knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(bayesRecon)
This vignette partially reproduces the results of Probabilistic reconciliation of mixed-type hierarchical time series [@zambon2024mixed], published at UAI 2024 (the 40th Conference on Uncertainty in Artificial Intelligence).
In particular, we replicate the reconciliation of the one-step ahead (h=1) forecasts of one store of the M5 competition [@MAKRIDAKIS20221325]. Sect. 5 of the paper presents the results for 10 stores, each reconciled 14 times using rolling one-step ahead forecasts.
The M5 competition [@MAKRIDAKIS20221325] is about daily time series of sales data referring to 10 different stores. Each store has the same hierarchy: 3049 bottom time series (single items) and 11 upper time series, obtained by aggregating the items by department, product category, and store; see the figure below.
knitr::include_graphics("img/M5store_hier.png")
We reproduce the results of the store "CA_1". The base forecasts (for h=1) of the bottom and upper time series are stored in M5_CA1_basefc
, available as data in the package.
The base forecast are computed using ADAM [@svetunkov2023iets], implemented in the R package smooth [@smooth_pkg].
# Hierarchy composed by 3060 time series: 3049 bottom and 11 upper n_b <- 3049 n_u <- 11 n <- n_b + n_u # Load matrix A A <- M5_CA1_basefc$A # Load base forecasts: base_fc_upper <- M5_CA1_basefc$upper base_fc_bottom <- M5_CA1_basefc$bottom # We will save all the results in the list rec_fc rec_fc <- list( Gauss = list(), Mixed_cond = list(), TD_cond = list() )
We first perform Gaussian reconciliation (Gauss
, @corani2021probabilistic).
It assumes all forecasts to be Gaussian, even though the bottom base forecasts are not Gaussian.
We assume the upper base forecasts to be a multivariate Gaussian and we estimate their covariance matrix from the in-sample residuals. We assume also the bottom base forecasts to be independent Gaussians.
# Parameters of the upper base forecast distributions mu_u <- unlist(lapply(base_fc_upper, "[[", "mu")) # upper means # Compute the (shrinked) covariance matrix of the residuals residuals.upper <- lapply(base_fc_upper, "[[", "residuals") residuals.upper <- t(do.call("rbind", residuals.upper)) Sigma_u <- schaferStrimmer_cov(residuals.upper)$shrink_cov # Parameters of the bottom base forecast distributions mu_b <- c() sd_b <- c() for (fc_b in base_fc_bottom) { pmf <- fc_b$pmf mu_b <- c(mu_b, PMF.get_mean(pmf)) sd_b <- c(sd_b, PMF.get_var(pmf)**0.5) } Sigma_b <- diag(sd_b**2) # Mean and covariance matrix of the base forecasts base_forecasts.mu <- c(mu_u,mu_b) base_forecasts.Sigma <- matrix(0, nrow = n, ncol = n) base_forecasts.Sigma[1:n_u,1:n_u] <- Sigma_u base_forecasts.Sigma[(n_u+1):n,(n_u+1):n] <- Sigma_b
We reconcile using the function reconc_gaussian()
, which takes as input:
A
;base_forecasts.mu
; base_forecasts.Sigma
. The function returns the reconciled mean and covariance for the bottom time series.
# Gaussian reconciliation start <- Sys.time() gauss <- reconc_gaussian(A, base_forecasts.mu, base_forecasts.Sigma) stop <- Sys.time() rec_fc$Gauss <- list(mu_b = gauss$bottom_reconciled_mean, Sigma_b = gauss$bottom_reconciled_covariance, mu_u = A %*% gauss$bottom_reconciled_mean, Sigma_u = A %*% gauss$bottom_reconciled_covariance %*% t(A)) Gauss_time <- as.double(round(difftime(stop, start, units = "secs"), 2)) cat("Time taken by Gaussian reconciliation: ", Gauss_time, "s")
We now reconcile the forecasts using the mixed-conditioning
approach of @zambon2024mixed, Sect. 3.
