
Vignette for the package bdpopt

Sebastian Jobjörnsson

March 30, 2016

Contents

1 Introduction 1

2 Implementation overview 2
2.1 Single stage decision problems . 2

2.1.1 JAGS model specified by user 2
2.1.2 Simple normal model for phase III sample size optimisation 4
2.1.3 Normal model with Emax dose responses for phase III

dose and sample size optimisation 5
2.2 Sequential decision problems . 7

2.2.1 Full model specification by the user 7
2.2.2 Group sequential normal model 9

3 General workflow 10
3.1 Single stage decision problems . 10

3.1.1 JAGS model specified by user 10
3.1.2 Simple normal model for phase III sample size optimisation 11
3.1.3 Normal model with Emax dose responses for phase III

dose and sample size optimisation 11
3.2 Sequential decision problems . 12

3.2.1 Full model specification by the user 12
3.2.2 Group sequential normal model 13

4 Examples 13
4.1 Simple normal model for phase III sample size optimisation . . . 13
4.2 Normal model with Emax dose responses for phase III dose and

sample size optimisation . 14
4.3 Group sequential normal model 14

1 Introduction

The R package described in this document has been implemented as a tool
for studying certain types of decision problems that occur within the field of
clinical trial optimisation. The work has been done within the framework of
the EU project IDEAL (Integrated DEsign and AnaLysis of clinical trials in
small population groups, see [1]). The project consists of several work packages
focussed on different aspects of the statistical analysis of clinical trials for small
population groups.

The objective of the R package is to provide a collection of functions that
may be applied to the problem of optimising confirmatory clinical trials with
respect to dose and sample size. Broadly, the functionality provided may be
divided into two different levels. The core functions of the package may be used
to solve Bayesian decision problems not necesserily associated with clinical trial
decision making. On top of these core functions the package also provides a
simplified interface to a few specific classes of clinical trial decision problems.

The Bayesian decision problems handled by bdpopt may be specified in
terms of three components: a decision space, a probabilistic model and a utility
function. The decision space will be denoted by D and represents the set of
possible decisions available to the decision maker, each of which is assumed to
be encoded by a vector of numbers d. The goal of the decision maker when
planning is find a decision d∗ ∈ D which is optimal in some sense, given the
information available and a preference ranking for the different possible out-
comes of a decision. Formally, it will be assumed that the available information
consists of an observed value y for a vector of numbers Y and a specification
of the conditional distribution (given Y = y and a decision d) for a potential
future observation x of a vector of numbers X. This conditional distribution
will be denoted by π(x | y, d)1. To complete the description of the decision prob-
lem, a decision maker also needs to specify the utility assigned to each possible
decision-outcome pair (X = x, d) given Y = y. This specification is encoded in
terms of a utility function, which will be denoted by u(x, y, d).

The major focus of the package is to provide support for solving Bayesian
decision problems where the objective is to find the optimal decision d∗ given
that Y = y has been observed, i.e., to solve problems of the form

d∗ = arg max
d∈D

f(d), where

f(d) = E [u(X,Y, d) | Y = y, d] =

∫
ΩX

u(x, y, d)π(x | y, d) dx. (1)

Here, ΩX denotes the sample space for the random variable X. For a classic
introduction to the area of applied decision theory, see the book [2] by Raiffa
and Schlaifer.

There is a broad spectrum of different approaches one may take when trying
to solve these types of optimisation problems. In the case that both the pref-
erences and beliefs of the decision maker may be adequately described by very
simple functions u and π, it might be possible to evaluate the integral in Eq.

1In this document, π is used as general symbol for distributions. The idea behind this
notation is that the arguments of π indicates the set of random variables that we are concerned
with in any particular instance.

1

(1) analytically. The problem would then be reduced to performing a (typically
non-linear) optimisation. However, it is often the case that the integrand is too
complicated to allow for an analytical integration. It is then necessary to turn
to some form of numerical computation. Two widely employed methods are nu-
merical quadrature and Monte Carlo integration. Quadrature methods have the
advantage over Monte Carlo integration in that they often lead to more exact
results, since there is no stochasticity involved in the computation. Moreover,
deterministic error bounds are obtainable for certain methods. On the other
hand, quadrature methods tend to be computationally very expensive for all
but the smallest number of dimensions of the space ΩX . For a recent review of
algorithms for Bayesian optimal design describing these and other approches,
see [3] by Ryan et al.

