to Octave functions are more compact:

.O

<Octave Interface>

- Use `$x` to call Octave function or get variable x.

- Use `$x <- val` to assign a value val to the Octave variable x.

.O$version()

[1] "3.8.1"

.O$eye(3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

8

.O$svd(matrix(1:4,2))

[,1]

[1,] 5.4649857

[2,] 0.3659662

argout can still be specified

.O$svd(matrix(1:4,2), argout=3)

[[1]]

[,1] [,2]

[1,] -0.5760484 -0.8174156

[2,] -0.8174156 0.5760484

##

[[2]]

[,1] [,2]

[1,] 5.464986 0.0000000

[2,] 0.000000 0.3659662

##

[[3]]

[,1] [,2]

[1,] -0.4045536 0.9145143

[2,] -0.9145143 -0.4045536

4.2.1 Manipulating variables

The .O object facilitates manipulating single Octave variables, as it emulates an R environment-
like object whose elements would be the objects available in the current Octave embedded session:

define a variable

.O$myvar <- 1:5

retrieve value

.O$myvar

[1] 1 2 3 4 5

assign and retrieve new value

.O$myvar <- 10

.O$myvar

[1] 10

remove

.O$myvar <- NULL

this should now throw an error since 'myvar' does not exist anymore

try(.O$myvar)

Error: RcppOctave::o get - Could not find an Octave object named ’myvar’.

4.2.2 Calling functions

As illustrated above, Octave functions can be called through the .O object, by passing speci-
fying its arguments as a function call:

9

density of x=5 for Poisson(2)

.O$poisspdf(5, 2)

[1] 0.03608941

E.g. compare with R own function

dpois(5, 2)

[1] 0.03608941

They may also be retrieved as R functions in a similar way as variables, and called in subsequent
statements:

retrieve Octave function

f <- .O$poisspdf

f

<OctaveFunction::`poisspdf`>

call (in Octave)

f(5, 2)

[1] 0.03608941

4.2.3 Auto-completion

An advantage of using the .O object is that it has auto-completion capabilities similar to the
R console. This greatly helps and speeds up the interaction with the current embedded Octave
session. For example, typing .O$std + TAB + TAB will show all functions or variables available in
the current session, that start with “std”.

4.3 Utility functions

The RcppOctave package defines some utilities to enhance the interaction with Octave, and
alleviate calls to a set of commonly used Octave functions. All these functions start with the prefix
“o ” (e.g. o source), so that they can be listed by typing o + TAB + TAB in the R console. Their
names have been chosen to reflect the corresponding Octave function, and, in some cases, aliases
matching standard R names are also provided, so that users not familiar with Octave can find
their way quickly (e.g. o rm is an alias to o clear).

4.3.1 Assign/get variables

The functions o assign and o get facilitates assigning variables and retrieving objects (vari-
ables or functions). Variables may be assigned or retrieved individually in separate calls to
o assign or o get11, or simultaneously in a variety of ways (see ?o get for more details and
examples):

ASSIGN

o_assign(a=1)

o_assign(a=10, b=20)

o_assign(list(a=5, b=6, aaa=7, aab=list(1,2,3)))

GET

11This would be similar to using the .O object as described above

10

get all variables

str(o_get())

List of 4

$ a : num 5

$ aaa: num 7

$ aab:List of 3

..$: num 1

..$: num 2

..$: num 3

$ b : num 6

selected variables

o_get('a')

[1] 5

o_get('a', 'b')

$a

[1] 5

##

$b

[1] 6

rename on the fly

o_get(c='a', d='b')

$c

[1] 5

##

$d

[1] 6

o_get throw an error for objects that do not exist

try(o_get('xxxxx'))

Error: RcppOctave::o get - Could not find an Octave object named ’xxxxx’.

but suggests potential matches

try(o_get('aa'))

Error: RcppOctave::o get - Could not find an Octave object named ’aa’.

Match(es): aaa aab

get a function

f <- o_get('svd')

f

<OctaveFunction::`svd`>

4.3.2 Evaluate single statements

To evaluate a single statement, one can use the o eval function, that can also evaluate a list
of statements sequentially:

11

assign variable 'a'

o_eval("a=1")

[1] 1

o_eval("a") # or .O£a

[1] 1

o_eval("a=svd(rand(3))")

[,1]

[1,] 1.0439442

[2,] 0.4677600

[3,] 0.1736197

.O$a

[,1]

[1,] 1.0439442

[2,] 0.4677600

[3,] 0.1736197

eval a list of statements

l <- o_eval("a=rand(1, 2)", "b=randn(1, 2)", "rand(1, 3)")

l

[[1]]