The algorithm is implemented in the function reconc_MixCond()
. The function takes as input:
A
;fc_bottom_4rec
;fc_upper_4rec
;num_samples
specifies the number of samples used in the internal importance sampling (IS) algorithm. The function returns the reconciled forecasts in the form of probability mass functions for both the upper and bottom time series. The function parameter return_type
can be changed to samples
or all
to obtain the IS samples.
seed <- 1 N_samples_IS <- 5e4 # Base forecasts fc_upper_4rec <- list(mu=mu_u, Sigma=Sigma_u) fc_bottom_4rec <- lapply(base_fc_bottom, "[[", "pmf") # list of PMFs # MixCond reconciliation start <- Sys.time() mix_cond <- reconc_MixCond(A, fc_bottom_4rec, fc_upper_4rec, bottom_in_type = "pmf", num_samples = N_samples_IS, return_type = "pmf", seed = seed) stop <- Sys.time() rec_fc$Mixed_cond <- list( bottom = mix_cond$bottom_reconciled$pmf, upper = mix_cond$upper_reconciled$pmf, ESS = mix_cond$ESS ) MixCond_time <- as.double(round(difftime(stop, start, units = "secs"), 2)) cat("Computational time for Mix-cond reconciliation: ", MixCond_time, "s")
As discussed in @zambon2024mixed, Sect. 3, conditioning with mixed variables performs poorly in high dimensions. This is because the bottom-up distribution, built by assuming the bottom forecasts to be independent, is untenable in high dimensions. Moreover, forecasts for count time series are usually biased and their sum tends to be strongly biased; see @zambon2024mixed, Fig. 3, for a graphical example.
Top down conditioning (TD-cond; see @zambon2024mixed, Sect. 4) is a more reliable approach for reconciling mixed variables in high dimensions.
The algorithm is implemented in the function reconc_TDcond()
; it takes the same arguments as reconc_MixCond()
and returns reconciled forecasts in the same format.
N_samples_TD <- 1e4 # TDcond reconciliation start <- Sys.time() td <- reconc_TDcond(A, fc_bottom_4rec, fc_upper_4rec, bottom_in_type = "pmf", num_samples = N_samples_TD, return_type = "pmf", seed = seed) stop <- Sys.time()
The algorithm TD-cond raises a warning regarding the incoherence between the joint bottom-up and the upper base forecasts. We will see that this warning does not impact the performances of TD-cond.
rec_fc$TD_cond <- list( bottom = td$bottom_reconciled$pmf, upper = td$upper_reconciled$pmf ) TDCond_time <- as.double(round(difftime(stop, start, units = "secs"), 2)) cat("Computational time for TD-cond reconciliation: ", TDCond_time, "s")
The computational time required for the Gaussian reconciliation is r Gauss_time
seconds, Mix-cond requires r MixCond_time
seconds and TD-cond requires r TDCond_time
seconds.
For each time series in the hierarchy, we compute the following scores for each method:
MASE: Mean Absolute Scaled Error
MIS: Mean Interval Score
RPS: Ranked Probability Score
# Parameters for computing the scores alpha <- 0.1 # MIS uses 90% coverage intervals jitt <- 1e-9 # jitter for numerical stability # Save actual values actuals_u <- unlist(lapply(base_fc_upper, "[[", "actual")) actuals_b <- unlist(lapply(base_fc_bottom, "[[", "actual")) actuals <- c(actuals_u, actuals_b) # Scaling factor for computing MASE Q_u <- M5_CA1_basefc$Q_u Q_b <- M5_CA1_basefc$Q_b Q <- c(Q_u, Q_b) # Initialize lists to save the results mase <- list() mis <- list() rps <- list()
The following functions are used for computing the scores:
AE_pmf
: compute the absolute error for a PMF;MIS_pmf
: compute interval score for a PMF;RPS_pmf
: compute RPS for a PMF;MIS_gauss
: compute MIS for a Gaussian distribution. The implementation of these functions is available in the source code of the vignette but not shown here.
