tests/testthat/test-01_02_Performance_Measures.R

# Start time
test_time_start <- Sys.time()

test_that("Krippendorff's Alpha", {
  # Values taken from
  # Krippendorff, K. (2019). Content Analysis: An Introduction to
  # Its Methodology (4th Ed.). SAGE

  r_1 <- factor(
    levels = c("Buch", "Brief", "Telefon", "Computer", "Ordner"),
    c("Buch", "Brief", "Telefon", "Telefon", "Brief", "Buch", "Computer", "Buch", "Brief", NA, NA, NA)
  )
  r_2 <- factor(
    levels = c("Buch", "Brief", "Telefon", "Computer", "Ordner"),
    c("Buch", "Brief", "Telefon", "Telefon", "Brief", "Brief", "Computer", "Buch", "Brief", "Ordner", NA, NA)
  )
  r_3 <- factor(
    levels = c("Buch", "Brief", "Telefon", "Computer", "Ordner"),
    c(
      NA, "Telefon", "Telefon", "Telefon", "Brief", "Telefon", "Computer", "Brief", "Brief", "Ordner", "Buch", "Telefon"
    )
  )
  r_4 <- factor(
    levels = c("Buch", "Brief", "Telefon", "Computer", "Ordner"),
    c("Buch", "Brief", "Telefon", "Telefon", "Brief", "Computer", "Computer", "Buch", "Brief", "Ordner", "Buch", NA)
  )

  results <- kripp_alpha(rater_one = r_1, rater_two = r_2, additional_raters = list(r_3, r_4))

  expect_equal(results$alpha_nominal, 0.743, tolerance = 1e-3)
  expect_equal(results$alpha_ordinal, 0.815, tolerance = 1e-3)

  results <- NULL
  results <- kripp_alpha(rater_one = r_1, rater_two = r_1, additional_raters = NULL)
  expect_equal(results$alpha_nominal, 1, tolerance = 1e-3)
  expect_equal(results$alpha_ordinal, 1, tolerance = 1e-3)
})

test_that("Cohens Kappa", {
  # Example from Cohen (1960)
  freq_table <- matrix(
    data = c(88, 14, 18, 10, 40, 10, 2, 6, 12),
    ncol = 3,
    nrow = 3,
    byrow = TRUE
  )
  r_1 <- vector(length = 200)
  r_2 <- vector(length = 200)
  index <- 1
  for (i in 1:3) {
    for (j in 1:3) {
      for (n_1 in 1:freq_table[i, j]) {
        r_1[index] <- i
        r_2[index] <- j
        index <- index + 1
      }
    }
  }
  r_1 <- factor(r_1, levels = c(1, 2, 3))
  r_2 <- factor(r_2, levels = c(1, 2, 3))
  results <- cohens_kappa(rater_one = r_1, rater_two = r_2)
  expect_equal(results$kappa_unweighted, 0.492, tolerance = 1e-3)

  results <- NULL
  results <- cohens_kappa(rater_one = r_1, rater_two = r_1)
  expect_equal(results$kappa_unweighted, 1, tolerance = 1e-3)
  expect_equal(results$kappa_linear, 1, tolerance = 1e-3)
  expect_equal(results$kappa_squared, 1, tolerance = 1e-3)

  # Example from Cohen (1969)
  freq_table <- matrix(
    data = c(.44, .07, .09, .05, .20, .05, .01, .03, .06),
    ncol = 3,
    nrow = 3,
    byrow = TRUE
  ) * 200
  r_1 <- vector(length = sum(freq_table))
  r_2 <- vector(length = sum(freq_table))
  index <- 1
  for (i in 1:3) {
    for (j in 1:3) {
      for (n_1 in 1:freq_table[i, j]) {
        r_1[index] <- i
        r_2[index] <- j
        index <- index + 1
      }
    }
  }
  r_1 <- factor(r_1, levels = c(1, 2, 3))
  r_2 <- factor(r_2, levels = c(1, 2, 3))
  results <- cohens_kappa(rater_one = r_1, rater_two = r_2)
  expect_equal(results$kappa_unweighted, 0.492, tolerance = 1e-3)

  results <- NULL
  results <- cohens_kappa(rater_one = r_1, rater_two = r_1)
  expect_equal(results$kappa_unweighted, 1, tolerance = 1e-3)
  expect_equal(results$kappa_linear, 1, tolerance = 1e-3)
  expect_equal(results$kappa_squared, 1, tolerance = 1e-3)
})

