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This vignette explains the installation and use of the R package automultinomial. The automultinomial

package is designed to be used for regressions similar to logistic or multinomial logit regression. However,
unlike ordinary logistic and multinomial logit models, the autologistic/automultinomial model includes an
autocorrelation parameter to account for spatial dependence between observations.

The organization of this document is:

1. Description of the problem automultinomial solves
2. cran and Github installation how-to
3. A data example with binary response (2 response categories)
4. A data example with 3 response categories
5. Some comments on autologistic model parameterization

The problem automultinomial solves

Consider a data problem where covariates (the independent variables) and categorical outcomes (the dependent
variables) are observed on a spatial grid or lattice. If the outcomes are spatially autocorrelated, then our
coefficient estimates and inference procedures ought to take this into account. Intuitively, when outcomes are
correlated, the effective sample size of the dataset is smaller than if the outcomes were independent. The
statistical information we can gain based on samples from multiple nearby sites may be less than if we were
able to sample sites that are “more independent”.

A particular practical risk in neglecting spatial correlation is that confidence intervals may be too narrow. We
might find “statistically significant” relationships that are in fact byproducts of noise or dependent sampling.
The automultinomial package provides a tool for dealing with outcomes with spatial autocorrelation. It
still might happen that nearby sites in a dataset are effectively independent. But we can only assess this
using a method that accounts for the spatial arrangement of the samples.

Having given a qualitative description of the data problem, we will now move on to a discussion of the
probability model used by automultinomial.

###Mathematical description

To describe the setup in automultinomial, we will use the notations

• i = 1, ..., n to index the n observation sites on the spatial grid
• K ≥ 2 to denote the number of possible values taken by the response
• p to denote the number of covariates observed at each site
• xi ∈ R

p to denote the values of the covariates at site i
• zi = 1, ..., K to denote the response at site i

– z to denote the vector of categorical responses for all the sites
– z−i to denote the entire response vector z, except for site i

• β ∈ R
p×(K−1) to denote the coefficient matrix (when K = 2, β is a vector of length p, as in logistic

regression)
– βk to denote the k-th column of β.

• γ to denote the autocorrelation parameter

We will assume that for each site i, a collection Ni of neighboring sites is known. If the data are collected in
a square lattice fashion, then a natural neighborhood setup is to set Ni to be the 4 Up, Down, Left, and
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Right neighbors of site i (sites at the boundary of a lattice may have less than 4 neighbors). We will assume
i /∈ Ni for each i, so that site i is not a neighbor of itself. It is allowable for sites to have no neighbors. In
this case Ni = φ, where φ denotes the empty set. We will use the notation i′ ∼ i to indicate that site i′ is a
neighbor of site i.

In the automultinomial package, we will require that the neighborhoods are symmetric: if i′ ∈ Ni, then
necessarily i ∈ Ni′ as well.

We will also define an energy function H(z|β, γ). When K = 2 and the two categories are k = 1 and k = 2,
then β is just a vector β with length p, and

H(z|β, γ) =

n
∑

i=1

xT
i βI(zi = 2) + γ

n
∑

i=1

∑

i′
∼i

i′>i

2
∑

k=1

I(zi = zi′ = k) (1)

In general, for K ≥ 2 we define H(z|β, γ) by

H(z|β, γ) =

n
∑

i=1

K−1
∑

k=1

xT
i βkI(zi = k + 1) + γ

n
∑

i=1

∑

i′
∼i

i′>i

K
∑

k=1

I(zi = zi′ = k) (2)

With this preamble accomplished, we can define the probability model automultinomial seeks to estimate:

p(z|β, γ) =
exp{H(z|β, γ)}

∑

z
′ exp{H(z′|β, γ)}

(3)

The term
∑

z
′ indicates a sum over all possible categorical responses for the entire dataset.