This package uses Monte Carlo integration to evaluate the expected value in
Eq. (1). There are two main reasons for taking this approach. Firstly, the aim
has been to allow for some generality in the specification of the probabilistic
model and utility model for the decision maker. In particular, it should be
possible to specify models where ΩX does not necessarily need to be of a small
dimension. Secondly, the widely used JAGS software package (see [4]) already
provides functionality for MCMC sampling from a wide class of models. The
main strategy of this package is therefore to use JAGS to obtain a sample
(Xi)

n
i=1 from the conditional distribution of X given Y = y and d and estimate

f(d) with the sample mean

f̂(d) =
1

n

n∑
i=1

u(Xi, y, d).

2 Implementation overview

2.1 Single stage decision problems

There are three different ways in bdpopt to optimise the expected utility for a
single stage decision problem using the MCMC simulation functionality provided
by JAGS, each of which is described in the following subsections. The first
approach is the most flexible, but requires that the user specifies a probabilistic
model by means of a correctly written model file in the BUGS language. A
partial JAGS data file must also be written, specifying the values of all model
parameters that are not part of the decision set. The utility function may be any
arbitrary R function (for which formals may be used to extract the argument
names), but the argument names must constitute a subset of the names used in
the BUGS model and data files. For the other two approaches, the probabilistic
model has been fixed to specific BUGS files included in the package. The utility
functions also have a fixed form, but allows for some flexibility since it is possible
for the user to specify certain parameter values during the creation of the models.

2.1.1 JAGS model specified by user

The JAGS software may be called from R using the interface package rjags.
The user specifies a probabilistic model in a model file, which is written in the
BUGS language. In our setting, this model file defines a joint distribution for
(X,Y) given d. The user may condition on a specific value y of Y and decision

2

d by specifying their fixed values in a so called data file (or, alternatively, using
a list data structure in R). JAGS is then used to draw MCMC samples from
the posterior distribution of X given Y = y and d. Y = y is fixed during the
optimisation, but since d is varied over D and the distribution of X may depend
on d a new JAGS model is set up and samples drawn independently for each
value of d. The Monte Carlo integration is done for each point in a grid G, which
is defined as a subset of D. This will lead to the sample mean approximation
f̂(d) of the true expected utility f(d) for d ∈ G.

Now suppose that the samples (Xi)
n
i=1 drawn from π(x | y, d) are indepen-

dent and identically distributed random variables. Under appropriate condi-
tions on π(x | y, d) and u(x, y, d), the Central Limit Theorem then implies that

(f̂(d))d∈G is a collection of independent and approximately normally distributed
random variables,

f̂(d) ∼ N

(
f(d),

Var(u(X,Y, d) | Y = y, d)

n

)
, (2)

with n being the number of random draws in the simulation. However, the
MCMC samples produced by JAGS are not independent (there exists autocor-
relation in the chain). This implies that the formula in Eq. (2) is not directly

applicable. General ergodic results from MCMC theory implies that f̂(d) con-
verges (almost surely) to f(d) as n → ∞, but the autocorrelation of the chain
means that the method used to estimate the variance of the sample mean must
be modified. bdpopt uses the function spectrum0.ar in the coda package to
obtain such an estimate.

The information that (f̂(d))d∈G provides about the true form of f(d) in-
creases with the size of the grid and the sample size n used for the sample
means. Increasing the total number of grid points g = |G| will decrease the
risk of not including a grid point close to the true value of d∗. Increasing n
will lead to a better precision for the estimates, which decreases the risk that
a suboptimal estimate of d∗ is found because of the stochastic variation of the
simulations. The computation time increases linearly with g and n, at least for
moderately large values.

