1 Introduction

One important task of actuaries is the modeling of claim amount and claim count distributions for ratemaking, loss reserving or other risk evaluation purposes. Package \texttt{actuar} features many support functions for loss distributions modeling:

1. support for heavy tail continuous distributions useful in loss severity modeling;
2. support for phase-type distributions for ruin theory;
3. functions to compute raw moments, limited moments and the moment generating function (when it exists) of continuous distributions;
4. support for zero-truncated and zero-modified extensions of the discrete distributions commonly used in loss frequency modeling;
5. extensive support of grouped data;
6. functions to compute empirical raw and limited moments;
7. support for minimum distance estimation using three different measures;
8. treatment of coverage modifications (deductibles, limits, inflation, coinsurance).

Vignette "distributions" covers the points 1–4 above in great detail. This document concentrates on points 5–8.
2 Grouped data

Grouped data is data represented in an interval-frequency manner. Typically, a grouped data set will report that there were \(n_j \) claims in the interval \((c_{j-1}, c_j]\), \(j = 1, \ldots, r \) (with the possibility that \(c_r = \infty \)). This representation is much more compact than an individual data set — where the value of each claim is known — but it also carries far less information. Now that storage space in computers has essentially become a non issue, grouped data has somewhat fallen out of fashion. Still, grouped data remains useful as a means to represent data, if only graphically — for example, a histogram is nothing but a density approximation for grouped data. Moreover, various parameter estimation techniques rely on grouped data.

For these reasons, actuar provides facilities to store, manipulate and summarize grouped data. A standard storage method is needed since there are many ways to represent grouped data in the computer: using a list or a matrix, aligning \(n_j \) with \(c_{j-1} \) or with \(c_j \), omitting \(c_0 \) or not, etc. With appropriate extraction, replacement and summary methods, manipulation of grouped data becomes similar to that of individual data.

Function grouped.data creates a grouped data object similar to — and inheriting from — a data frame. The function accepts two types of input:

1. a vector of group boundaries \(c_0, c_1, \ldots, c_r \) and one or more vectors of group frequencies \(n_1, \ldots, n_r \) (note that there should be one more group boundary than group frequencies);

2. individual data \(x_1, \ldots, x_n \) and either a vector of breakpoints \(c_1, \ldots, c_r \), a number \(r \) of breakpoints or an algorithm to determine the latter.

In the second case, grouped.data will group the individual data using function hist. The function always assumes that the intervals are contiguous.

Example 1. Consider the following already grouped data set:

<table>
<thead>
<tr>
<th>Group</th>
<th>Frequency (Line 1)</th>
<th>Frequency (Line 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 25]</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>(25, 50]</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>(50, 100]</td>
<td>57</td>
<td>31</td>
</tr>
<tr>
<td>(100, 150]</td>
<td>42</td>
<td>19</td>
</tr>
<tr>
<td>(150, 250]</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td>(250, 500]</td>
<td>84</td>
<td>11</td>
</tr>
</tbody>
</table>

We can conveniently and unambiguously store this data set in R as follows:

```r
> x <- grouped.data(Group = c(0, 25, 50, 100, 150, 250, 500),
+ Line.1 = c(30, 31, 57, 42, 65, 84),
+ Line.2 = c(26, 33, 31, 19, 16, 11))
```

Internally, object \(x \) is a list with class
The package provides a suitable print method to display grouped data objects in an intuitive manner:

```r
> x
      Group Line.1 Line.2
1  (0, 25]   30   26
2  (25, 50]   31   33
3  (50, 100]  57   31
4  (100, 150]  42   19
5  (150, 250]  65   16
6  (250, 500]  84   11
```

Example 2. Consider Data Set B of Klugman et al. (2012, Table 11.2):

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>82</td>
<td>115</td>
<td>126</td>
<td>155</td>
<td>161</td>
<td>243</td>
<td>294</td>
<td>340</td>
<td>384</td>
<td>457</td>
<td>680</td>
</tr>
<tr>
<td>855</td>
<td>877</td>
<td>974</td>
<td>1193</td>
<td>1340</td>
<td>1884</td>
<td>2558</td>
<td>294</td>
<td>340</td>
<td>384</td>
<td>457</td>
<td>680</td>
</tr>
<tr>
<td>855</td>
<td>877</td>
<td>974</td>
<td>1193</td>
<td>1340</td>
<td>1884</td>
<td>2558</td>
<td>294</td>
<td>340</td>
<td>384</td>
<td>457</td>
<td>680</td>
</tr>
<tr>
<td>855</td>
<td>877</td>
<td>974</td>
<td>1193</td>
<td>1340</td>
<td>1884</td>
<td>2558</td>
<td>294</td>
<td>340</td>
<td>384</td>
<td>457</td>
<td>680</td>
</tr>
<tr>
<td>855</td>
<td>877</td>
<td>974</td>
<td>1193</td>
<td>1340</td>
<td>1884</td>
<td>2558</td>
<td>294</td>
<td>340</td>
<td>384</td>
<td>457</td>
<td>680</td>
</tr>
<tr>
<td>855</td>
<td>877</td>
<td>974</td>
<td>1193</td>
<td>1340</td>
<td>1884</td>
<td>2558</td>
<td>294</td>
<td>340</td>
<td>384</td>
<td>457</td>
<td>680</td>
</tr>
</tbody>
</table>