test_that("Fleiss Kappa", {
  # Example taken form Fleiss (1971)
  freq_table <- matrix(
    data = c(
      0, 0, 0, 6, 0,
      0, 3, 0, 0, 3,
      0, 1, 4, 0, 1,
      0, 0, 0, 0, 6,
      0, 3, 0, 3, 0,
      2, 0, 4, 0, 0,
      0, 0, 4, 0, 2,
      2, 0, 3, 1, 0,
      2, 0, 0, 4, 0,
      0, 0, 0, 0, 6,
      1, 0, 0, 5, 0,
      1, 1, 0, 4, 0,
      0, 3, 3, 0, 0,
      1, 0, 0, 5, 0,
      0, 2, 0, 3, 1,
      0, 0, 5, 0, 1,
      3, 0, 0, 1, 2,
      5, 1, 0, 0, 0,
      0, 2, 0, 4, 0,
      1, 0, 2, 0, 3,
      0, 0, 0, 0, 6,
      0, 1, 0, 5, 0,
      0, 2, 0, 1, 3,
      2, 0, 0, 4, 0,
      1, 0, 0, 4, 1,
      0, 5, 0, 1, 0,
      4, 0, 0, 0, 2,
      0, 2, 0, 4, 0,
      1, 0, 5, 0, 0,
      0, 0, 0, 0, 6
    ),
    ncol = 5,
    nrow = 30,
    byrow = TRUE
  )
  raters <- matrix(data = 0, nrow = 30, ncol = 6)

  for (i in seq_len(nrow(freq_table))) {
    index <- 0
    for (k in 1:5) {
      tmp_value <- freq_table[i, k]
      if (tmp_value > 0) {
        for (j in (1 + index):(tmp_value + index)) {
          raters[i, j] <- k
        }
        index <- index + tmp_value
      }
    }
  }

  r_1 <- factor(raters[, 1], levels = c(1, 2, 3, 4, 5))
  r_2 <- factor(raters[, 2], levels = c(1, 2, 3, 4, 5))
  r_3 <- factor(raters[, 3], levels = c(1, 2, 3, 4, 5))
  r_4 <- factor(raters[, 4], levels = c(1, 2, 3, 4, 5))
  r_5 <- factor(raters[, 5], levels = c(1, 2, 3, 4, 5))
  r_6 <- factor(raters[, 6], levels = c(1, 2, 3, 4, 5))
  results <- fleiss_kappa(
    rater_one = r_1,
    rater_two = r_2,
    additional_raters = list(r_3, r_4, r_5, r_6)
  )
  expect_equal(results, 0.430, tolerance = 1e-3)

  results <- NULL
  results <- fleiss_kappa(rater_one = r_1, rater_two = r_1)
  expect_equal(results, 1, tolerance = 1e-3)
})

test_that("Kendall's w", {
  # Example taken form Clark-Carter (2018) Quantitative Psychological Research
  freq_table <- matrix(
    data = c(
      1, 2, 3, 4, 5,
      2, 1, 4, 3, 5,
      3, 2, 1, 5, 4,
      1, 3, 2, 4, 5
    ),
    ncol = 5,
    nrow = 4,
    byrow = TRUE
  )

  raters <- t(freq_table)
  r_1 <- factor(raters[, 1], levels = c(1, 2, 3, 4, 5))
  r_2 <- factor(raters[, 2], levels = c(1, 2, 3, 4, 5))
  r_3 <- factor(raters[, 3], levels = c(1, 2, 3, 4, 5))
  r_4 <- factor(raters[, 4], levels = c(1, 2, 3, 4, 5))
  results <- kendalls_w(
    rater_one = r_1,
    rater_two = r_2,
    additional_raters = list(r_3, r_4)
  )
  expect_equal(results$kendall_w, 0.6875, tolerance = 1e-3)