Some intuition regarding (3) can be gained as follows: when γ = 0, then γ
∑n

i=1

∑

i′
∼i

i′>i

∑2
k=1 I(zi = zi′ =

k) = 0 so that the zi are completely independent. In this case the autologistic (automultinomial) model is
the same as an ordinary logistic (multinomial logit) model. On the other hand, when γ > 0, then response
configurations z where zi = zi′ for many neighbor pairs i ∼ i′ become more likely. In this way, γ incorporates
positive spatial correlation into the responses. When γ < 0, we expect neighboring zi, zi′ to disagree more
frequently than if the zi were independent, and the γ < 0 case will in practice be less common.

###Estimating β and γ

The automultinomial package follows the pseudolikelihood approach of (Besag, 1974) to estimate the
parameters β, γ. We briefly explain the procedure and its motivation below.

When γ is known to be 0, then the responses zi are independent, and we can use common maximum
likelihood techniques such as logistic or multinomial regression to estimate β. On the other hand, when
spatial correlation is present, then we need to estimate β and γ jointly. Unfortunately, maximum likelihood
for the model in equation (3) is computationally infeasible due to the well known computational intractability
of the denominator of (3) when γ 6= 0.

Fortunately, a proposal of (Besag, 1974) provides a consistent estimation procedure, maximum pseudolikeli-
hood, for the parameters of the model in equation (3). In maximum pseudolikelihood, we maximize

ℓP L(β, γ) =
n

∑

i=1

log{p(zi|z−i, β, γ)} (4)
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over β and γ. The expression p(zi|z−i, β, γ) refers to the conditional density of zi given the sites at all of the
other grid locations. A short calculation based on equation (3) shows that for K = 2,

p(zi = 1|z−i, β, γ) =
exp{γ

∑

i′∼i I(zi′ = 1)}

exp{γ
∑

i′∼i I(zi′ = 1)} + exp{xT
i β + γ

∑

i′∼i I(zi′ = 2)}
(5)

p(zi = 2|z−i, β, γ) =
exp{xT

i β + γ
∑

i′∼i I(zi′ = 2)}

exp{γ
∑

i′∼i I(zi′ = 1)} + exp{xT
i β + γ

∑

i′∼i I(zi′ = 2)}
(6)

For K ≥ 2 response categories, we have

p(zi = 1|z−i, β, γ) =
exp{γ

∑

i′∼i I(zi′ = 1)}

exp{γ
∑

i′∼i I(zi′ = 1)} +
∑K−1

k=1 exp{xT
i βk + γ

∑

i′∼i I(zi′ = k + 1)}
(7)

and for 1 ≤ k < K,

p(zi = k + 1|z−i, β, γ) =
exp{xT

i βk + γ
∑

i′∼i I(zi′ = k + 1)}}

exp{γ
∑

i′∼i I(zi′ = 1)} +
∑K−1

k=1 exp{xT
i βk + γ

∑

i′∼i I(zi′ = k + 1)}
(8)

In the automultinomial package, equations (5), (6), (7), and (8) are plugged into equation (4), and (4) is
optimized over β and γ using the optim() function.

Installation

###cran installation

Simply use

install.packages("automultinomial")

library(automultinomial)

and the package will be ready to run.

###Github installation

The most recent (development) version of the package can be installed from Github.

Installing from Github is as easy as installing from cran. First, make sure Hadley Wickham’s package
devtools is installed on your RStudio:

install.packages("devtools")

Then, run the following:

devtools::install_github(repo="stephenberg/automultinomial")

library(automultinomial)

Now the package is ready to run.

Data example 1: K=2 response categories

Here, we will demonstrate how to simulate data using automultinomial, how to fit data using
automultinomial, and how to analyze the output.
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###Simulating data

First we will use the drawSamples() function to simulate some data from the autologistic model. The
drawSamples() function takes the following arguments:

• beta: the p × 1 coefficient vector (for K = 2 response categories) or the p × (K − 1) coefficient matrix
(for K > 2 response categories)

• gamma: the value of the correlation parameter
• X: the n × p design matrix X = [x1, x2, ..., xn]T

• A: a square symmetric adjacency matrix encoding the neighborhood structure
• burnIn: the number of burnin iterations for the Gibbs sampler. Safe to leave at the default of 300.
• nSamples: the number of simulated samples to draw.

