Nothing
library(babelmixr2)
library(PopED)
##-- Model: One comp first order absorption
## -- Analytic solution for both mutiple and single dosing
f <- function() {
ini({
tV <- 72.8
tKa <- 0.25
tCl <- 3.75
tF <- fix(0.9)
eta.v ~ 0.09
eta.ka ~ 0.09
eta.cl ~0.25^2
prop.sd <- fix(sqrt(0.04))
add.sd <- fix(sqrt(5e-6))
})
model({
V<-tV*exp(eta.v)
KA<-tKa*exp(eta.ka)
CL<-tCl*exp(eta.cl)
Favail <- tF
N <- floor(time/TAU)+1
y <- (DOSE*Favail/V)*(KA/(KA - CL/V)) *
(exp(-CL/V * (time - (N - 1) * TAU)) *
(1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) -
exp(-KA * (time - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))
y ~ prop(prop.sd) + add(add.sd)
})
}
e <- et(list(c(0, 10),
c(0, 10),
c(0, 10),
c(240, 248),
c(240, 248))) %>%
as.data.frame()
# PopED xt equivalent
e$time <- c(1,2,8,240,245)
babel.db <- nlmixr2(f, e, "poped",
popedControl(groupsize=20,
bUseGrouped_xt=TRUE,
a=list(c(DOSE=20,TAU=24),
c(DOSE=40, TAU=24)),
maxa=c(DOSE=200,TAU=24),
mina=c(DOSE=0,TAU=24)))
## create plot of model without variability
plot_model_prediction(babel.db, model_num_points = 300)
## create plot of model with variability
plot_model_prediction(babel.db, IPRED=T, DV=T, separate.groups=T, model_num_points = 300)
## evaluate initial design
## From original
## $rse
## V KA CL d_V d_KA d_CL
## 8.215338 10.090955 4.400304 39.833230 60.089601 27.391518
evaluate_design(babel.db)
## original: > shrinkage(poped.db)
## # A tibble: 9 × 5
## d_V d_KA d_CL type group
## <dbl> <dbl> <dbl> <chr> <chr>
## 1 0.364 0.578 0.184 shrink_var all_groups
## 2 0.364 0.579 0.184 shrink_var grp_1
## 3 0.363 0.577 0.183 shrink_var grp_2
## 4 0.202 0.350 0.0965 shrink_sd all_groups
## 5 0.202 0.351 0.0967 shrink_sd grp_1
## 6 0.202 0.350 0.0963 shrink_sd grp_2
## 7 0.181 0.228 0.107 se all_groups
## 8 0.181 0.228 0.107 se grp_1
## 9 0.181 0.228 0.107 se grp_2
shrinkage(babel.db)
# Optimization of sample times
# Note: The parallel option does not work well with Windows machines at this moment.
# Please set parallel = FALSE if you are working on a Windows machine
output <- poped_optim(babel.db, opt_xt =TRUE, parallel=TRUE)
# Evaluate optimization results
summary(output)
## From original
# V KA CL d_V d_KA d_CL
# 6.281944 7.726279 4.295908 32.416232 49.062880 26.363021
get_rse(output$FIM,output$poped.db)
plot_model_prediction(output$poped.db)
# Optimization of sample times and doses
# Note: The parallel option does not work well with Windows machines at this moment.
# Please set parallel = FALSE if you are working on a Windows machine
output_2 <- poped_optim(output$poped.db, opt_xt =TRUE, opt_a = TRUE, parallel = TRUE)
summary(output_2)
# From original
# V KA CL d_V d_KA d_CL
# 6.252332 7.547072 4.240929 32.205996 47.014629 25.684326
get_rse(output_2$FIM,output_2$poped.db)
plot_model_prediction(output_2$poped.db)
# Optimization of sample times with only integer time points in design space
# faster than continuous optimization in this case
babel.db.discrete <- create.poped.database(babel.db,discrete_xt = list(0:248))
# Note: The parallel option does not work well with Windows machines at this moment.
# Please set parallel = FALSE if you are working on a Windows machine
output_discrete <- poped_optim(babel.db.discrete, opt_xt=T, parallel = TRUE)
summary(output_discrete)
# V KA CL d_V d_KA d_CL
# 6.331614 8.009220 4.297905 32.351741 51.795028 26.386514
get_rse(output_discrete$FIM,output_discrete$poped.db)
plot_model_prediction(output_discrete$poped.db)
# Efficiency of sampling windows
plot_efficiency_of_windows(output_discrete$poped.db, xt_windows=1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.