In many cases the expected utility surface is very flat close to the optimal
d∗. This will make the stochastic variation of the estimates f̂(d) especially
problematic. There are many suggestions in the literature on how to alleviate
this problem. The approach chosen by the author follows the one described by
Müller and Parmigiani in [5]. A smooth regression function r(d) is fitted to the

Monte Carlo samples (f̂(d))d∈G. This is done in bdpopt using either Gaussian
process regression (GPR) (see, e.g., the book [6] by Rasmussen and Williams for
an introduction to GPR) or local polynomial regression, via the function loess

in the stats package.
GPR is a nonparametric method, which allows for flexibility when fitting

the regression function. This is an important property, since a goal with the
bdpopt package has been to allow the user to have the freedom to specify
utility functions of an arbitrary form. However, the approach certainly has its
limitations. Package testing by the author indicates that the GPR regression
step works adequately only when the true function f(d) is sufficiently smooth
and there are not great differences in the rate of change for different regions of the
domain D. Another thing for the user to keep in mind is that the computational

3

complexity of fitting the GPR model to the data, and also the complexity of the
resulting regression function, increases with the number of grid points g.

By definition, a Gaussion process is a collection of random variables for which
any finite subcollection have a joint Gaussian distribution. Such a process is
completely specified by its mean and covariance functions. When the GPR is
performed in bdpopt, the object that is modelled as a Gaussian process is the
collection of sample means (f̂(d))d∈D. The mean and covariance functions for
this process are defined as

m(d) = E
[
f̂(d)

]
, c(d, d′) = Cov

(
f̂(d), f̂(d′)

)
. (3)

When the regression is performed by the function fit.gpr, it is done under
the assumption that m(d) = 02. Denoting the components of a vector decision
d of dimension q by d1, . . . , dq, the covariance function is assumed to be of the
squared exponential type

c(d, d′) = σ2
f exp

(
−1

2

q∑
i=1

(
di − d′i
li

)2
)

+ I(d = d′)σ2
d. (4)

The vector (σf , l1, . . . , lq) is referred to as the vector of hyperparameters for the

GPR model. σf sets the overall scale for the values of f̂(d). The parameters
l1, . . . , lq play the roles of characteristic length scales for the different compo-
nents of the vector decision. In general, large values for the length parameters
leads to a large correlation between distant decisions and a smoother regression
fit than for small values. σ2

d depends on the decision d and is included in the
covariance via the indicator factor only if d′ = d. It may be interpreted as the
variance of an error term that is assumed to be part of the observation f̂(d). The
variance σ2

d is estimated using the function spectrum0.ar in the coda pack-
age. The regression performed by the function fit.gpr consists of maximising
the marginal likelihood for the observed values (f̂(d))d∈G with respect to the
hyperparameters.

After the regression function r(d) has been fitted to the data (f̂(d))d∈G, an
approximation of d∗ is found by maximising r(d). This is done by calling the
optim in the stats package. Should the regression fail, the user also has the
option to obtain an estimated d∗ by a direct comparison of the values of f̂(d)
at the grid points. In some cases, it is a good strategy to perform a direct
optimisation over the grid points using a broad and sparse grid as a first step in
order to find a rough estimate of d∗. Provided that f(d) is sufficiently smooth
in the neighbourhood of the rough estimate, a finer grid may then be selected
covering this neighbourhood. A regression and subsequent optimisation may
then be done.

2.1.2 Simple normal model for phase III sample size optimisation

For this model the decision maker is taken to be a sponsor for a phase III clinical
trial. The sponsor is the agent paying for the trial and we will assume it to be a

2If the regression is done over a grid where m(d) is far from 0, then the user may perform
an initial evaluation over the grid and select some appropriate non-zero constant m0 as a
better approximation. Regression may then be performed for the modified utility function
obtained by subtracting m0.

4

pharmaceutical company that performs the clinical trial in order to demonstrate
the efficacy of the new drug for a regulatory authority. The regulatory authority
examines the outcome of the trial and decides if there is enough evidence for
market approval.

The function n.opt provides an interface to a simple model for the expected
gain of a clinical trial sponsor faced with the situation of deciding on the optimal
sample size for a confirmatory phase III trial. The sponsor pays a cost that is
a linear function of the sample size, and obtains a fixed gain if a regulatory
authority decides to approve the treatment for marketing. The decision of the
authority is assumed to be based solely on the frequentist criterion of statistical
significance.