First, we will set up the simulation parameters:

library(automultinomial)

set.seed(33)

#10 predictors

p=5

#n times n grid

n=40

#make grid and adjacency matrix

latticeGraph=igraph::make_lattice(c(n,n))

A=igraph::get.adjacency(latticeGraph)

#set coefficient values

beta=matrix(rnorm(p),ncol=1)*0.3

beta

## [,1]

## [1,] -0.04077736

## [2,] -0.01223909

## [3,] 0.30316170

## [4,] -0.04747873

## [5,] -0.64699125

#set covariate values

X=matrix(rnorm(n^2*p),ncol=p)

#set the correlation parameter value (0.7 is a moderate amount of spatial correlation)

gamma=0.7

Then, we will use the drawSamples() function to generate simulated data.

#use drawSamples to simulate data with parameters beta and gamma by Gibbs sampling

y=drawSamples(beta,gamma,X,A,nSamples = 1)

y2=drawSamples(beta,0,X,A,nSamples = 1)

Figure 1 shows plots of the responses on the grid. On the left plot, we can see “clumping” of the responses
due to the positive autocorrelation parameter γ = 0.7. The right hand plot is from the distribution with the
same β, and γ = 0.

###Fitting an autologistic model to the data (K=2 categories)
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Figure 1: On the left, a plot of the dataset we just simulated, where the truth is γ = 0.7. For comparison,
the plot on the right shows data taken from the same model but with γ = 0.

Now we’ll fit an autologistic model using the MPLE() function. The MPLE() function takes 3 primary
arguments:

• X: the design matrix X = [x1, x2, ..., xn]T

• A: a square symmetric adjacency matrix encoding the neighborhood structure
• y: the response vector y, which is required by MPLE() to be a factor vector.

There are also several secondary arguments.

• ciLevel: for xy% confidence intervals, set ciLevel to 0.xy (the default is ciLevel=0.95, which
produces 95% confidence intervals)

• method: By choosing method=“asymptotic”, MPLE will output confidence intervals based on the
asymptotic distribution of the pseudolikelihood estimator. For bootstrap confidence intervals, use
method=“boot”. The default is method=“asymptotic”.

• burnIn: the number of burnin iterations for the Gibbs sampler for method=“boot”. Safe to leave at the
default of 300.

• nBoot: the number of bootstrap samples to use for making bootstrap confidence intervals.

After fitting the model, we will examine confidence intervals for the fitted parameters. The asymptotic type
confidence intervals can be computed very quickly, but may be less accurate in practice than bootstrap
confidence intervals.

First, we will fit the model using the MPLE() function.

# responses must be input as a factor

y=factor(y)

fit1=MPLE(X=X,y=y,A=A,ciLevel = 0.95,method = "asymptotic")

fit2=MPLE(X=X,y=y,A=A,ciLevel = 0.95,method = "boot",nBoot = 500)
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Then, we can use the MPLE_summary() function to view the model summary in table form.

#to see the information contained in fit1 and fit2, use str() (not run to save space)

#str(fit1)

#str(fit2)

fitSummary1=MPLE_summary(fit1)

##

##

## Table: Summary with confidence intervals

##

## 2 vs. 1 gamma

## --- ----------------------- --------------------

## 1 0.001 (-0.139,0.141) 0.718 (0.641,0.795)

## 2 -0.002 (-0.141,0.136)

## 3 0.277 (0.142,0.413)

## 4 -0.085 (-0.231,0.061)

## 5 -0.686 (-0.851,-0.521)

##

##

## Table: Summary with p-values

##

## 2 vs. 1 gamma

## --- --------------- ----------

## 1 0.001 (0.989) 0.718 (0)

## 2 -0.002 (0.975)

## 3 0.277 (0)

## 4 -0.085 (0.255)

## 5 -0.686 (0)

fitSummary2=MPLE_summary(fit2)

