Nothing
# This file is part of the R package "aifeducation".
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 3 as published by
# the Free Software Foundation.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>
#' @title Funnel transformer
#' @description Represents models based on the Funnel-Transformer.
#' @references Dai, Z., Lai, G., Yang, Y. & Le, Q. V. (2020). Funnel-Transformer: Filtering out Sequential Redundancy
#' for Efficient Language Processing. \doi{10.48550/arXiv.2006.03236}
#' @return `r get_description("return_object")`
#' @family Base Model
#' @export
BaseModelFunnel <- R6::R6Class(
classname = "BaseModelFunnel",
inherit = BaseModelCore,
private = list(
model_type = "funnel",
adjust_max_sequence_length = 1,
sequence_mode = "vary",
create_model = function(args) {
configuration <- transformers$FunnelConfig(
vocab_size = as.integer(length(args$tokenizer$get_tokenizer()$get_vocab())),
block_sizes = as.integer(args$block_sizes),
block_repeats = NULL,
num_decoder_layers = as.integer(args$num_decoder_layers),
d_model = as.integer(args$hidden_size),
n_head = as.integer(args$num_attention_heads),
d_head = as.integer(args$hidden_size),
d_inner = as.integer(args$intermediate_size),
hidden_act = tolower(args$hidden_act),
hidden_dropout_prob = args$hidden_dropout_prob,
attention_probs_dropout_prob = args$attention_probs_dropout_prob,
activation_dropout = as.integer(args$activation_dropout),
initializer_range = 0.02,
layer_norm_eps = 1e-12,
pooling_type = tolower(args$funnel_pooling_type),
attention_type = "relative_shift",
separate_cls = TRUE,
truncate_seq = TRUE,
pool_q_only = TRUE,
max_position_embeddings = as.integer(args$max_position_embeddings),
)
private$model <- transformers$FunnelForMaskedLM(configuration)
},
load_BaseModel = function(dir_path) {
private$model <- transformers$FunnelForMaskedLM$from_pretrained(dir_path)
},
set_model_config_from_hf = function() {
super$set_model_config_from_hf()
private$model_config["num_attention_heads"] <- list(private$model$config["n_head"])
private$model_config["hidden_size"] <- list(private$model$config["d_model"])
private$model_config["intermediate_size"] <- list(private$model$config["d_inner"])
private$model_config["funnel_pooling_type"] <- list(private$model$config["pooling_type"])
},
check_arg_combinations = function(args) {
if (args$hidden_size %% args$num_attention_heads != 0L) {
stop("hidden_size must be a multiple auf num_attention_heads.")
}
}
),
public = list(
#---------------------------------------------------------------------------
#' @description Configures a new object of this class.
#' Please ensure that your chosen configuration comply with the following
#' guidelines:
#' * hidden_size is a multiple of num_attention_heads.
#'
#' @param tokenizer `r get_param_doc_desc("tokenizer")`
#' @param max_position_embeddings `r get_param_doc_desc("max_position_embeddings")`
#' @param hidden_size `r get_param_doc_desc("hidden_size")`
#' @param block_sizes `r get_param_doc_desc("block_sizes")`
#' @param num_hidden_layers `r get_param_doc_desc("num_hidden_layers")`
#' @param num_attention_heads `r get_param_doc_desc("num_attention_heads")`
#' @param num_decoder_layers `r get_param_doc_desc("num_decoder_layers")`
#' @param d_head `r get_param_doc_desc("d_head")`
#' @param funnel_pooling_type `r get_param_doc_desc("funnel_pooling_type")`
#' @param intermediate_size `r get_param_doc_desc("intermediate_size")`
#' @param hidden_act `r get_param_doc_desc("hidden_act")`
#' @param hidden_dropout_prob `r get_param_doc_desc("hidden_dropout_prob")`
#' @param attention_probs_dropout_prob `r get_param_doc_desc("attention_probs_dropout_prob")`
#' @param activation_dropout `r get_param_doc_desc("activation_dropout")`
#' @return `r get_description("return_nothing")`
configure = function(tokenizer,
max_position_embeddings = 512L,
hidden_size = 768L,
block_sizes = c(4L, 4L, 4L),
num_attention_heads = 12L,
intermediate_size = 3072L,
num_decoder_layers = 2L,
d_head = 64L,
funnel_pooling_type = "Mean",
hidden_act = "GELU",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1,
activation_dropout = 0.0) {
arguments <- get_called_args(n = 1L)
private$do_configuration(args = arguments)
},
#--------------------------------------------------------------------------
#' @description Number of layers.
#' @return Returns an `int` describing the number of layers available for
#' embedding.
get_n_layers = function() {
return(sum(private$model$config$block_repeats * private$model$config$block_sizes))
}
)
)
# Add the model to the user list
BaseModelsIndex$Funnel <- ("BaseModelFunnel")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.