Nothing
RMEffectsize <-
function(behavior,phaseX,v1,v2) {
options (scipen=999)
writeLines(" ")
DV<-( paste(substitute(behavior)) )
l9<-c("Effect size for behavior",'"',DV,'"')
cat(sprintf(l9),"\n")
writeLines(" ")
mean1 <-tapply(behavior,phaseX,mean,na.rm=T)
s1 <-tapply(behavior,phaseX, sd, na.rm=T)
options(scipen=999)
tphase<-table(phaseX)
n1<- tphase[names(tphase)==v1]
n2<- tphase[names(tphase)==v2]
n1<-n1-1
n2<-n2-1
totaln<-n1+n2
DIFF<-mean1[names(mean1)==v1]-mean1[names(mean1)==v2]
S<-sqrt(((n1*(s1[names(s1)==v1]^2)+(n2*s1[names(s1)==v2]^2))/totaln))
CD<-(DIFF/S)
V<-S^2
cm=gamma((totaln/2))/(sqrt(totaln/2)*gamma((totaln-1)/2))
G<-CD*cm
t1<-table(phaseX)
tmaxA<-t1[names(t1)==v1]
startA<-match(v1,phaseX)
endA<-tmaxA+startA-1
A<-behavior[startA:endA]
PA<-phaseX[startA:endA]
tmaxA<-t1[names(t1)==v2]
startA<-match(v2,phaseX)
endA<-tmaxA+startA-1
B<-behavior[startA:endA]
PB<-phaseX[startA:endA]
IV<-c(PA,PB)
DV<-c(A,B)
reg1<- summary(lm(DV~IV))
rvalue2<-reg1$r.squared
rvalue<-sqrt(reg1$r.squared)
DIFF<-mean1[names(mean1)==v2]-mean1[names(mean1)==v1]
S<-s1[names(s1)==v1]
es<-(DIFF/S)
nt=n1+n2+2
nx=n1+1
ny=n2+1
l1<-c("small effect size: <.87")
l2<-c("medium effect size: .87 to 2.67 ")
l3<-c("large effect size: >2.67")
writeLines(" ")
writeLines(l1)
writeLines(l2)
writeLines(l3)
writeLines("***************************************************")
writeLines(" ")
writeLines("********************ES*****************************")
es1<-round(es,5)
pes1<-c("ES= ",(as.character (abs(es1))))
eschange=pnorm(es)-.5
l5<-c("percent change=",as.character((round(eschange,4)*100)))
#print(c(pes1,l5))
cat(sprintf(c(pes1,l5)))
des<-abs(es1)
esci<- d.ci(des,n2=ny,n1=nx)
writeLines(" ")
writeLines(" ")
print(esci[1,])
#cat(sprintf(as.character(esci)))
writeLines(" ")
writeLines("*****************d-index**************************")
cd1<-(round(abs(CD),5))
retcd<-cd1
pcd1<-c("d-index= ",(as.character(cd1)))
dchange=pnorm(CD)-.5
l6<-c("percent change=",(as.character(round(dchange,4)*100)))
dci<- d.ci(CD,n=nt,n2=ny,n1=nx)
#print(c(pcd1,l6))
cat(sprintf(c(pcd1,l6)))
writeLines(" ")
print(dci[1,])
writeLines(" ")
writeLines("*****************Hedges's g***********************")
hchange=pnorm(G)-.5
G1<-(round(abs(G),5))
PG1<-c("Hedges's g=",G1)
l7<-c("percent change=",(as.character(round(hchange,4)*100)))
#print(c(PG1,l7))
cat(sprintf(c(PG1,l7)))
Gci<- d.ci(G1,n=nt,n2=ny,n1=nx)
writeLines(" ")
print(Gci[1,])
writeLines(" ")
writeLines("*****************Pearson's r**********************")
#print(round(rvalue,3))
rvalue<-(round(rvalue,3))
cat(sprintf(as.character (rvalue)),"\n")
writeLines("*****************R-squared************************")
rvalue2<-(round(rvalue2,3))
cat(sprintf(as.character (rvalue2)),"\n")
# print(round(rvalue2,3))
SE<-sqrt((ny+nx)/(ny*nx)+((CD^2))/(2*(ny+nx-2))*(ny+nx)/(nx+ny-2))
ret<-retrodesign(CD, SE, alpha = 0.05, df =totaln, n.sims = 10000)
writeLines(" ")
writeLines("**************************************************************************************")
writeLines("Type M (Magnitude) and Type S (Sign) Errors by Andrew Gelman and John Carlin (2014)")
writeLines("In the graph, the dotted line is the actual effect size, and the full line is where")
writeLines("the statistic becomes statistically different from 0, given the standard error.")
writeLines("The grayed-out points aren't statisticaly significant, the squares are type M errors,")
writeLines("and the triangles are type S Errors. Type M Errors shold be close to one and")
writeLines("Type S Errors close to zero.")
writeLines("***************************************************************************************")
writeLines(" ")
writeLines("****************************************************")
power<-ret$power[1]
sign<-ret$type_s[1]
spercent<-sign*100
spercent<-round(spercent,1)
magnitude<-ret$type_m[1]
pret<-c("Power=",round(power,3))
mret<-c("Type M (Magnitude) Errors=",round(magnitude,3))
sret<-c("Type S (Sign) Errors=",round(sign,5),spercent,"percent")
cat(sprintf(pret),"\n")
cat(sprintf(mret),"\n")
cat(sprintf(sret),"\n")
writeLines(" ")
writeLines("****************************************************")
#dev.off()
#par(mar = rep(2, 4))
layout(rbind(1,2), heights=c(6,1))
sim_plot(CD, SE, alpha = 0.05, df =totaln, n.sims = 10000,gg=F)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.