##

##

## Table: Summary with confidence intervals

##

## 2 vs. 1 gamma

## --- ---------------------- --------------------

## 1 0.001 (-0.136,0.15) 0.718 (0.651,0.805)

## 2 -0.002 (-0.152,0.155)

## 3 0.277 (0.13,0.414)

## 4 -0.085 (-0.236,0.048)

## 5 -0.686 (-0.836,-0.55)

##

##

## Table: Summary with p-values

##

## 2 vs. 1 gamma

## --- --------------- ----------

## 1 0.001 (0.988) 0.718 (0)

## 2 -0.002 (0.972)

## 3 0.277 (0)

## 4 -0.085 (0.25)

## 5 -0.686 (0)
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Data example 2: K=3 response categories

Now, we demonstrate the use of the package when there are 3 response categories. Essentially, everything is
still the same, and most of the previous code doesn’t change at all. The only difference is that now, the β

parameter is a matrix with 2 = K − 1 columns, rather than a vector as in the K = 2 case.

###Simulating data

Generating simulated data using the function drawSamples().

set.seed(42)

#10 predictors

p=5

#n times n grid

n=40

#make grid and adjacency matrix

latticeGraph=igraph::make_lattice(c(n,n))

A=igraph::get.adjacency(latticeGraph)

#set coefficient values

#with 3 categories in the response, beta is now a matrix

beta=matrix(rnorm(p*2),ncol=2)*0.3

beta
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Figure 2: On the left, a plot of the 3-category dataset we just simulated, where the truth is γ = 0.7. For
comparison, the plot on the right shows data taken from the same model but with γ = 0.

## [,1] [,2]

## [1,] 0.4112875 -0.03183735

## [2,] -0.1694095 0.45345660

## [3,] 0.1089385 -0.02839771

## [4,] 0.1898588 0.60552711

## [5,] 0.1212805 -0.01881423

#set covariate values

X=matrix(rnorm(n^2*p),ncol=p)

#set the correlation parameter value (0.7 is a moderate amount of spatial correlation)

gamma=0.7

#use drawSamples to simulate data with parameters beta and gamma by Gibbs sampling

y=drawSamples(beta,gamma,X,A,nSamples = 1)

y2=drawSamples(beta,0,X,A,nSamples = 1)

Figure 2 shows plots of the 3-category responses on the grid. On the left plot, we again see “clumping” of the
responses due to the positive autocorrelation parameter. The right hand plot is from the distribution with
the same β, and γ = 0.

###Fitting an automultinomial model to the data (K=3 categories)

#responses must be input as a factor

y=factor(y)

fit1=MPLE(X=X,y=y,A=A,ciLevel = 0.95,method = "asymptotic")

fit2=MPLE(X=X,y=y,A=A,ciLevel = 0.95,method = "boot",nBoot = 500)
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#to see the information contained in fit1 and fit2, use str() (not run to save space)

#str(fit1)

#str(fit2)

fitSummary1=MPLE_summary(fit1)

##

##

## Table: Summary with confidence intervals

##

## 2 vs. 1 3 vs. 1 gamma

## --- ----------------------- ---------------------- --------------------

## 1 0.366 (0.224,0.509) -0.032 (-0.169,0.106) 0.696 (0.624,0.769)

## 2 -0.204 (-0.343,-0.065) 0.301 (0.158,0.444)

## 3 0.079 (-0.064,0.221) 0.085 (-0.047,0.217)

## 4 0.181 (0.038,0.324) 0.722 (0.573,0.871)

## 5 0.153 (0.014,0.291) -0.056 (-0.195,0.082)

##

##

## Table: Summary with p-values

##

## 2 vs. 1 3 vs. 1 gamma

## --- --------------- --------------- ----------

## 1 0.366 (0) -0.032 (0.65) 0.696 (0)

## 2 -0.204 (0.004) 0.301 (0)

## 3 0.079 (0.278) 0.085 (0.206)

## 4 0.181 (0.013) 0.722 (0)

## 5 0.153 (0.03) -0.056 (0.424)

fitSummary2=MPLE_summary(fit2)