# Functions for computing the scores of a PMF AE_pmf <- function(pmf, actual) { return(abs(PMF.get_quantile(pmf,p=0.5) - actual)) } MIS_pmf <- function(pmf, actual, alpha) { u <- PMF.get_quantile(pmf, p=1-(alpha/2)) l <- PMF.get_quantile(pmf, p=alpha/2) return(u - l + (2/alpha)*(l - actual)*(actual < l) + (2/alpha)*(actual - u)*(actual > u) ) } RPS_pmf <- function(pmf, actual) { cdf <- cumsum(pmf) / sum(pmf) M <- length(cdf) # if actual is outside the supp of pmf, add ones to the end of the cdf: if (actual >= M) { cdf <- c(cdf, rep(1, (actual-M+1))) M <- length(cdf) } cdf_act <- (0:(M-1)) >= actual # unit step function in actual crps_ <- sum((cdf - cdf_act)**2) return(crps_) } # Function for computing the MIS of (possibly truncated) Gaussian forecasts MIS_gauss <- function(mus, sds, actuals, alpha, trunc=FALSE) { z <- qnorm(1-(alpha/2)) u <- mus + z * sds l <- mus - z * sds # If it is truncated, set negative quantiles to zero if (trunc) { l[l<0] <- 0 u[u<0] <- 0 } return(u - l + (2/alpha)*(l - actuals)*(actuals < l) + (2/alpha)*(actuals - u)*(actuals > u) ) }
# Compute scores for the base forecasts # Upper mu_u <- unlist(lapply(base_fc_upper, "[[", "mu")) sd_u <- unlist(lapply(base_fc_upper, "[[", "sigma")) mase$base[1:n_u] <- abs(mu_u - actuals_u) / Q_u mis$base[1:n_u] <- MIS_gauss(mu_u, sd_u, actuals_u, alpha) rps$base[1:n_u] <- scoringRules::crps(actuals_u, "norm", mean=mu_u, sd=sd_u) # Bottom pmfs = lapply(base_fc_bottom, "[[", "pmf") mase$base[(n_u+1):n] <- mapply(AE_pmf, pmfs, actuals_b) / Q_b mis$base[(n_u+1):n] <- mapply(MIS_pmf, pmfs, actuals_b, MoreArgs = list(alpha=alpha)) rps$base[(n_u+1):n] <- mapply(RPS_pmf, pmfs, actuals_b) # Compute scores for Gauss reconciliation mu <- c(rec_fc$Gauss$mu_u, rec_fc$Gauss$mu_b) sd <- c(diag(rec_fc$Gauss$Sigma_u), diag(rec_fc$Gauss$Sigma_b))**0.5 sd <- sd + jitt mase$Gauss <- abs(mu - actuals) / Q mis$Gauss <- MIS_gauss(mu, sd, actuals, alpha) rps$Gauss <- scoringRules::crps(actuals, "norm", mean=mu, sd=sd) # Compute scores for Mix-cond reconciliation pmfs <- c(rec_fc$Mixed_cond$upper, rec_fc$Mixed_cond$bottom) mase$MixCond <- mapply(AE_pmf, pmfs, actuals) / Q mis$MixCond <- mapply(MIS_pmf, pmfs, actuals, MoreArgs = list(alpha=alpha)) rps$MixCond <- mapply(RPS_pmf, pmfs, actuals) # Compute scores for TD-cond reconciliation pmfs <- c(rec_fc$TD_cond$upper, rec_fc$TD_cond$bottom) mase$TDcond <- mapply(AE_pmf, pmfs, actuals) / Q mis$TDcond <- mapply(MIS_pmf, pmfs, actuals, MoreArgs = list(alpha=alpha)) rps$TDcond <- mapply(RPS_pmf, pmfs, actuals)
We report the improvement over the base forecasts using the skill score values and averaging them across experiments. For instance, the skill score of Gauss on RPS is:
$$ \text{Skill}_{\%}\,(\text{RPS, }Gauss) = 100 \cdot \frac{\text{RPS}(base) - \text{RPS}(Gauss)} {(\text{RPS}(base) + \text{RPS}(Gauss))/2}$$
This formula is implemented in the function skill.score
, available in the source code of the vignette but not shown here.
