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1 Introduction

Data in the form of a contingency table arise when individuals are cross classified according to a
finite number of criteria. Log-linear modeling (see e.g., [1], [4], or [3]) is a popular and effective
methodology for analyzing such data enabling the practitioner to make inferences about dependen-
cies between the various criteria. For hierarchical log-linear models, the interactions between the
criteria can be represented in the form of a graph; the vertices represent the criteria and the pres-
ence or absence of an edge between two criteria indicates whether or not the two are conditionally
independent [11]. This kind of graphical summary greatly facilitates the interpretation of a given
model.

For log-linear analysis, we can use the conjugate prior of [14] to work in the Bayesian paradigm.
With this prior, the MC3 algorithm of [13] allows for exploration of the space of models to try to find
those with the highest posterior probability. Once top models have been identified, a block Gibbs
sampler can be constructed to sample from the posterior distribution and to estimate parameters
of interest. Our aim in this paper, is to introduce the bayesloglin R package [17] to carry out these
tasks.

The outline of this paper is as follows: In section 2, we develop the notation for hierarchical
log-linear models which is based on [12]. In section 3, we give the conjugate prior for hierarchical
models under Poisson sampling. In section 4, we describe the MC3 algorithm for searching the
spaces of hierarchical, graphical, and decomposable models. Section 5 deals with Gibbs sampling
and section 6 gives some exact results for the normalizing constant and the mean and variance of the
log-linear parameters for decomposable models. In section 7 we illustrate the use of the bayesloglin
package for analyzing the often studied Czech autoworkers data from [9].

2 Preliminaries

The notation in this section is adapted from [12] with some minor changes to move from multinomial
to Poisson sampling. Let V be a finite set of indices representing |V | criteria. We assume that the
criterion labeled by v ∈ V can take values in a finite set Iv. The resulting counts are gathered in a
contingency table such that

I =
∏
v∈V

Iv
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is the set of cells i = (iv, v ∈ V ). The vector of cell counts is denoted n = (n(i), i ∈ I) with
corresponding mean m(i) = E(n) = (m(i), i ∈ I). For D ⊂ V,

ID =
∏
v∈D

Iv

is the set of cells iD = (iv, v ∈ D) in the D-marginal table. The marginal counts are n(iD) =∑
j:jD=iD

n(j) with m(iD) = E (n(iD)).
Let D be a family of subsets of V such that D ∈ D and D1 ⊂ D implies that D1 ∈ D. We will

assume that ∪D∈DD = V . The hierarchical log-linear model generated by D is

logm(i) =
∑
D∈D

λD(i)

where m(i) is assumed positive and λD(i) is a real valued function that depends on i only through
iD.

We now select a select a special element in each Iv. For convenience, we denote it 0. We also
denote 0 in i the cell with all its components equal to 0. The choice of special element 0 in each Iv
is arbitrary. If i ∈ I, the support of i is the subset of V defined as S(i) = {v ∈ V, iv 6= 0}. We let
J = {j ∈ I, S(j) ∈ D} and define the notation j / i for i ∈ I and j ∈ J to mean that jS(j) = iS(j).
By convention, we say that 0 / i for any i ∈ I. For any a ∈ D, we also define the sub-model
Ja = {j ∈ J : S(j) ⊆ a}.

Let (ej, j ∈ J) be the canonical basis of RJ . For all i ∈ I, we define fi ∈ RJ by

fi =
∑
j∈J,j/i

ej.

The baseline constrained hierarchical log-linear model generated by D has the unique representation

logm(i) =
∑
j∈J :j/i

θj = 〈fi, θ〉

for i ∈ I and θ = (θj, j ∈ J) ∈ RJ . In matrix notation, we have

logm = Xθ

where X is an I × J design matrix of full column rank with rows {fi, i ∈ I}. It is worth noting
that X is a binary 0/1 matrix with a first column that is all 1’s.