##

##

## Table: Summary with confidence intervals

##

## 2 vs. 1 3 vs. 1 gamma

## --- ----------------------- ---------------------- --------------------

## 1 0.366 (0.234,0.502) -0.032 (-0.175,0.116) 0.696 (0.628,0.778)

## 2 -0.204 (-0.352,-0.049) 0.301 (0.154,0.448)

## 3 0.079 (-0.061,0.212) 0.085 (-0.05,0.222)

## 4 0.181 (0.042,0.343) 0.722 (0.576,0.878)

## 5 0.153 (0.004,0.309) -0.056 (-0.206,0.098)

##

##

## Table: Summary with p-values

##

## 2 vs. 1 3 vs. 1 gamma

## --- --------------- --------------- ----------

## 1 0.366 (0) -0.032 (0.694) 0.696 (0)

## 2 -0.204 (0.004) 0.301 (0)

## 3 0.079 (0.3) 0.085 (0.246)

## 4 0.181 (0.024) 0.722 (0)

## 5 0.153 (0.054) -0.056 (0.434)

9



−0.5

0.0

0.5

1_21 1_31 2_21 2_31 3_21 3_31 4_21 4_31 5_21 5_31 gamma

coefficient

C
o

e
ff

ic
ie

n
t 

E
s
ti
m

a
te

s

95% CI

Asymptotic

Bootstrap

Type

MPLE

Truth

A comparison of different autologistic parameterizations

Finally, we’ll conclude with a discussion of different parameterizations of the autologistic model. We will
focus on the case K = 2 here. The goal for now is to show by example that the parameterization used
by automultinomial will be invariant to the choice of reference category (not guaranteed by all of the
parameterizations) and to give some concrete data examples.

###Commonly used autologistic parameterizations

Frequently, autologistic parameterizations are given in terms of the conditional probability distributions at
each site, rather than in terms of the joint distribution over all sites. This convention might perhaps lead to
confusion about what model is actually being fit, but we will follow the common convention here.

We suppose that the response at each site is binary, so that there are K = 2 response categories.

Parameterization 1 (Asymmetric): In what we will call the asymmetric parameterization, the set of
allowed responses at each site is usually taken to be {0, 1}. The conditional probabilities for the set {0, 1} are

p(zi = 1|z−i) =
exp{xT

i β + γ
∑

i′∼i zi′}

1 + exp{xT
i β + γ

∑

i′∼i zi′}
(9)

p(zi = 0|z−i) =
1

1 + exp{xT
i β + γ

∑

i′∼i zi′}
(10)

If we shift the values of the responses up by 1, so that we identify 0 with 1 and 1 with 2, then with a slight
abuse of notation we have
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p(zi = 2|z−i) =
exp{xT

i β + γ
∑

i′∼i I(zi′ = 2)}

1 + exp{xT
i β + γ

∑

i′∼i I(zi′ = 2)}
(11)

p(zi = 1|z−i) =
1

1 + exp{xT
i β + γ

∑

i′∼i I(zi′ = 2)}
(12)

This form of the conditional distributions corresponds to the model

pasy(z|β, γ) =
exp{Hasy(z|β, γ)}

∑

z
′ exp{Hasy(z′|β, γ)}

(13)

where

Hasy(z|β, γ) =

n
∑

i=1

xT
i βI(zi = 2) + γ

n
∑

i=1

∑

i′
∼i

i′>i

I(zi = zi′ = 2) (14)

By the Hammersley-Clifford theorem, the density in equation (13) is the unique joint distribution corresponding
to the conditional distributions in equation (12).

Parameterization 2 (Symmetric): This parameterization is sometimes referred to as the ±1 parameteriza-
tion. We will now show that for K = 2, the symmetric parameterization is equivalent to the parameterization
used by automultinomial. On the other hand, the formulation given for the automultinomial parameteri-
zation in section 1 is much more cleanly generalized to K > 2 categories.