We can represent this data set as grouped data using either an automatic or a suggested number of groups (see ?hist for details):

```r
> y <- c( 27,  82, 115, 126, 155, 161, 243, 294, 340, 384, 457, 680, 855, 877, 974, 1193, 1340, 1884, 2558, 15743)
> grouped.data(y) # automatic

y
1 (0, 2000] 18
2 (2000, 4000] 1
3 (4000, 6000] 0
4 (6000, 8000] 0
5 (8000, 10000] 0
6 (10000, 12000] 0
7 (12000, 14000] 0
8 (14000, 16000] 1
> grouped.data(y, breaks = 5) # suggested

y
1 (0, 5000] 19
2 (5000, 10000] 0
3 (10000, 15000] 0
4 (15000, 20000] 1
```

The above grouping methods use equi-spaced breaks. This is rarely appropriate for heavily skewed insurance data. For this reason, grouped.data also supports specified breakpoints (or group boundaries):
> grouped.data(y, breaks = c(0, 100, 200, 350, 750,
+ 1200, 2500, 5000, 16000))

 y
1 (0, 100] 2
2 (100, 200] 4
3 (200, 350] 3
4 (350, 750] 3
5 (750, 1200] 4
6 (1200, 2500] 2
7 (2500, 5000] 1
8 (5000, 16000] 1

The package supports the most common extraction and replacement methods for "grouped.data" objects using the usual [and [<- operators. In particular, the following extraction operations are supported. (In the following, object x is the grouped data object of example 1.)

i) Extraction of the vector of group boundaries (the first column):

 > x[, 1]
 # group boundaries
 [1] 0 25 50 100 150 250 500

ii) Extraction of the vector or matrix of group frequencies (the second and third columns):

 > x[, -1]
 # group frequencies
 Line.1 Line.2
 1 30 26
 2 31 33
 3 57 31
 4 42 19
 5 65 16
 6 84 11

iii) Extraction of a subset of the whole object (first three lines):

 > x[1:3,]
 # first 3 groups
 Group Line.1 Line.2
 1 (0, 25] 30 26
 2 (25, 50] 31 33
 3 (50, 100] 57 31

Notice how extraction results in a simple vector or matrix if either of the group boundaries or the group frequencies are dropped.

As for replacement operations, the package implements the following.
i) Replacement of one or more group frequencies:

```r
> x[1, 2] <- 22; x  # frequency replacement
    Group Line.1 Line.2
       1   (0, 25] 22   26
       2   (25, 50] 31   33
       3   (50, 100] 57   31
       4   (100, 150] 42   19
       5   (150, 250] 65   16
       6   (250, 500] 84   11
> x[1, c(2, 3)] <- c(22, 19); x  # frequency replacement
    Group Line.1 Line.2
       1   (0, 25] 22   19
       2   (25, 50] 31   33
       3   (50, 100] 57   31
       4   (100, 150] 42   19
       5   (150, 250] 65   16
       6   (250, 500] 84   11
```

ii) Replacement of the boundaries of one or more groups:

```r
> x[1, 1] <- c(0, 20); x  # boundary replacement
    Group Line.1 Line.2
       1   (0, 20] 22   19
       2   (20, 50] 31   33
       3   (50, 100] 57   31
       4   (100, 150] 42   19
       5   (150, 250] 65   16
       6   (250, 500] 84   11
> x[c(3, 4), 1] <- c(55, 110, 160); x
    Group Line.1 Line.2
       1   (0, 20] 22   19
       2   (20, 55] 31   33
       3   (55, 110] 57   31
       4   (110, 160] 42   19
       5   (160, 250] 65   16
       6   (250, 500] 84   11
```

It is not possible to replace the boundaries and the frequencies simultaneously.

