Nothing
# p. 62 of ALSM5
test_that("predict_adjust produces correct confidence limits", {
data(toluca)
lmod <- lm(work_hours ~ lot_size, data = toluca)
newx <- data.frame(lot_size = 100)
# unadjusted
pcu <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "confidence",
method = "none")
pcui <- matrix(c(round(pcu[,2:3], 1)), nrow = 2)
pcu_truth <- predict(lmod, newdata = newx, level = 0.90,
interval = "confidence")
pcui_truth <- matrix(c(round(pcu_truth[,2:3], 1)), nrow = 2)
# bonferroni adjustment
# ppb <- predict_adjust(lmod,
# newdata = newx,
# level = 0.90,
# interval = "prediction",
# method = "bonferroni")
# ppbi <- matrix(c(round(ppb[,2:3], 1)), nrow = 2)
# ppbi_truth <- cbind(c(167.3, 149.1), c(214.9, 199.2))
# scheffe adjustment
pcs <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "confidence",
method = "scheffe")
pcsi <- matrix(c(round(pcs[,2:3], 1)), nrow = 2)
pcsi_truth <- matrix(c(387.2, 451.6))
expect_equal(pcui, pcui_truth)
# expect_equal(ppbi, ppbi_truth)
expect_equal(pcsi, pcsi_truth)
})
# p. 159 of ALSM5
test_that("predict_adjust produces correct confidence limits", {
data(toluca)
lmod <- lm(work_hours ~ lot_size, data = toluca)
newx <- data.frame(lot_size = c(30, 65, 100))
# unadjusted
pcu <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "confidence",
method = "none")
pcui <- matrix(c(round(pcu[,2:3], 1)), nrow = 3)
pcu_truth <- predict(lmod, newdata = newx, level = 0.90,
interval = "confidence")
pcui_truth <- matrix(c(round(pcu_truth[,2:3], 1)), nrow = 3)
# bonferroni adjustment
pcb <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "confidence",
method = "bonferroni")
pcbi <- matrix(c(round(pcb[,2:3], 1)), nrow = 3)
pcbi_truth <- cbind(c(131.1, 272, 387.1),
c(207.9, 316.9, 451.7))
# wh adjustment
pcs <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "confidence",
method = "scheffe")
pcsi <- matrix(c(round(pcs[,2:3], 1)), nrow = 3)
pcsi_truth <- cbind(c(131.2, 272, 387.2),
c(207.8, 316.8, 451.6))
expect_equal(pcui, pcui_truth)
expect_equal(pcbi, pcbi_truth)
expect_equal(pcsi, pcsi_truth)
})
# p. 160 of ALSM5
test_that("predict_adjust produces correct prediction limits", {
data(toluca)
lmod <- lm(work_hours ~ lot_size, data = toluca)
newx <- data.frame(lot_size = c(80, 100))
# unadjusted
psu <- predict_adjust(lmod,
newdata = newx,
level = 0.95,
interval = "confidence",
method = "none")
psui <- matrix(c(round(psu[,2:3], 1)), nrow = 2)
psu_truth <- predict(lmod, newdata = newx, level = 0.95,
interval = "confidence")
psui_truth <- matrix(c(round(psu_truth[,2:3], 1)), nrow = 2)
# bonferroni adjustment
psb <- predict_adjust(lmod,
newdata = newx,
level = 0.95,
interval = "prediction",
method = "bonferroni")
psbi <- matrix(c(round(psb[,2:3], 1)), nrow = 2)
psbi_truth <- cbind(c(228.3, 297.4),
c(467.7, 541.4))
# scheffe adjustment
pss <- predict_adjust(lmod,
newdata = newx,
level = 0.95,
interval = "prediction",
method = "scheffe")
pssi <- matrix(c(round(pss[,2:3], 1)), nrow = 2)
pssi_truth <- round(cbind(c(348 - 2.616 * 49.91, 419.4 - 2.616 * 50.87),
c(348 + 2.616 * 49.91, 419.4 + 2.616 * 50.87)), 1)
expect_equal(psui, psui_truth)
expect_equal(psbi, psbi_truth)
expect_equal(pssi, pssi_truth)
})
# p. 247 of ALSM5
test_that("predict_adjust produces correct prediction limits", {
data(dwaine)
lmod <- lm(sales ~ targetpop + dpi, data = dwaine)
newx <- data.frame(targetpop = c(65.4, 53.1),
dpi = c(17.6, 17.7))
# unadjusted
ppu <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "prediction",
method = "none")
ppui <- matrix(c(round(ppu[,2:3], 1)), nrow = 2)
ppu_truth <- predict(lmod, newdata = newx, level = 0.90,
interval = "prediction")
ppu_truth <- predict(lmod, newdata = newx, level = 0.90,
interval = "prediction")
ppui_truth <- matrix(c(round(ppu_truth[,2:3], 1)), nrow = 2)
# bonferroni adjustment
ppb <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "prediction",
method = "bonferroni")
ppbi <- matrix(c(round(ppb[,2:3], 1)), nrow = 2)
ppbi_truth <- cbind(c(167.3, 149.1), c(214.9, 199.2))
# scheffe adjustment
pps <- predict_adjust(lmod,
newdata = newx,
level = 0.90,
interval = "prediction",
method = "scheffe")
ppsi <- matrix(c(round(pps[,2:3], 1)), nrow = 2)
yhat <- c(191.10, 174.15)
spred <- c(11.35, 11.93)
ppsi_truth <- round(cbind(yhat - 2.29 * spred,
yhat + 2.29 * spred),
1)
expect_equal(ppui, ppui_truth)
expect_equal(ppbi, ppbi_truth)
expect_equal(ppsi, ppsi_truth)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.