# Function for computing the skill score skill.score <- function(ref, met) { s <- (2 * (ref - met) / (ref + met)) * 100 s[is.na(s)] <- 0 # if both numerator and denominator are 0, set skill score to 0 return(s) }
scores <- list( mase = mase, mis = mis, rps = rps ) scores_ = names(scores) ref_met <- "base" methods_ <- c("Gauss", "MixCond", "TDcond") # For each score and method we compute the skill score with respect to the base forecasts skill_scores <- list() for (s in scores_) { skill_scores[[s]] <- list() for (met in methods_) { skill_scores[[s]][["upper"]][[met]] <- skill.score(scores[[s]][[ref_met]][1:n_u], scores[[s]][[met]][1:n_u]) skill_scores[[s]][["bottom"]][[met]] <- skill.score(scores[[s]][[ref_met]][(n_u+1):n], scores[[s]][[met]][(n_u+1):n]) } }
We report in the tables below the mean values for each skill score.
mean_skill_scores <- list() for (s in scores_) { mean_skill_scores[[s]] <- rbind(data.frame(lapply(skill_scores[[s]][["upper"]], mean)), data.frame(lapply(skill_scores[[s]][["bottom"]], mean)) ) rownames(mean_skill_scores[[s]]) <- c("upper","bottom") }
knitr::kable(mean_skill_scores$mase,digits = 2,caption = "Mean skill score on MASE.",align = 'lccc')
The mean MASE skill score is positive only for the TD-cond reconciliation. Both Mix-cond and Gauss achieve scores lower than the base forecasts, even if Mix-cond degrades less the base forecasts compared to Gauss.
knitr::kable(mean_skill_scores$mis,digits = 2,caption = "Mean skill score on MIS.")
The mean MIS score of TD-cond is slightly above that of the base forecasts. Mix-cond achieves slightly higher scores than the base forecasts only on the bottom variables. Gauss strongly degrades the base forecasts according to this metric.
knitr::kable(mean_skill_scores$rps,digits = 2,caption = "Mean skill score on RPS.")
The mean RPS skill score for TD-cond is positive for both upper and bottom time series. Mix-cond slightly improves the base forecasts on the bottom variables, however it degrades the upper base forecasts. Gauss strongly degrades both upper and bottom base forecasts.
Finally, we show the boxplots of the skill scores for each method divided in upper and bottom levels.
custom_colors <- c("#a8a8e4", "#a9c7e4", "#aae4df") # Boxplots of MASE skill scores par(mfrow = c(2, 1)) boxplot(skill_scores$mase$upper, main = "MASE upper time series", col = custom_colors, ylim = c(-80,80)) abline(h=0,lty=3) boxplot(skill_scores$mase$bottom, main = "MASE bottom time series", col = custom_colors, ylim = c(-200,200)) abline(h=0,lty=3)
par(mfrow = c(1, 1))
Both Mix-cond and TD-cond do not improve the bottom MASE over the base forecasts (boxplot flattened on the value zero), however TD-cond provides a slight improvement over the upper base forecasts (boxplot over the zero line).
# Boxplots of MIS skill scores par(mfrow = c(2, 1)) boxplot(skill_scores$mis$upper, main = "MIS upper time series", col = custom_colors, ylim = c(-150,150)) abline(h=0,lty=3) boxplot(skill_scores$mis$bottom, main = "MIS bottom time series", col = custom_colors, ylim = c(-200,200)) abline(h=0,lty=3)
par(mfrow = c(1, 1))
Both Mix-cond and TD-cond do not improve nor degrade the bottom base forecasts in MIS score as shown by the small boxplots centered around zero. On the upper variables instead only TD-cond does not degrade the MIS score of the base forecasts.
# Boxplots of RPS skill scores par(mfrow = c(2,1)) boxplot(skill_scores$rps$upper, main = "RPS upper time series", col = custom_colors, ylim = c(-80,80)) abline(h=0,lty=3) boxplot(skill_scores$rps$bottom, main = "RPS bottom time series", col = custom_colors, ylim = c(-200,200)) abline(h=0,lty=3)
par(mfrow = c(1, 1))
According to RPS, TD-cond does not degrade the bottom base forecasts and improves the upper base forecasts. On the other hand both Gauss and Mix-cond strongly degrade the upper base forecasts.
The full experiment described in [@zambon2024mixed] can be reproduced by using the code available here.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.