The probabilistic model is defined as follows. There is a single response
variable, X, which may be interpreted as an efficacy or clinical utility3 response.
X is assumed to be normally distributed according to

X | µ ∼ N
(
µ, σ2/n

)
,

where µ is the true, unknown population mean for the response, σ is the popu-
lation standard deviation (assumed known) and n is the sample size. Hence, X
may be interpreted as the sample mean of a sequence of i.i.d. random variables
X1, . . . , Xn such that Xi | µ ∼ N(µ, σ2), i = 1, . . . , n. A conjugate normal
prior with prior mean ν and prior standard deviation τ is assumed for the true
population mean, µ ∼ N

(
ν, τ2

)
, leading to a prior predictive distribution for X

that is normal with mean ν and variance τ2 + σ2/n.
The utility function for this model has the fixed form

u(X,µ, n) = (Ga + Fa(X,µ)) I

(
X√
σ2/n

> zα

)
− (Cf + Csn). (5)

The total gain for the sponsor in case of regulatory approval equals the sum of
Ga and Fa(X,µ). Ga is a constant whereas the value of Fa(X,µ) depends on
the trial outcome X and the true value of the population mean µ. Cf is the
fixed cost of setting up the trial and Cs is the marginal cost per observation.
The level for the one-sided approval test for statistical significance is α and zα is
defined by zα = Φ−1(1−α). The user may specify the values for the parameters
of the model when calling n.opt.

2.1.3 Normal model with Emax dose responses for phase III dose
and sample size optimisation

This model is specified in the BUGS file normal_model_jags_model.R, which
is included with the package bdpopt in the external data folder extdata. The
purpose of this fixed model is to provide an interface for phase III clinical trial
optimisation with respect to dose and sample size given the results from a com-
pleted phase II trial. In the phase II trial, k2 groups of patients have been given
a new treatment, where the dose and sample size for group i are denoted by
d2,i and n2,i, for i = 1, . . . , k2. It is assumed that the results of the phase II

3Clinical utility is a measure that somehow combines the efficacy and safety aspects of a
treatment. For example, a clinical utility response might be constructed as an appropriately
weighted linear combination of an efficacy and safety response.

5

trial may be summarised as one efficacy and one safety response for each patient
included. For each group i, these responses are combined into a sample mean
Y E2,i for the effiacy responses and a sample mean Y S2,i for the safety responses.

The vectors of responses over all groups are denoted by Y E2 and Y S2 .
The true population means µE and µS for the efficacy and safety responses

depend on the dose d and are assumed to follow Emax models,

µE = θ1 + θ2
dθ4

θθ43 + dθ4
, (6)

µS = η1 + η2
dη4

ηη4

3 + dη4
, (7)

where the unknown parameter vectors θ = (θ1, θ2, θ3, θ4) and η = (η1, η2, η3, η4)
determine the shapes of the Emax curves.4 The priors for θ1, θ2, η1 and η2 are
taken to be normal, whereas the priors for θ3, θ4, η3 and η4 are assumed to be
log-normal.

By assumption, given θ, η, the doses d2 = (d2,i)
k2
i=1 and the sample sizes

n2 = (n2,i)
k2
i=1, the efficacy and safety responses are independent for each group

and responses belonging to different groups are also independent. Moreover,
both the efficacy and safety response for each patient are assumed to be normally
distributed, with known sample variances given by σ2

E and σ2
S . It follows that

the conditional joint density over all phase II data may be split into factors
according to

π
(
Y E2 , Y S2 | µE (d2, θ) , µS (d2, η)

)
=

k2∏
i=1

π
(
Y E2,i | µE (d2,i, θ)

)
π
(
Y S2,i | µS (d2,i, η)

)
,

where

Y E2,i | µE (d2,i, θ) ∼ N

(
µE (d2,i, θ) ,

σ2
E

n2,i

)
, i = 1, . . . , k2,

Y S2,i | µS (d2,i, η) ∼ N

(
µS (d2,i, η) ,

σ2
S

n2,i

)
, i = 1, . . . , k2.

In phase III, the decision to be taken is on a dose d3 and a sample size n3. k3

parallel and independent trials are then performed, each of which uses the same
dose and sample size. The expected value of a particular choice is evaluated
with respect to the posterior distribution of θ and η given the phase II data
(i.e., given d2, n2, Y E2 and Y S2). The independence structure and distributional
assumptions for phase III are analogous to those of phase II, giving

π
(
Y E3 , Y S3 | µE (d3, θ) , µS (d3, η)

)
=

k3∏
i=1

π
(
Y E3,i | µE (d3, θ)

)
π
(
Y S3,i | µS (d3, η)

)
,

4The typical names corresponding to the first three component of θ and η are: E0 for θ1
and η1, Emax for θ2 and η2, ED50 for θ3 and η3.