[1] 0.4794507 0.5119345

##

[[2]]

[1] -1.043102 -1.678494

##

[[3]]

[1] 0.8126957 0.9962844 0.1317312

variables 'a' and 'b' were assigned the new values

identical(list(.O$a, .O$b), l[1:2])

[1] TRUE

multiple statements are not supported by o_eval

try(o_eval("a=1; b=2"))

Error in FUN(X[[i]], ...): RcppOctave - error in Octave function ‘eval‘:

eval: invalid use of statement list

.O$a

[1] 0.4794507 0.5119345

argument CATCH allows for recovering from errors in statement

o_eval("a=usage('ERROR: stop here')", CATCH="c=3")

[1] 3

.O$a

[1] 0.4794507 0.5119345

.O$c

[1] 3

12

More details and examples are provided in the manual page ?o eval. If more than one state-
ment is to be evaluated, then one should use the function o source, with argument text as
described in Section 4.3.3 below.

4.3.3 Source m-files

Octave/Matlab code generally are generally provided as so called m-files, which are plain text
files that contain function definitions and/or sequences of multiple commands that perform a given
task. This is the form most public third party algorithms are published.

The function o source allows to load these files in the current Octave session, so that the
object they define are available, or the commands they contain are executed. RcppOctave ships
an example m-file in the “scripts/” sub-directory of its installation:

clear all session

o_clear(all=TRUE)

o_ls()

character(0)

source example file from RcppOctave installation

mfile <- system.file("scripts/ex_source.m", package='RcppOctave')

cat(readLines(mfile), sep="\n")

% Example m-file to illustrate the usage of the function o_source

%

% This file defines 3 dummy variables ('a','b' and 'c')

% and a dummy function 'abc', that adds up its three arguments.

%

##

a = 1;

b = 2;

c = 3;

##

function [res] = abc(x, y, z)

res = x + y + z;

end

o_source(mfile)

Now objects 'a', 'b', and 'c' as well as the function 'abc'

should be defined:

o_ls(long=TRUE)

<Octave session: 4 object(s)>

name size bytes class global sparse complex nesting persistent

a 1x1 8 double FALSE FALSE FALSE 1 FALSE

b 1x1 8 double FALSE FALSE FALSE 1 FALSE

c 1x1 8 double FALSE FALSE FALSE 1 FALSE

abc NA NA function TRUE NA NA 1 NA

#

o_eval("abc(2, 4, 6)")

[1] 12

o_eval("abc(a, b, c)")

[1] 6

13

This function can also conveniently be used to evaluate multiple statements directly passed
from the R console as character strings via its argument text:

o_source(text="clear a b c; a=100; a*sin(123)")

last statement is stored in automatic variable 'ans'

o_get('a', 'ans')

$a

[1] 100

##

$ans

[1] -45.99035

4.3.4 List objects

The function o ls (as used above) lists the objects (variables and functions) that are defined
in the current Octave embedded session. It is an enhanced version over Octave standard listing
functions such as who (see ?o who), which only lists variables, and not user-defined functions. With
argument long it returns details about each variable and function, in a similar way whos does (see
?o who).

o_ls()

[1] "a" "abc"

o_ls(long=TRUE)

<Octave session: 2 object(s)>

name size bytes class global sparse complex nesting persistent

a 1x1 8 double FALSE FALSE FALSE 1 FALSE

abc NA NA function TRUE NA NA 1 NA

#clear all (variables + functions)

o_clear(all=TRUE)

o_ls()

character(0)

See ?o ls for more details as well as Section 7 for a known issue in Octave versions older than
3.6.1.

4.3.5 Browse documentation

Octave has offers two ways of browsing documentation, via the functions help and doc, which
display a manual page for a given function and lookup the whole documentation for a given topic
respectively.

The RcppOctave package provides wrapper for these two functions to enable browsing Octave
help pages in the way R users are used to. Hence, to access the manpage for a given function one
types for example the following, which displays using the R function file.show:

o_help(std)

To display all documentation about a topic one types for example the following, opens the
documentation using the GNU Info browser12:

12At least on Linux machines.

14

o_doc(poisson)

Once the GNU Info browser is running, help for using it is available using the command ‘Ctrl
+ h’ – as stated in the Octave documentation for doc (see o help(doc)).