3 Prior distribution under Poisson sampling

We assume that the components of n are independent and follow a Poisson distribution. The
sufficient statistic t = XTn has a probability distribution in the natural exponential family

f(t) = exp

(
〈θ, t〉 −

∑
i∈I

exp (〈fi, θ〉)

)
ν (dt)

with respect to a discrete measure ν that has convex support

Cp =

{∑
i∈I

y(i)fi, y(i) ≥ 0, i ∈ I

}
= cone {fi, i ∈ I}

2



i.e. the convex cone generated by the rows of the design matrix X. The Diaconis and Ylvisaker [7]
conjugate prior with respect to the Lebesgue measure for the log-linear parameters is

f(θ) = I(r, α)−1 exp

(
α 〈r, θ〉 − α

∑
i∈I

exp 〈fi, θ〉

)
where

I(r, α) =

∫
θ∈RJ

exp

(
α 〈r, θ〉 − α

∑
i∈I

exp 〈fi, θ〉

)
dθ

and is proper when α > 0 and r = XTy for some y > 0 i.e. r is in the relative interior of Cp. The
Bayes factor for comparing two models J1 and J2 is

B12 =
P (t|J1)

P (t|J2)
=
I1

(
t+αr
1+α

, 1 + α
)
/I1(r, α)

I2

(
t+αr
1+α

, 1 + α
)
/I2 (r, α)

4 The MC3 algorithm for model selection

The Bayesian paradigm to model selection involves choosing models with high posterior probability
from a set M of competing models. We associate with each model J ∈ M a neighbourhood
nbd (J) ⊂ M. The MC3 algorithm proposed by [13] constructs an irreducible Markov chain with
state space M and and equillibrium distribution {p(J |n) : J ∈M} where P (J |t) is the posterior
probability of J . We assume that all models are apriori equally likely; hence P (J |t) is proportional
to the marginal likelihood P (t|J) = I (t+ r, α + 1) /I(r, α).

If the chain is in state J at we draw a candidate model J ′ from a uniform distribution on nbd(J).
The chain moves to J ′ with probability

min

{
1,
P (t|J) /#nbd(J)

P (t|J ′)/#nbd(J ′)

}
where #nbd(J) denotes the number of neighbours of J . Otherwise the chain does not move. The
evaluation of the marginal likelihoods and the specification of model neighbourhoods is done with
respect to the particular properties of the set of candidate models considered.

1. Hierarchical log-linear models. We calculate the marginal likelihood through the Laplace
approximation to the normalizing constants for the prior and posterior distribution of the
log-linear model parameters. The neighbourhood of a hierarchical model J consists of the
hierarchical models obtained from J by adding one of its dual generators (i.e. minimal terms
not present in the model) or deleting one of its generators (i.e. maximal terms present in the
model). For details see [9] and [6].

2. Graphical log-linear models. We evaluate the marginal likelihood using the Laplace ap-
proximation to the normalizing constants as we do in the hierarchical case. The neighbourhood
of a graphical model with corresponding graph G consists of those models whose independence
graphs are obtained from G by adding or removing one edge.

3. Decomposable log-linear models. In this case, the marginal likelihood can be obtained
explicitly. See Section 6 for the formula. The neighbourhood of a decomposable model with
corresponding graph G consists of those models whose independence graphs are decomposable
and are obtained by adding or deleting one edge from G.
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5 Gibbs sampling

Our aim in this section is to develop a blocked Gibbs sampler to sample from the posterior distri-
bution and to estimate parameters of interest. We begin by partitioning the cells and the prior into
blocks. For a ∈ D we define the sets Bia = {j ∈ I : ja = ia} for ia ∈ Ia. These sets are disjoint and
partition I. Define the vectors χia , ia ∈ Ia with

χia(i) =

{
1 i ∈ Bia

0 otherwise

and the matrix χ with columns xia(i). We can then write: fi = f(ia,ica) = f(ia,0) + f(0,ica) and
θ = (θa, θac) where θa = (θj : S(j) ⊆ a) and θac = (θj : S(j) 6⊂ a).

The marginal counts m(ia), ia ∈ Ia follow a log-linear model with

m (ia) =
∑
i∈Bia

exp (〈fi, θ〉)

= exp
(〈
f(ia,0), θ

〉) ∑
i∈Bia

exp
(〈
f(0,iac ), θ

〉)
and, taking logs,

logm (ia) =
∑
i∈Bia

〈
f(ia,0), θ

〉
+ log

∑
i∈Bia

exp
(〈
f(0,iac ), θ

〉)
Let ma = (m(ia), ia ∈ Ia) and partition the matrix X such that X = [Xa, Xā] where Xa is a matrix
made up of those columns of X corresponding to j such that S(j) ⊆ a and Xā is a matrix with all
the other columns. Then, in matrix notation,

logma =

(
χTXa

|I\Ia|

)
θa + log

(
χT exp (Xāθā)

)
Returning to the prior, parametrized temporarily in terms of m, we can partition f as

f(m|J) ∝ exp

(
α 〈y, logm〉 − α

∑
i∈I

m(i)

)