6

with

Y E3,i | µE (d3, θ) ∼ N

(
µE (d3, θ) ,

σ2
E

n3

)
, i = 1, . . . , k3,

Y S3,i | µS (d3, η) ∼ N

(
µS (d3, η) ,

σ2
S

n3

)
, i = 1, . . . , k3.

The utility function for this model has the form

u = GaR− (Cf + Csn3k3), (8)

where Ga is the gain upon regulatory approval, R is an indicator function for
regulatory approval, Cf is a fixed cost of setting up the trials and Cs is the cost
per observation. Ga is defined as

Ga(Y E3 , Y S3 , µE , µS , gE , gS , p) =

p

(
gE
k3

k3∑
i=1

Y E3,i +
gS
k3

k3∑
i=1

Y S3,i

)
+ (1− p) (gEµE + gSµS) . (9)

gE is a constant factor giving the utility per efficacy unit, and gS is a constant
factor giving the utility loss per safety unit (so if safety units are positive, gS
should be negative). p ∈ [0, 1] is a constant that weighs the relative importance
of the responses observed in the trial and the true population means. The
indicator function for approval, R, is defined to be 1 if and only if the sample
size in each trial is at least nmin, a one-sided statistical significance can be shown
independently for efficacy in each trial at the level α and a one-sided statistical
significance can be shown independently for Y IIIS,i −mS in each trial at the level
α. mS may be interpreted as a maximum safety level. This means that R may
be written as

R(Y E3 , Y S3 , n3, nmin, α,mS) =

I (n3 > nmin)

k3∏
i=1

I
(
Y E3,i >

zασE√
n3

) k3∏
i=1

I
(
Y S3,i < mS −

zασS√
n3

)
. (10)

2.2 Sequential decision problems

bdpopt supports two ways to solve sequential decision problems. For the first
and more flexible alternative, the user must specify all the components defining
the sequential problem. The second alternative provides an interface to a very
specific group sequential model with normal responses for which the probabilistic
model, the decisions available at each stage and the form of the utility functions
have already been fixed.

2.2.1 Full model specification by the user

In addition to the one-stage optimisation procedure described in the previous
section, bdpopt also provides some basic functionality for solving certain types
of sequential decision problems, the form of which will now be described.

Let k denote the number of stages in a given decision problem. For i =
1, . . . , k, there is a nonempty set of decisions Di available for selection. It

7

is assumed that each set Di may be partitioned into three disjoint sets, Dc
i ,

Dt
i and Do

i , which will be referred to as the continuation decisions, terminal
decisions and terminal observation decisions for the stage. In each stage i, the
decision maker selects an element di belonging to one of these three types of
decision sets. If di ∈ Dc

i , then the value of a random variable Xi is observed, a
utility value uci (di, Xi) is collected and the process proceeds to the next stage.
If di ∈ Dt

i , no observation is made, a utility value uti(di, θ) is collected and the
decision process is terminated. If di ∈ Do

i , an observation Xi is made, a utility
value uoi (di, Xi, θ) is collected and the decision process is terminated.

In addition to the random variables (Xi)
k
i=1 associated with each stage,

there is also an unknown parameter θ associated with the decision problem.
The information available to the decision maker concerning θ before the first
stage is summarised in terms of a prior distribution π(θ). It is assumed that,
given θ, the realisations of the random variables X1, . . . , Xk are independent.
More precisely, it is assumed that the joint distribution of (X1, . . . , Xk) given θ
and d1, . . . , dk may be split into factors according to

π (X1, . . . , Xk | θ, d1, . . . , dk) =

k∏
i=1

πi (Xi | θ, di) . (11)

Note the stage subscripts attached to the distributions on the right hand side
of Eq. (11), which highlights the possibility that the distributions for the ob-
servations may depend on the stage in addition to the decision taken at that
stage.