In the symmetric parameterization, the set of allowed outcomes is taken to be {−1, 1}, and the conditional
probabilities at each site are

p(zi = 1|z−i) =
exp{xT

i β + γ
∑

i′∼i zi′}

exp{−γ
∑

i′∼i zi′} + exp{xT
i β + γ

∑

i′∼i zi′}
(15)

p(zi = −1|z−i) =
exp{−γ

∑

i′∼i zi′}

exp{−γ
∑

i′∼i zi′} + exp{xT
i β + γ

∑

i′∼i zi′}
(16)

Now, as with the asymmetric model, we will map the response set {−1, 1} to {1, 2}. We will identify −1 with
1 and 1 with 2, so that the conditional probabilities become

p(zi = 2|z−i) =
exp

[

xT
i β + γ

∑

i′∼i{I(zi′ = 2) − I(zi′ = 1)}
]

1 + exp
[

xT
i β + γ

∑

i′∼i{I(zi′ = 2) − I(zi′ = 1)}
] (17)

=
exp{xT

i β + γ
∑

i′∼i I(zi′ = 2)}

exp{γ
∑

i′∼i I(zi′ = 1)} + exp{xT
i β + γ

∑

i′∼i I(zi′ = 2)}
(18)

p(zi = 1|z−i) =
exp{γ

∑

i′∼i I(zi′ = 1)}

exp{γ
∑

i′∼i I(zi′ = 1)} + exp{xT
i β + γ

∑

i′∼i I(zi′ = 2)}
(19)

This form of the conditional distributions corresponds to the model

psym(z|β, γ) =
exp{Hsym(z|β, γ)}

∑

z
′ exp{Hsym(z′|β, γ)}

(20)
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Hsym(z|β, γ) =
n

∑

i=1

xT
i βI(zi = 2) + γ

n
∑

i=1

∑

i′
∼i

i′>i

2
∑

k=1

I(zi = zi′ = k) (21)

By the Hammersley-Clifford theorem, the density in equation (20) is the unique joint distribution corresponding
to the conditional distributions in equation (19).

Parameterization 3: the parameterization used in automultinomials: This parameterization is the
parameterization defined in section 2 of this document.

Comparison

Having defined the 3 parameterizations, we will now compare them. Our first conclusion is that when K = 2,
the symmetric (±1 ) parameterization is exactly equivalent to the parameterization used by automultinomial.
This conclusion follows from determining that the energies in equations (1) and (21) are exactly the same, so
that the densities in equation (20) and (3) are exactly the same.

Therefore, from now on we need only compare the automultinomial parameterization and the asymmetric
parameterization. The following statements can be shown:

• When each site has the same number of neighbors, and the covariate matrix X = [x1, x2, ..., xn]T

includes an intercept column, then the asymmetric and the parameterization used in automultinomial

are equivalent, in the sense that any joint distribution in the automultinomial parameterization has
an equivalent representation in the asymmetric parameterization. The pseudolikelihoods obtained by
fitting both parameterizations to a dataset will be identical. The coefficients from each parameterization
can be obtained from the other.

• When the number of neighbors at each site is different, and/or the covariate matrix does not include an
intercept column, then the asymmetric and the automultinomial parameterizations will in general not

be equivalent. The automultinomial parameterization is invariant to the choice of reference category,
whereas the asymmetric parameterization will in general not be invariant to the choice of reference
category.

We will now give some examples on simulated data.