=

∏
ia∈Ia

∏
i∈Bia

(
m(i)

m (ia)

)αy(i)


{∏
ia∈Ia

m (ia)
αy(ia) exp (−αm (ia))

}
= f (mā) f (ma|mā)

and we see that f (ma|mā) is the product of independent Gamma (1 + αy (ia) , 1/α) , ia ∈ Ia distri-
butions. Since it is easy to generate from f (ma|mā) for each a ∈ D, a blocked Gibbs sampler [10] is
feasible to sample from f(θ). Following [8], we begin by choosing an arbitrary initial value of θ(0).
For a given value of θ(k), we update as follows:

1. Generate independent m (ia) ∼ Gamma (αy (ia) , 1/α) random variables for all a ∈ D and
ia ∈ Ia.
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2. For each a ∈ D, in any arbitrary order set,

θ(k)
a =

(
χTXa

|I\Ia|

)−1 (
log (ma)− log

(
xT exp (Xāθā)

))
using the most recent value of θā available.

After a suitable burn-in, the resulting samples come from f(θ). We note that the above Gibbs
sampler is also known as the Bayesian Iterative Proportional Fitting algorithm. See [8],[2],[15],
and[16] for more details.

6 Some exact results for decomposable models

For decomposable models, some exact results exist for the normalizing constant and the mean and
variance of the log-linear parameters. Let us reconsider the prior defined in section 3 as

f(θ) = I(r, α)−1 exp

(
α 〈r, θ〉 − α

∑
i∈I

exp 〈fi, θ〉

)
with

I(r, α) =

∫
θ∈RJ

exp

(
α 〈r, θ〉 − α

∑
i∈I

exp 〈fi, θ〉

)
dθ

where α > 0 and r = (rj, j ∈ J) ∈ ri (Cp). Then

E (αθ) =
∂ log I(r, α)

∂r

and

Cov(αθ) =
∂2 log I(r, α)

∂r2

In the case of log-linear models wherem is Markov with respect to a decomposable graphG = (V,E),
with vertex set V and edge set E, an explicit formula exists for I(r, α). Let C denote the set of
cliques and S the set of minimal vertex separators. For a given s ∈ S, let V1, V2, ..., Vp be the
connected components of the subgraph GV \s and q be the number of j = 1, 2, ..., p such that s is
not a clique of S ∪ Vj. Then ν(s) = q − 1 is called the multiplicity of s and

∑
s∈S ν(s) = |C| − 1

[11]. Based on proposition 4.2 of [14], adapted to Poisson sampling, we have

I(r, α) = α−α
∑

i∈I y(i)

∏
c∈C
∏

ic∈Ic Γ (αy(ic))∏
s∈S
∏

is∈Is {Γ (αy(is))}ν(s)

Taking logs and differentiating with respect to r gives

E(θ) = −
d
∑

i∈I y(i)

dr
logα +

∑
c∈C

∑
ic∈Ic

ψ (αy(ic))
dy (ic)

dr
−
∑
s∈C

∑
is∈Is

ν(s)ψ (αy(is))
dy (is)

dr

where ψ is the digamma function. Note that the derivatives in the right hand side of E(θ) are
vectors. In particular, d

∑
i∈I y(i)/dr = (1, 0, ..., 0)T since r0 =

∑
i∈I y(i). Differentiating once

more we have

Cov (θ) =
∑
c∈C

∑
ic∈Ic

ψ1 (αy(ic))
dy (ic)

dr

dy (ic)

dr

T

−
∑
s∈S

∑
is∈Is

ν(s)ψ1 (αy(is))
dy (is)

dr

dy (is)

dr

T
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with ψ1 being the trigamma function. We note that for decomposable models, the subgraphs
Gc, c ∈ C and Gs, s ∈ S are all complete and we have a saturated model on those subgraphs. For
a ∈ C ∪ S, it is easy to find d (y(ia)) /dr, ia ∈ Ia by inverting the design matrix for the model Ja.