The computational strategy used to solve the sequential decision problem
combines backward induction with simulation. In order to make this approach
at all viable for solving problems involving more than just a few stages, the ex-
ponential growth in the computations required to uphold stagewise optimality
when performing the backward induction must be dealt with. To illustrate the
problem, suppose that the decision maker, being at stage i, has made the deci-
sions d1, . . . , di−1 and observed the stage-wise outcomes X1 = x1, . . . , Xi−1 =
xi−1. The task is now to choose di optimally, given that, whatever particular
outcome Xi is observed, the future decisions beyond stage i are chosen opti-
mally. Letting vi

(
(xj)

i
j=1, (dj)

i
j=1

)
be an estimate of the expected utility of

continuing optimally from stage i+ 1 and onwards, the problem to solve is

arg max
di∈Di

∫
ΩXi

vi
(
(xj)

i
j=1, (dj)

i
j=1

)
πi(xi | (xj)i−1

j=1, (dj)
i
j=1) dxi ⇐⇒

arg max
di∈Di

∫∫
ΩXi
×ΩΘ

vi
(
(xj)

i
j=1, (dj)

i
j=1

)
πi(xi | θ, di)π(θ | (xj)i−1

j=1, (dj)
i
j=1) dxi dθ.

The value of the integral in the equation above can be estimated by simulating
first from the posterior distribution of θ given the previous observations and
decisions and then from the conditional distribution of Xi given θ and di. The
computational problem stems from the fact that vi

(
(xj)

i
j=1, (dj)

i
j=1

)
must be

available for all possible histories of observations and decisions. If, say, a com-
mon grid GX is used to save the possible values for the observations, and D is
the same for all stages, then |GX |i|D|i values of vi must be available at stage i.

8

In order to deal with the exponential increase in the computations and mem-
ory required to perform a straightforward backward induction, the bdpopt
package uses the method described by Brockwell and Kadane in [7]. The ma-
jor additional assumption made to make the computations feasible is that the
information regarding the parameter θ provided by the previous observations
x1, . . . , xi and the decisions d1, . . . , di may be completely summarised by means
of a state vector si. It is assumed that si belongs to a space of finite dimension,
S, and that this space is the same for all stages. This implies that the posterior
distribution of θ at each stage may be parameterised in terms of some value in
S. Therefore, the expected utility vi of continuing optimally becomes a function
of si only. The backward induction step at stage i may then be written as

arg max
di∈Di

∫∫
ΩXi
×ΩΘ

vi (si = ti(di, si−1, xi))πi(xi | θ, di)π(θ | si−1) dxi dθ, (12)

where ti denotes a transfer function, taking a decision, a state si−1 at stage i and
an observation xi into a new state si at stage i+ 1. This transfer function may
be viewed as a component of the probabilistic model and must be specified in
an appropriate way by the user. To estimate the integral in Eq. (12), simulation
is done first from the distribution of θ given si−1 and then from the distribution
of Xi given θ and di. Hence, in order to fully specify the probabilistic model
the user must specify the form of the transfer functions (ti)

k−1
i=1 and provide R

functions implementing the simulation from π(θ | s), s ∈ S, and from πi(xi |
θ, di), i = 1, . . . , k, di ∈ Dc

i ∪Do
i .

The backward induction is implemented by computing the optimal expected
utility and corresponding action on a grid GS in S for each stage. This implies
that the total computational effort required is proportional to the product k|GS |.
The time required to perform the computation also grows linearly with the total
number of simulation iterations used when estimating the expected utilities. The
quality of the approximation increases as the volume of the boundary of GS
increases, as the distance between the grid points decreases and as the number
of simulation samples increases.

2.2.2 Group sequential normal model

This model again takes the viewpoint of a clinical trial sponsor aiming for reg-
ulatory approval. The sponsor collects evidence about a treatment in k stages.
At each stage, there are precisely two decisions available. For all but the last
stage, the options are to either continue and take a new sample of group size
n or to stop (abort) the process. To proceed from a stage i the sponsor has to
pay a stage cost covering the expenses required to collect the responses from
n patients and combine them into a stage response Xi for the group. If the
sponsor instead decides to stop, no cost is incurred (but any potential future
gain is lost). The evidence collected in these preliminary stages is not presented
to a regulatory authority deciding on approval, but is only used by the sponsor
to increase its knowledge about the true value θ of the population mean of the
efficacy response for the treatment.

In the last stage, the sponsor may decide to either abort the decision process
or to file an application for approval. It it decides to abort, the net utility of
the last stage is 0. If it decides to file the application, the net utility is taken to

9

be the difference between a gain proportional to θ and a final investment cost.
Hence, the last stage is the only part of the decision process in which the sponsor
may collect a positive contribution to the total utility. This contribution is taken
to be proportional to θ because it is reasonable to expect that the probability
of approval and the potential sales after approval are both increasing functions
of θ.