The package defines methods of a few existing summary functions for grouped data objects. Computing the mean

$$\sum_{j=1}^{r} \left(\frac{c_{j-1} + c_{j}}{2} \right) n_{j}$$

(1)
is made simple with a method for the `mean` function:

```r
> mean(x)
Line.1 Line.2
188.0 188.2
```

Higher empirical moments can be computed with `emm`; see section 4.

The R function `hist` splits individual data into groups and draws an histogram of the frequency distribution. The package introduces a method for already grouped data. Only the first frequencies column is considered (see Figure 1 for the resulting graph):

```r
> hist(x[, -3])
```

Remark 1. One will note that for an individual data set like \(y \) of example 2, the following two expressions yield the same result:

```r
> hist(y)  # histogram method for individual data
> hist(grouped.data(y))  # histogram method for grouped data
```

R has a function `ecdf` to compute the empirical cdf \(F_n(x) \) of an individual
data set:
\[F_n(x) = \frac{1}{n} \sum_{j=1}^{n} I\{x_j \leq x\}, \]
(2)

where \(I\{A\} = 1\) if \(A\) is true and \(I\{A\} = 0\) otherwise. The function returns a "function" object to compute the value of \(F_n(x)\) in any \(x\).

The approximation of the empirical cdf for grouped data is called an ogive (Klugman et al., 2012; Hogg and Klugman, 1984). It is obtained by joining the known values of \(F_n(x)\) at group boundaries with straight line segments:

\[
\tilde{F}_n(x) = \begin{cases}
0, & x \leq c_0 \\
\frac{(c_j - x)F_n(c_{j-1}) + (x - c_{j-1})F_n(c_j)}{c_j - c_{j-1}}, & c_{j-1} < x \leq c_j \\
1, & x > c_r.
\end{cases}
\]
(3)

The package includes a generic function `ogive` with methods for individual and for grouped data. The function behaves exactly like `ecdf`.

Example 3. Consider first the grouped data set of example 1. Function `ogive` returns a function to compute the ogive \(\tilde{F}_n(x)\) in any point:

```r
> (Fnt <- ogive(x))
Ogive for grouped data
Call: ogive(x = x)
x = 0, 20, 55, ..., 2.5e+02, 5e+02
F(x) = 0, 0.073, 0.18, ..., 0.72, 1
```

Methods for functions `knots` and `plot` allow, respectively, to obtain the knots \(c_0, c_1, \ldots, c_r\) of the ogive and to draw a graph (see Figure 2):

```r
> knots(Fnt) # group boundaries
[1] 0 20 55 110 160 250 500
> Fnt(knots(Fnt)) # ogive at group boundaries
[1] 0.00000 0.07309 0.17608 0.36545 0.50498 0.72093 1.00000
> plot(Fnt) # plot of the ogive
```

To add further symmetry between functions `hist` and `ogive`, the latter also accepts in argument a vector individual data. It will call `grouped.data` and then computes the ogive. (Below, \(y\) is the individual data set of example 2.)

```r
> (Fnt <- ogive(y))
Ogive for grouped data
Call: ogive(x = y)
x = 0, 2e+03, 4e+03, ..., 1.4e+04, 1.6e+04
F(x) = 0, 0.9, 0.95, ..., 0.95, 1
```

```r
> knots(Fnt)
```
Finally, a method of function quantile for grouped data objects returns linearly smoothed quantiles, that is, the inverse of the ogive evaluated at various points:

```
> quantile(x)
     0%  25%  50%  75% 100%
0.00 76.47 158.21 276.04 500.00
> Fnt(quantile(x))
[1] 0.00 0.25 0.50 0.75 1.00
```

3 Data sets

This is certainly not the most spectacular feature of actuar, but it remains useful for illustrations and examples: the package includes the individual
dental claims and grouped dental claims data of Klugman et al. (2012):

```r
> data("dental"); dental
[1] 141 16 46 40 351 259 317 1511 107
[10] 567
> data("gdental"); gdental
cj nj
1 (0, 25] 30
2 ( 25, 50] 31
3 ( 50, 100] 57
4 (100, 150] 42
5 (150, 250] 65
6 (250, 500] 84
7 (500, 1000] 45
8 (1000, 1500] 10
9 (1500, 2500] 11
10 (2500, 4000] 3
```

4 Calculation of empirical moments

The package provides two functions useful for estimation based on moments. First, function `emm` computes the kth empirical moment of a sample, whether in individual or grouped data form:

```r
> emm(dental, order = 1:3) # first three moments
[1] 3.355e+02 2.931e+05 3.729e+08
> emm(gdental, order = 1:3) # idem
[1] 3.533e+02 3.577e+05 6.586e+08
```

