Nothing
## -----------------------------------------------------------------------------
fit <- lm(100/mpg ~ disp + hp + wt + am, data = mtcars)
## -----------------------------------------------------------------------------
confint(fit)
## -----------------------------------------------------------------------------
library(api2lm)
confint_adjust(fit)
## -----------------------------------------------------------------------------
(ci_b <- confint_adjust(fit, method = "bonferroni"))
## -----------------------------------------------------------------------------
confint_adjust(fit, method = "wh")
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## -----------------------------------------------------------------------------
plot(ci_b)
## -----------------------------------------------------------------------------
plot(ci_b, parm = c("hp", "disp"))
## -----------------------------------------------------------------------------
plot(ci_b, parm = c("hp", "disp"), mar = c(4.1, 4.1, 2.1, 2.1))
## -----------------------------------------------------------------------------
library(ggplot2)
autoplot(ci_b, parm = c("hp", "disp"))
## -----------------------------------------------------------------------------
# observations for which to predict the mean response
newdata <- as.data.frame(rbind(
apply(mtcars, 2, mean),
apply(mtcars, 2, median)))
# unadjusted intervals
predict_adjust(fit, newdata = newdata,
interval = "confidence",
method = "none")
# bonferroni-adjusted intervals
predict_adjust(fit, newdata = newdata,
interval = "confidence",
method = "bonferroni")
# working-hotelling-adjusted intervals
predict_adjust(fit, newdata = newdata,
interval = "confidence",
method = "wh")
## -----------------------------------------------------------------------------
# observations for which to predict the mean response
newdata <- as.data.frame(rbind(
apply(mtcars, 2, mean),
apply(mtcars, 2, median),
apply(mtcars, 2, quantile, prob = 0.25),
apply(mtcars, 2, quantile, prob = 0.75)))
# unadjusted intervals
predict_adjust(fit, newdata = newdata,
interval = "prediction",
method = "none")
# bonferroni-adjusted intervals
predict_adjust(fit, newdata = newdata,
interval = "prediction",
method = "bonferroni")
# scheffe-adjusted intervals
predict_adjust(fit, newdata = newdata,
interval = "prediction",
method = "scheffe")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.