4.4 Errors and warning handling

All i/o messages written by Octave are redirected to R own i/o functions, with errors and
warnings generating corresponding messages in R13:

error

res <- try(.CallOctave('error', 'this is an error in Octave'))

Error in .CallOctave("error", "this is an error in Octave"): RcppOctave - error

in Octave function ‘error‘:

this is an error in Octave

geterrmessage()

[1] "Error in .CallOctave(\"error\", \"this is an error in Octave\") : \n RcppOctave - error in Octave function `error`:\n this is an error in Octave\n\n"

warning

res <- .CallOctave('warning', 'this is a warning in Octave')

Warning in .CallOctave("warning", "this is a warning in Octave"): this is a warning

in Octave

4.5 Low-level C/C++ interface

RcppOctave builds upon the Rcpp package, and defines specialisation for the Rcpp template
functions Rcpp::as and Rcpp::wrap, for converting R types to Octave types and vice versa.
Currently these templates are not exported, but will probably be in the future.

5 Calling R functions from Octave

This is currently under development. Interested users can find this feature under the branch
feature/Rfun in the GitHub repository:

https://github.com/renozao/RcppOctave/tree/feature/Rfun

6 Examples

6.1 Comparing implementations

Comparing equivalent R and Octave functions is as easy as comparing two R functions. For
example, one can compare the respective functions svd with the following code, which defines a
wrapper functions to format the output of Octave svd function as R (see ?svd and o help(svd)):

o_svd <- function(x){
ask for the complete decomposition

res <- .O$svd(x, argout=c('u','d','v'))

13On Windows, output redirection does not working properly and all output is ”mysteriously“ directly displayed
by Octave

15

https://github.com/renozao/RcppOctave/tree/feature/Rfun

reformat/reorder result

res$d <- diag(res$d)

res[c(2, 1, 3)]

}

define random data

X <- matrix(runif(25), 5)

run SVD in R

svd.R <- svd(X)

run SVD in Octave

svd.O <- o_svd(X)

str(svd.O)

List of 3

$ d: num [1:5] 2.6127 0.7663 0.439 0.1784 0.0403

$ u: num [1:5, 1:5] -0.526 -0.51 -0.303 -0.552 -0.258 ...

$ v: num [1:5, 1:5] -0.516 -0.563 -0.369 -0.459 -0.265 ...

check results

all.equal(svd.R, svd.O)

[1] TRUE

but not exactly identical

all.equal(svd.R, svd.O, tol=10^-16)

[1] "Component \"u\": Mean relative difference: 4.093149e-16"

[2] "Component \"v\": Mean relative difference: 4.084112e-16"

6.2 Random computations

In order to ensure reproducibility of results and facilitate the comparability of implementations
between R and Octave, RcppOctave ships a custom Octave module that redefine Octave standard
random number generator functions rand, randn, rande and randg, so that they call R corre-
sponding functions runif, rnorm, rexp and rgamma. This module is loaded when the RcppOctave
package is itself loaded. As a result, random computation – that use these functions – can be
seeded in both Octave and R, using R standard function set.seed. This facilitates, in particular,
the validation of ports of stochastic algorithms (e.g. simulations, MCMC-based estimations):

Rf <- function(){
x <- matrix(runif(100), 10)

y <- matrix(rnorm(100), 10)

(x * y) %*% (x / y)

}

Of <- {
define Octave function

o_source(text="

function [res] = test()

x = rand(10);

y = randn(10);

res = (x .* y) * (x ./ y);

16

end

")

return the function

.O$test

}

run both computations with a common seed

set.seed(1234); res.R <- Rf()

set.seed(1234); res.O <- Of()

compare results

identical(res.R, res.O)

[1] TRUE

not seeding the second computation would give different results

set.seed(1234);

identical(Rf(), Of())

[1] FALSE

7 Known issues

• In Octave versions older than 3.6.1, the function o ls may not list user-defined functions.
This is due to the built-in Octave function completion matches that does not return them.
The issue seems to have been fixed by Octave team at least in 3.6.1.

• The detection of output names by .CallOctave in Octave versions older than 3.4.1 does not
work, meaning that Octave functions are always called with a single output variable. For
obtaining more outputs, the user must specify argument argout accordingly.

• Redirection of Octave output sent to stdout and stderr on Windows does not work.

8 News and changes

Changes in 0.18

FIXES
o Fixed installation problem on Windows for R >= 3.2, due to
toolchain incompatiblity. Now requires that the 4.9.2 toolchain
available from CRAN is located under the Rtools directory.