Second, in the same spirit as `ecdf` and `ogive`, function `elev` returns a function to compute the empirical limited expected value — or first limited moment — of a sample for any limit. Again, there are methods for individual and grouped data (see Figure 3 for the graphs):

```r
> lev <- elev(dental)
> lev(knots(lev)) # ELEV at data points
[1] 16.0 37.6 42.4 85.1 105.5 164.5 187.7 197.9
[9] 241.1 335.5
> plot(lev, type = "o", pch = 19) # plot of the ELEV function
> lev <- elev(gdental)
> lev(knots(lev)) # ELEV at data points
[1] 0.00 24.01 46.00 84.16 115.77 164.85
[7] 238.26 299.77 324.90 347.39 353.34
> plot(lev, type = "o", pch = 19) # plot of the ELEV function
```
Figure 3: Empirical limited expected value function of an individual data object (left) and a grouped data object (right)

5 Minimum distance estimation

Two methods are widely used by actuaries to fit models to data: maximum likelihood and minimum distance. The first technique applied to individual data is well covered by function `fitdistr` of the package MASS (Venables and Ripley, 2002).

The second technique minimizes a chosen distance function between theoretical and empirical distributions. Package actuar provides function mde, very similar in usage and inner working to fitdistr, to fit models according to any of the following three distance minimization methods.

1. The Cramér-von Mises method (CvM) minimizes the squared difference between the theoretical cdf and the empirical cdf or ogive at their knots:

\[d(\theta) = \sum_{j=1}^{n} w_j [F(x_j; \theta) - F_n(x_j; \theta)]^2 \]

for individual data and

\[d(\theta) = \sum_{j=1}^{r} w_j [F(c_j; \theta) - \tilde{F}_n(c_j; \theta)]^2 \]

for grouped data. Here, \(F(x) \) is the theoretical cdf of a parametric family, \(F_n(x) \) is the empirical cdf, \(\tilde{F}_n(x) \) is the ogive and \(w_1 \geq 0, w_2 \geq 0, \ldots \) are arbitrary weights (defaulting to 1).

2. The modified chi-square method (chi-square) applies to grouped data only and minimizes the squared difference between the expected and observed frequency within each group:

\[d(\theta) = \sum_{j=1}^{r} w_j [n(F(c_j; \theta) - F(c_{j-1}; \theta)) - n_j]^2, \]
where \(n = \sum_{j=1}^{r} n_j \). By default, \(w_j = n_j^{-1} \).

3. The layer average severity method (LAS) applies to grouped data only and minimizes the squared difference between the theoretical and empirical limited expected value within each group:

\[
d(\theta) = \sum_{j=1}^{r} w_j [\text{LAS}(c_{j-1}, c_j; \theta) - \tilde{\text{LAS}}(c_{j-1}, c_j; \theta)]^2,
\]

where \(\text{LAS}(x, y) = E[X \wedge y] - E[X \wedge x] \), \(\tilde{\text{LAS}}_n(x, y) = \tilde{E}_n[X \wedge y] - \tilde{E}_n[X \wedge x] \) and \(\tilde{E}_n[X \wedge x] \) is the empirical limited expected value for grouped data.

The arguments of mde are a data set, a function to compute \(F(x) \) or \(E[X \wedge x] \), starting values for the optimization procedure and the name of the method to use. The empirical functions are computed with ecdf, ogive or elev.

Example 4. The expressions below fit an exponential distribution to the grouped dental data set, as per example 2.21 of Klugman et al. (1998):

```r
> mde(gdental, pexp, start = list(rate = 1/200),
+       measure = "CvM")
rate 0.003551
distance 0.002842
> mde(gdental, pexp, start = list(rate = 1/200),
+       measure = "chi-square")
rate 0.00364
distance 13.54
> mde(gdental, levexp, start = list(rate = 1/200),
+       measure = "LAS")
rate 0.002966
distance 694.5
```

It should be noted that optimization is not always as simple to achieve as in example 4. For example, consider the problem of fitting a Pareto distribution to the same data set using the Cramér–von Mises method:
Working in the log of the parameters often solves the problem since the optimization routine can then flawlessly work with negative parameter values:

```r
> pparetolog <- function(x, logshape, logscale)
+     ppareto(x, exp(logshape), exp(logscale))
> (p <- mde(gdental, pparetolog,
+     start = list(logshape = log(3),
+                     logscale = log(600)), measure = "CvM"))

       logshape   logscale
   1.5814049   7.127909

distance
      0.0007905

The actual estimators of the parameters are obtained with

