Nothing

```
#
# vim:set ff=unix expandtab ts=2 sw=2:
test.MeanAge2=function(){
pf=function(str){print(paste(str,"=",eval(parse(text=str))))}
# we consider a model with input and outputrates as functions of time
# described by a possibly nonlinear ode.
# First we compute the solution of the system.
C0=c(1/2)
k=1/10
I0=k*C0
Odot=function(Y,t){-k*Y^2}
#Odot=function(Y,t){-k*Y}
Idot=function(Y,t){I0*(1+0.9*sin(t/50))}
#Idot=function(Y,t){I0}
Ydot=function(Y,t){Idot(Y,t)+Odot(Y,t)}
tstart=0
tend=2000
tn=2000
tol=.02/tn
maxage=tend-tstart
times=seq(tstart,tend,maxage/tn)
fs=splinefun(times,solver(times,Ydot,C0))
pdf(file="runit.MeanAge2.pdf",paper="a4r")
c=c("black","red","green","blue")
lts=c(1,2)
lws=c(8,4)
plot(times,fs(times),type="l",lwd=lws[1],col=c[1],lty=lts[1],ylim=c(0,max(fs(times))))
######################################################################
# With the help of the solution we can re express
# the system as a linear problem with the same solution
# which enables us to track normalized amounts
# of matter trough the system.
OdotLin=function(Y,t){Y*Odot(fs(t),t)/fs(t)}
IdotT=function(t){Idot(fs(t),t)}
fsLin=splinefun(
times,
solver(
times,
function(Y,t){Idot(Y,t)+OdotLin(Y,t)},
C0
)
)
lines(times,fsLin(times),col=c[2],lty=lts[2],lwd=lws[2])
legend(
"bottomleft",
c( "solution ","solution of the equivalent linear system"),
lty=lts,
col=c(c[1],c[2])
)
#ma=splinefun(times,MeanAge(IdotT,OdotLin,fs,times))
#plot(times,ma(times))
#ma2=splinefun(times,MeanAge2(IdotT,OdotLin,fs,times))
#plot(times,ma2(times))
ma3=splinefun(times,MeanAge3(IdotT,OdotLin,fs,times))
plot(times,ma3(times))
dev.off()
}
```

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.