Changes in 0.16

NEW FEATURES

o Added Octave function randp for Poisson distribution (issue #8)
FIXES

o Fixed compatibility bug with Octave 4.0.0. See ?o_config_info (issue #5).
o Added configure option --diable-rprofile to disable loading in internal
R calls during installation (issue #6)

Changes in 0.14.5

FIXES

o Mac support: look also for .dylib files when default .so files don't exist
(issue #2)
o Mac support: make sure Octave modules and package shared object are built
using the same compiler/toolchain used by R (issue #1)
o Makevars.in now has CXX_STD = CXX11, which gets rid of C98 warnings when
compiling shared object.

17

Changes in 0.14.3

FIXES

o Fixed typo in rcpp_octave.h which was causing an installation error on FreeBSD:
SWIF_OCTAVE_PREREQ should be SWIG_OCTAVE_PREREQ.

Changes in 0.14.2

NEW FEATURES

o Function .CallOctave gains a new argument `verbose` to specify a temporary
verbose level

FIXES
o Fixed installation issue on Windows that were introduced with new installation
features in 0.14.
o Fixed bug in output redirection when linking against old octave 3.2: method str()
was not defined

Changes in 0.14

CHANGES

o added a configure option --with-octave to specify the path to a non-standard
Octave installation. For example:
R CMD INSTALL --configure-args="--with-octave=/opt/octave" RcppOctave_0.14.tar.gz
o Handling of Octave outputs and error messages have been improved.

FIXES
o Some changes have been made so that the package is compatible with Octave 3.8
(reported by Bernard)
o Installation was failing when Octave was compiled with hdf5-mpi support.

Changes in 0.11

NEW FEATURES

o The package have successfully been installed on Windows machines,
although only basic functionalities have been tested (see README file).
o Support for Mac have also started, although even more slightly, using
the Octave version available from homebrew.

CHANGES
o Moved all developments/bug reports/static docs to GitHub repository:
https://github.com/renozao/RcppOctave/
o Octave functions' stdout and stderr messages are now buffered by default, so
that it does not bypass R own i/o functions.
All messages/warnings sent to stdout/stderr from Octave are displayed on
exiting the function call.
o function .CallOctave gains a new argument buffer.std to enable/disable
stdout and/or stderr buffering (see ?.CallOctave).
o Octave startup warnings (e.g. shadowing of core functions by Octave modules)
are not shown anymore.
o Minor adaptations to pass new CRAN checks
o The package now depends on R >= 3.0.0 to properly handle the knitr vignettes.
o Errors are now more properly handled, thanks to hints found in this
old post by Romain Franois:
http://lists.r-forge.r-project.org/pipermail/rcpp-devel/2010-May/000651.html

Changes in 0.9.3

CHANGES

o Conditional use of function packageName: use the one from pkgmaker
in R <= 2.15.3, or the one exported by utils in R >= 3.0.

Session information

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

18

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=C LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_ZA.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_ZA.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_ZA.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] methods stats graphics grDevices utils datasets base

other attached packages:

[1] knitr_1.11 RcppOctave_0.18.1 pkgmaker_0.25.10 registry_0.3

[5] Rcpp_0.12.1

loaded via a namespace (and not attached):

[1] magrittr_1.5 formatR_1.2.1 tools_3.2.2 stringi_0.5-5

[5] codetools_0.2-14 highr_0.5.1 stringr_1.0.0 digest_0.6.8

[9] xtable_1.7-4 evaluate_0.8

References

[1] John W Eaton. GNU Octave Manual. Network Theory Limited, 2002. isbn: 0-9541617-2-6.
url: http://www.octave.org/.

[2] Dirk Eddelbuettel and Romain François. “Rcpp: Seamless R and C++ Integration”. In: Jour-
nal of Statistical Software 40.8 (2011), pp. 1–18. url: http://www.jstatsoft.org/v40/
i08/.

[3] Free Software Foundation. GNU General Public License. 2011. url: http://www.gnu.org/
licenses/gpl.html.

[4] Renaud Gaujoux. RcppOctave: Seamless Interface to Octave – And Matlab. R package version
0.18.1. 2013. url: http://renozao.github.io/RcppOctave.

19

http://www.octave.org/
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://renozao.github.io/RcppOctave

	Introduction
	Objectives & Features
	OS requirements
	Linux
	Windows
	Mac OS

	Accessing Octave from R
	Core interface: .CallOctave
	Overview
	Controlling output values
	Examples

	Direct interface: the .O object
	Manipulating variables
	Calling functions
	Auto-completion

	Utility functions
	Assign/get variables
	Evaluate single statements
	Source m-files
	List objects
	Browse documentation

	Errors and warning handling
	Low-level C/C++ interface

	Calling R functions from Octave
	Examples
	Comparing implementations
	Random computations

	Known issues
	News and changes
	References

