inst/tests/runit.TwopSerial_MCSim.R

#!/usr/bin/Rscript
# vim:set ff=unix expandtab ts=2 sw=2:
test.TwopSerial_MCSim=function(){
  # create the operator for a two pool serial model
  # according to our new general definition
  # 
  t_start=0
  t_end=10
  tn=3e2
  timestep=(t_end-t_start)/tn
  t=seq(t_start,t_end,timestep)
  nr=2
  # define the transfer functions for the model
  # we could compile them to a matrix valued
  # Function of C and t since they will be 
  # applied in a linear way on the output vector.
  # but we rather store them in an indexed list 
  # (as a sparse matrix) which also has some 
  # implementational benefits because the single
  # functions are easier to retrieve from the operator
  # if needed.
  alpha=list()
  #alpha[["2_to_1"]]=function(C,t){
  #  1/5#*1e-16
  #}
  alpha[["1_to_2"]]=function(C,t){
    1#all stuff is transmitted
  }


  k1=3/5
  k2=3/5
  f=function(C,t){
    # in this case the application of f can be expressed by a matrix multiplication
    # f(C,t)=N C
    # furthermorde the matrix N is actually completely linear and even constant
    N=matrix( 
       nrow=nr,
       ncol=nr,
       c(
          k1,    0,  
          0  ,  k2  
       )
    )
    # so we can write f(C,t)  as a Matrix product
    # note however that we could anything we like with the components
    # of C here. 
    # The only thing to take care of is that we release a vector of the same
    # size as C
    return(N%*%C)
  }
  fac=2e3
  
  inputrates=new("TimeMap",t_start,t_end,function(t){return(matrix(
    nrow=nr,
    rep(
      c(
        2*fac,  0*fac
      ),
      length(t)
    )
  ))})
  A=new("TransportDecompositionOperator",t_start,Inf,nr,alpha,f)
  mod=GeneralNlModel(
   t,
   A,
   c(
      fac,
      0 
   ),
  inputrates,
  deSolve.lsoda.wrapper
  )
	
  MCSim=getParticleMonteCarloSimulator(mod)
  aPP=availableParticleProperties(MCSim)
  aPS=availableParticleSets(MCSim)
  ref_PP=c("t_entrySystem","t_entryPool_1","t_entryPool_2","t_exitSystem")
  ref_PS=c(
  "particles_in_pool_1",
  "particles_in_pool_2",
  "particles_leaving_pool_1",
  "particles_leaving_pool_2",
  "particles_leaving_the_system"
)
  checkEquals(aPP,ref_PP)
  checkEquals(aPS,ref_PS)
  tasklist=list()
  tasklist[["meanTransitTime"]] <- quote(
                mean(
                   particleSets[["particles_leaving_the_system"]][,"t_exitSystem"]
                  -particleSets[["particles_leaving_the_system"]][,"t_entrySystem"]
                )
  )
  tasklist[["Cstock_1"]] <- quote(nrow(particleSets[["particles_in_pool_1"]]))
  tasklist[["Cstock_2"]] <- quote(nrow(particleSets[["particles_in_pool_2"]]))

  MCSim[["tasklist"]]<-tasklist
  plot(MCSim)
  results=computeResults(MCSim)[["cr"]]
  # compare with the ode solutions
  Y=getC(mod) 
  C1sim=results[,"Cstock_1"]
  C2sim=results[,"Cstock_2"]
  tsim=results[,"time"]
  pe(quote(length(tsim)),environment())
  pe(quote(length(t)),environment())
  #pe(quote(t-tsim),environment())
  #checkEquals(t,tsim) # although C1sim had a meaning for t=0 not all the # problems in tasklist have
  plot(tsim,C1sim,col="red",ylim=c(min(C1sim,Y[,1],C2sim,Y[,2]),max(C1sim,Y[,1],C2sim,Y[,2])))
  points(tsim,C2sim,col="blue")
  lines(t,Y[,1],type="l",lty=2,col="red")
  lines(t,Y[,2],type="l",lty=2,col="blue")
  #check the inputratefunction
  ir=getFunctionDefinition(inputrates)
  pe(quote(ir(0)),environment())

}

Try the SoilR package in your browser

Any scripts or data that you put into this service are public.

SoilR documentation built on May 29, 2017, 10:57 a.m.