#making a square lattice graph and adjacency matrix with toroidal boundary conditions

#every site has 4 neighbors

t1=igraph::make_lattice(c(40,40),circular=TRUE)

a1=igraph::get.adjacency(t1)

#making a square lattice graph and adjacency matrix with free boundary conditions

#sites have 2 neighbors at the corner of the lattice, 3 neighbors on edges of the lattice,

#and 4 neighbors internal to the lattice

t2=igraph::make_lattice(c(40,40),circular=FALSE)

a2=igraph::get.adjacency(t2)

#making the X matrices: X does not have an intercept, but X_intercept has an intercept

X=matrix(rnorm(1600*2),ncol=2)

X_intercept=cbind(rep(1,1600),X)

beta=rnorm(3)

gamma=0.5
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#simulated responses

y=drawSamples(beta=beta,gamma=gamma,X = X_intercept, A=a1,nSamples = 1)

Case 1: same number of neighbors, covariate matrix includes intercept

Here, we see that the pseudolikelihoods match and that coefficients (excepting γ and the intercept) also
match. The intercept and γ from the two models are related by a simple linear transformation.

fitAsymmetric=glm(factor(y)~cbind(X,as.matrix(a1%*%(y-1))),family=binomial())

fitAutomultinomial=MPLE(X=X_intercept,y=factor(y),A = a1,method="asymptotic")

## Starting model fitting

## Model fitting done, starting variance estimation

## Creating asymptotic confidence intervals

#comparing pseudolikelihoods: identical

fitAsymmetric$deviance/-2

## [1] -431.7837

fitAutomultinomial$pseudolikelihood

## [1] -431.7837

#comparing beta: identical

fitAsymmetric$coefficients[2:3]

## cbind(X, as.matrix(a1 %*% (y - 1)))1 cbind(X, as.matrix(a1 %*% (y - 1)))2

## -0.1496811 -0.1364893

fitAutomultinomial$betaHat[2:3]

## [1] -0.1496946 -0.1364924

#comparing intercept and gamma: not identical, but there is a mapping between them

gammaAsymmetric=fitAsymmetric$coefficients[4]

gammaAutomultinomial=fitAutomultinomial$gammaHat

gammaAsymmetric

## cbind(X, as.matrix(a1 %*% (y - 1)))3

## 1.162439

gammaAutomultinomial*2

## [1] 1.162478

interceptAutomultinomial=fitAutomultinomial$betaHat[1]

interceptAsymmetric=fitAsymmetric$coefficients[1]

interceptAsymmetric

## (Intercept)

## -1.671265

interceptAutomultinomial-4*gammaAutomultinomial

## [1] -1.671386

Case 2: different number of neighbors, covariate matrix includes intercept

Here, we see that the pseudolikelihoods and coefficients no longer match between parameterizations. Addi-
tionally, while the automultinomial parameterization is invariant to changes in the reference category, the
asymmetric parameterization is not.
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fitAsymmetric1=glm(factor(y)~cbind(X,as.matrix(a2%*%(y-1))),family=binomial())

fitAutomultinomial1=MPLE(X=X_intercept,y=factor(y),A = a2,method="asymptotic")

## Starting model fitting

## Model fitting done, starting variance estimation

## Creating asymptotic confidence intervals

#refitting with different reference category

y2=as.factor(y)

y2=as.numeric(relevel(y2,ref = "2"))

fitAsymmetric2=glm(factor(y2)~cbind(X,as.matrix(a2%*%(y2-1))),family=binomial())

fitAutomultinomial2=MPLE(X=X_intercept,y=factor(y2),A = a2,method="asymptotic")

## Starting model fitting

## Model fitting done, starting variance estimation

## Creating asymptotic confidence intervals

#comparing pseudolikelihoods: not identical

fitAsymmetric1$deviance/-2

## [1] -444.9057

fitAsymmetric2$deviance/-2

## [1] -435.4322

fitAutomultinomial1$pseudolikelihood

## [1] -438.5099

fitAutomultinomial2$pseudolikelihood

## [1] -438.5099

#comparing beta: not identical

fitAsymmetric1$coefficients[2:3]

## cbind(X, as.matrix(a2 %*% (y - 1)))1 cbind(X, as.matrix(a2 %*% (y - 1)))2

## -0.1425823 -0.1352519

fitAsymmetric2$coefficients[2:3]