```r
> exp(p$estimate)

 logshape logscale
 4.8609956 1246.485196
```

This procedure may introduce additional bias in the estimators, though.

### 6 Coverage modifications

Let $X$ be the random variable of the actual claim amount for an insurance policy, $Y^L$ be the random variable of the amount paid per loss and $Y^P$ be the random variable of the amount paid per payment. The terminology for the last two random variables refers to whether or not the insurer knows that a loss occurred. Now, the random variables $X$, $Y^L$ and $Y^P$ will differ if any of the following coverage modifications are present for the policy: an ordinary or a franchise deductible, a limit, coinsurance or inflation adjustment (see Klugman et al., 2012, chapter 8 for precise definitions of these terms). Table 1 summarizes the definitions of $Y^L$ and $Y^P$.

Often, one will want to use data $Y^P_1, \ldots, Y^P_n$ (or $Y^L_1, \ldots, Y^L_n$) from the random variable $Y^P$ ($Y^L$) to fit a model on the unobservable random variable $X$. This requires expressing the pdf or cdf of $Y^P$ ($Y^L$) in terms of the pdf or cdf of $X$. Function coverage of `actuar` does just that: given a pdf or cdf and any combination of the coverage modifications mentioned above, coverage returns a function object to compute the pdf or cdf of the modified random
Coverage modification	Per-loss variable ($Y_L$)	Per-payment variable ($Y_P$)
Ordinary deductible ($d$) | \[
\begin{cases}
0, & X \leq d \\
X - d, & X > d
\end{cases}
\] | \[
\begin{cases}
X - d, & X > d
\end{cases}
\]
Franchise deductible ($d$) | \[
\begin{cases}
0, & X \leq d \\
X, & X > d
\end{cases}
\] | \[
\begin{cases}
X, & X > d
\end{cases}
\]
Limit ($u$) | \[
\begin{cases}
X, & X \leq u \\
u, & X > u
\end{cases}
\] | \[
\begin{cases}
u, & X > u
\end{cases}
\]
Coinsurance ($\alpha$) | $\alpha X$ | $\alpha X$
Inflation ($r$) | $(1 + r)X$ | $(1 + r)X$

Table 1: Coverage modifications for per-loss variable ($Y_L$) and per-payment variable ($Y_P$) as defined in Klugman et al. (2012).

variable. The function can then be used in modeling like any other `dfoo` or `pfoo` function.

**Example 5.** Let $Y_P$ represent the amount paid by an insurer for a policy with an ordinary deductible $d$ and a limit $u - d$ (or maximum covered loss of $u$). Then the definition of $Y_P$ is

\[
Y_P = \begin{cases}
X - d, & d \leq X \leq u \\
u - d, & X > u
\end{cases}
\] (8)

and its pdf is

\[
f_{Y_P}(y) = \begin{cases}
0, & y = 0 \\
f_X(y + d), & 0 < y < u - d \\
1 - F_X(d), & y = u - d \\
1 - F_X(u), & y > u - d
\end{cases}
\] (9)

Assume $X$ has a gamma distribution. Then an R function to compute the pdf (9) in any $y$ for a deductible $d = 1$ and a limit $u = 10$ is obtained with coverage as follows:

```r
> f <- coverage(pdf = dgamma, cdf = pgamma,
+ deductible = 1, limit = 10)
> f
function (x, shape, rate = 1, scale = 1/rate)
{
 Call <- match.call()
```
Sd <- Call
Sd$lower.tail <- FALSE
Sd[[1L]] <- as.name("pgamma")
names(Sd)[2L] <- "q"
Sd[[2L]] <- 1
Su <- Sd
Su[[2L]] <- 10
f <- Call
f[[1L]] <- as.name("dgamma")
res <- numeric(length(x))
w <- which(0 < x & x < 9)
f[[2L]] <- x[w] + 1
res[w] <- eval.parent(f)/(p <- eval.parent(Sd))
res[x == 9] <- eval.parent(Su)/p
res

Note how function f in the previous example is built specifically for the coverage modifications submitted and contains as little useless code as possible.

The function returned by coverage may be used for various purposes, most notably parameter estimation, as the following example illustrates.

**Example 6.** Let object y contain a sample of claims amounts from policies with the deductible and limit of example 5. One can fit a gamma distribution by maximum likelihood to the claim severity distribution as follows:

```r
> library(MASS)
> fitdistr(y, f, start = list(shape = 2, rate = 0.5))
 shape rate
 5.4917 1.1705
(0.8354) (0.1839)
```

Vignette "coverage" contains more detailed formulas for the pdf and the
cdf under various combinations of coverage modifications.

References