7 The bayesloglin R package.

The bayesloglin package includes the 26 Czech autoworkers data from [9]. This cross-classification of
1841 men gives six potential risk-factors for coronary thrombosis: (a) smoking, (b) strenuous mental
work, (c) strenuous physical work, (d) systolic blood pressure, (e) ratio of beta and alpha lipoproteins
and (f) family anamnesis of coronary heart disease. Currently, bayesloglin only allows choice of the
hyperparameter α and sets y(i) = 1/|I| for each i ∈ I. Consequently, r0 =

∑
i∈I y(i) = 1. The

required R code to search for the top decomposable, graphical, and hierarchical log-linear models
is:

> data(czech)

> s1 <- MC3 (init = NULL, alpha = 1, iterations = 5000, replicates = 1,

data = czech, mode = "Decomposable")

> s2 <- MC3 (init = NULL, alpha = 1, iterations = 5000, replicates = 1,

data = czech, mode = "Graphical")

> s3 <- MC3 (init = NULL, alpha = 1, iterations = 5000, replicates = 1,

data = czech, mode = "Hierarchical")

The top models in terms of posterior probability are

> head(s1, n = 5)

formula logPostProb

1 [a,c,e][b,c][d,e][f] 5271.975

2 [a,c,e][a,d,e][b,c][f] 5271.103

3 [a,c,e][a,d][b,c][f] 5271.077

4 [a,c][b,c][b,e][d,e][f] 5270.549

5 [a,c,e][b,c][b,f][d,e] 5270.394

> head(s2, n = 5)

formula logPostProb

1 [a,c][a,d,e][b,c][b,e][f] 7122.398

2 [a,c][a,e][b,c][b,e][d,e][f] 7121.580

3 [a,c][a,d,e][b,c][b,e][b,f] 7121.374

4 [a,c][a,d][a,e][b,c][b,e][f] 7120.683

5 [a,c][a,e][b,c][b,e][b,f][d,e] 7120.556

> head(s3, n = 4)

formula logPostProb

1 [a,c][a,d][a,e][b,c][c,e][d,e][f] 7125.171

2 [a,c][a,d][a,e][b,c][b,e][d,e][f] 7124.704

3 [a,c][a,d][a,e][b,c][b,e][c,e][d,e][f] 7124.229

4 [a,c][a,d][a,e][b,c][b,f][c,e][d,e] 7124.147
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These results match those obtained by the same methods in [14]. Consider the top hierarchical
model [a, c][a, d][a, e][b, c][c, e][d, e][f ]. We can use the function gibbsSampler to sample from the
posterior and obtain estimates of the mean and variances of the log-linear parameters. We use a
burn-in of 5000 iterations.

> formula <- freq ~ a*c + a*d + a*e + b*c + c*e + d*e + f

> s <- gibbsSampler (formula, alpha = 1, data = czech,

nSamples = 15000, verbose = T)

> postMean <- colSums(s[5000:15000,]) / 10000

> postCov <- cov(s[5000:15000,])

> postVar <- diag(postCov)

The values of postMean and postVar are

> postMean

(Intercept) a1 c1 b1 d1 e1

3.0915633 -0.4150080 1.0199107 0.9010453 -0.2877865 -0.4890538

f1 a1:c1 b1:c1 a1:d1 a1:e1 c1:e1

-1.8057132 0.5409632 -2.8017859 -0.3542662 0.4871123 -0.4479492

d1:e1

0.3784125

> postVar

(Intercept) a1 c1 b1 d1 e1

0.006921940 0.008033988 0.008498167 0.005310040 0.005564232 0.008184625

f1 a1:c1 b1:c1 a1:d1 a1:e1 c1:e1

0.004433024 0.009185728 0.015035403 0.009219168 0.009280780 0.009133959

d1:e1

0.009298324

We now consider the decomposable model [a, c, e][b, c][d, e][f ]. The findPostMean and findPostCov

functions can compute the posterior mean and covariance matrix, which for decomposable models,
is available in closed form. In R we have

> formula <- freq ~ a*c*e + b*c + d*e + f

> postMean <- findPostMean (formula, alpha = 1, data = czech)

> postCov <- findPostCov(formula, alpha = 1, data = czech)

> postVar <- diag(postCov)

> postMean

(Intercept) b1 c1 a1 e1 d1

3.1561271 0.9002899 1.0149757 -0.5565110 -0.4621862 -0.4387784

f1 b1:c1 a1:c1 a1:e1 c1:e1 d1:e1

-1.8051306 -2.8012942 0.5494842 0.4645452 -0.4380842 0.3412027

a1:c1:e1

-0.0194745
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> postVar

(Intercept) b1 c1 a1 e1 d1

0.006563014 0.005252849 0.009530313 0.008807288 0.009375078 0.003956279

f1 b1:c1 a1:c1 a1:e1 c1:e1 d1:e1

0.004478660 0.014932109 0.015834157 0.018016838 0.018531263 0.009099995

a1:c1:e1

0.037264994

The reader can verify that the Gibbs sampler gives a close approximation to the exact values for
this model.
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