  results <- NULL
  results <- kendalls_w(rater_one = r_1, rater_two = r_1)
  expect_equal(results$kendall_w, 1, tolerance = 1e-3)
  expect_equal(results$kendall_w_corrected, 1, tolerance = 1e-3)
  #------------
  # Example taken form Gwet (2014)
  freq_table <- matrix(
    data = c(
      9, 2, 5, 8,
      6, 1, 3, 2,
      8, 4, 6, 8,
      7, 1, 2, 6,
      10, 5, 6, 9,
      6, 2, 4, 7
    ),
    ncol = 4,
    nrow = 6,
    byrow = TRUE
  )
  lvs <- names(table(freq_table))
  raters <- freq_table
  r_1 <- factor(raters[, 1], levels = lvs)
  r_2 <- factor(raters[, 2], levels = lvs)
  r_3 <- factor(raters[, 3], levels = lvs)
  r_4 <- factor(raters[, 4], levels = lvs)
  results <- kendalls_w(
    rater_one = r_1,
    rater_two = r_2,
    additional_raters = list(r_3, r_4)
  )

  expect_equal(results$kendall_w_corrected, 0.887, tolerance = 1e-3)
  #----
  results <- NULL
  results <- kendalls_w(rater_one = r_1, rater_two = r_1)
  # expect_equal(results$kendall_w, 1, tolerance = 1e-3)
  expect_equal(results$kendall_w_corrected, 1, tolerance = 1e-3)
})

test_that("Gwet's AC1 and AC2", {
  # Example taken from Gwet (2021, p.160)
  data <- matrix(data = c(
    0, 0, NA, 0,
    1, 1, 2, 1,
    2, 2, 2, 2,
    2, 2, 2, 2,
    1, 1, 1, 1,
    0, 1, 2, 3,
    3, 3, 3, 3,
    0, 0, 1, 0,
    1, 1, 1, 1,
    NA, 4, 4, 4,
    NA, NA, 0, 0,
    NA, NA, 2, NA
  ), ncol = 4, nrow = 12, byrow = TRUE)

  r_1 <- factor(data[, 1], levels = c(0, 1, 2, 3, 4))
  r_2 <- factor(data[, 2], levels = c(0, 1, 2, 3, 4))
  r_3 <- factor(data[, 3], levels = c(0, 1, 2, 3, 4))
  r_4 <- factor(data[, 4], levels = c(0, 1, 2, 3, 4))

  results <- gwet_ac(rater_one = r_1, rater_two = r_2, additional_raters = list(r_3, r_4))
  expect_equal(results$ac1, 0.7754, tolerance = 1e-4)

  # example taken from Gwet (2021, p.165)
  data <- matrix(
    data = c(
      1, 1, 2, NA, 2,
      1, 1, 0, 1, NA,
      2, 3, 3, 3, NA,
      NA, 0, 0, NA, 0,
      0, 0, 0, NA, 0,
      0, 0, 0, NA, 0,
      1, 0, 2, NA, 1,
      1, NA, 2, 0, NA,
      2, 2, 2, NA, 2,
      2, 1, 1, 1, NA,
      NA, 1, 0, 0, NA,
      0, 0, 0, 0, NA,
      1, 2, 2, 2, NA,
      3, 3, 2, 2, 3,
      1, 1, 1, NA, 1,
      1, 1, 1, NA, 1,
      2, 1, 2, NA, 2,
      1, 2, 3, 3, NA,
      1, 1, 0, 1, NA,
      0, 0, 0, NA, 0
    ),
    ncol = 5,
    nrow = 20,
    byrow = TRUE
  )

  r_1 <- factor(data[, 1], levels = c(0, 1, 2, 3))
  r_2 <- factor(data[, 2], levels = c(0, 1, 2, 3))
  r_3 <- factor(data[, 3], levels = c(0, 1, 2, 3))
  r_4 <- factor(data[, 4], levels = c(0, 1, 2, 3))
  r_5 <- factor(data[, 5], levels = c(0, 1, 2, 3))

  results <- gwet_ac(rater_one = r_1, rater_two = r_2, additional_raters = list(r_3, r_4, r_5))
  expect_equal(results$ac1, 0.5021, tolerance = 1e-4)
  expect_equal(results$ac2_quadratic, 0.8224, tolerance = 1e-4)

  results <- gwet_ac(rater_one = na.omit(r_1), rater_two = na.omit(r_1))
  expect_equal(results$ac1, 1, tolerance = 1e-4)
  expect_equal(results$ac2_linear, 1, tolerance = 1e-4)
  expect_equal(results$ac2_quadratic, 1, tolerance = 1e-4)
})

# Monitor test time
monitor_test_time_on_CI(
  start_time = test_time_start,
  test_name = "01_02_performance_measures"
)

Try the aifeducation package in your browser

Any scripts or data that you put into this service are public.

aifeducation documentation built on Nov. 19, 2025, 5:08 p.m.