## cbind(X, as.matrix(a2 %*% (y2 - 1)))1

## 0.1504164

## cbind(X, as.matrix(a2 %*% (y2 - 1)))2

## 0.1323744

fitAutomultinomial1$betaHat[2:3]

## [1] -0.1475824 -0.1334123

fitAutomultinomial2$betaHat[2:3]

## [1] 0.1475824 0.1334123

#comparing gamma: not identical. Asymmetric parameterization not invariant to

#choice of reference category. Automultinomial parameterization invariant to

#choice of reference category

gammaAsymmetric1=fitAsymmetric1$coefficients[4]

gammaAsymmetric2=fitAsymmetric2$coefficients[4]

gammaAutomultinomial1=fitAutomultinomial1$gammaHat
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gammaAutomultinomial2=fitAutomultinomial2$gammaHat

gammaAsymmetric1

## cbind(X, as.matrix(a2 %*% (y - 1)))3

## 0.9394255

gammaAsymmetric2

## cbind(X, as.matrix(a2 %*% (y2 - 1)))3

## 1.114119

gammaAutomultinomial1

## [1] 0.5378779

gammaAutomultinomial2

## [1] 0.5378779

Case 3: same number of neighbors, covariate matrix does not include intercept

Here, we see that the pseudolikelihoods and coefficients no longer match between parameterizations. Addi-
tionally, while the automultinomial parameterization is invariant to changes in the reference category, the
asymmetric parameterization is not.

fitAsymmetric1=glm(factor(y)~cbind(X,as.matrix(a2%*%(y-1)))-1,family=binomial())

fitAutomultinomial1=MPLE(X=X,y=factor(y),A = a2,method="asymptotic")

## Starting model fitting

## Model fitting done, starting variance estimation

## Creating asymptotic confidence intervals

#refitting with different reference category

y2=as.factor(y)

y2=as.numeric(relevel(y2,ref = "2"))

fitAsymmetric2=glm(factor(y2)~cbind(X,as.matrix(a2%*%(y2-1)))-1,family=binomial())

fitAutomultinomial2=MPLE(X=X,y=factor(y2),A = a2,method="asymptotic")

## Starting model fitting

## Model fitting done, starting variance estimation

## Creating asymptotic confidence intervals

#comparing pseudolikelihoods: not identical

fitAsymmetric1$deviance/-2

## [1] -447.2382

fitAsymmetric2$deviance/-2

## [1] -1034.841

fitAutomultinomial1$pseudolikelihood

## [1] -449.5132

fitAutomultinomial2$pseudolikelihood

## [1] -449.5132

#comparing beta: not identical

fitAsymmetric1$coefficients[1:2]
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## cbind(X, as.matrix(a2 %*% (y - 1)))1 cbind(X, as.matrix(a2 %*% (y - 1)))2

## -0.1414015 -0.1388807

fitAsymmetric2$coefficients[1:2]

## cbind(X, as.matrix(a2 %*% (y2 - 1)))1

## 0.02259219

## cbind(X, as.matrix(a2 %*% (y2 - 1)))2

## 0.06077764

fitAutomultinomial1$betaHat[1:2]

## [1] -0.1492992 -0.1240118

fitAutomultinomial2$betaHat[1:2]

## [1] 0.1492992 0.1240118

#comparing gamma: not identical. Asymmetric parameterization not invariant to

#choice of reference category. Automultinomial parameterization invariant to

#choice of reference category

gammaAsymmetric1=fitAsymmetric1$coefficients[3]

gammaAsymmetric2=fitAsymmetric2$coefficients[3]

gammaAutomultinomial1=fitAutomultinomial1$gammaHat

gammaAutomultinomial2=fitAutomultinomial2$gammaHat

gammaAsymmetric1

## cbind(X, as.matrix(a2 %*% (y - 1)))3

## 0.698996

gammaAsymmetric2

## cbind(X, as.matrix(a2 %*% (y2 - 1)))3

## -1.021502

gammaAutomultinomial1

## [1] 0.7831986

gammaAutomultinomial2

## [1] 0.7831986
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