At each stage, the conditional distribution of the observation Xi is given by
Xi | θ ∼ N(θ, σ2/n), where σ is a known population standard deviation and n
is the sample size per group. Hence, Xi may be interpreted as the sample mean
of a sequence of n i.i.d. normal random variables given θ. The prior for θ before
the first stage is taken to be a conjugate normal distribution with known prior
standard deviation τ . With this setup, by standard conjugate updating, it may
easily be shown that the posterior distribution of θ at stage i is normal, with
variance given by (

1

τ2
+
i− 1

σ2/n

)−1

. (13)

Since all of the quantities in the expression for the posterior variance are known,
it follows that the posterior distribution for θ at a given stage is completely
characterised by the posterior mean. The state variable s for this model is
therefore taken to be the posterior mean for θ, giving a state space S = R.

3 General workflow

This section contains step by step instructions on how to set up the differ-
ent model types and perform optimisation using the interfaces provided by the
package.

3.1 Single stage decision problems

3.1.1 JAGS model specified by user

1. Write a model file (henceforth referred to as model.R) and a partial data
file (henceforth referred to as data.R) specifying the probabilistic model.
The decision variables of the problem are implicitly defined as the addi-
tional names that would have to be defined in order to make model.R plus
data.R a complete JAGS model.

2. Create a simulation model object by calling the function sim.model with
arguments model.R and data.R. Alternatively, the contents of the data
file may also be supplied as a named list of R objects.

3. Define a utility function u. The argument names must constitute a subset
of the names used in the BUGS model and data files.

4. Create a grid specification list object defining the names of the decision
variables and the extent and step size of the grid. Such an object should
consists of a named list of grid specifications for the individual variables.
Each grid specification should be a list of two components. The first
component is a dimension vector, which specifies the dimension of the
array value assumed by the decision variable at a grid point. The second

10

component should be a list of vectors of length equal to the total number
of elements of an array value (i.e., equal to the product of the elements
of the dimension vector). Each such vector must have the form c(lower,

upper, step). These vectors are passed to seq in order to generate a
range of values for each component of the array.

5. Evaluate the model on the grid by calling the function eval.on.grid,
passing the previously constructed simulation model, utility function u

and grid as arguments. This is the step in which MCMC samples are
produced by calling JAGS. The results of the simulation are saved in a
new model object returned by eval.on.grid.

6. Fit a regression function to the grid points by calling the function fit.gpr

or fit.loess with the model object obtained in the previous step as an
argument. A new model object containing the regression function will be
returned. This step is optional, since optimisation may also be performed
directly over the grid without trying to fit a smooth regression function
first. However, it is required if any option other than“Grid” is to be passed
to the optimisation function optimise.eu.

7. Optionally, inspect the results from the simulation and regression steps
by calling the generic function plot with the model object returned from
eval.on.grid, fit.gpr or fit.loess as an argument.

8. Optimise directly over the grid or using the regression function by calling
optimise.eu. The (approximately) optimal decision and corresponding
optimal utility will be returned as two components in a list.

3.1.2 Simple normal model for phase III sample size optimisation

The interaction with this model consists of a single step:

1. Call n.opt to perform evaluation on a one-dimensional grid for the sample
sizes, followed by an optimisation over the grid and an optional plotting of
the results. The grid points and corresponding simulated expected utility
values are returned together with the optimal sample size and correspond-
ing expected utility as components in a list.

3.1.3 Normal model with Emax dose responses for phase III dose
and sample size optimisation

1. Create a normal model object. This may be done in two different ways.
The first alternative is to call the function create.normal.model. The
parameters defining the probabilistic model must then be passed as argu-
ments. The second alternative is to call create.normal.model.from.file,
which loads the model parameters from the file normal_model_jags_data.R.
Alternative models may then be specified by changing the contents of this
file.

2. Create a utility function by calling create.utility.function. This
function takes the model object created in the previous step as an ar-
gument. The user must also pass values defining the parameters of the

11

utility function as arguments to the function, gE (cE), gS (cS), p (p), mS

(safety.max), Cf (fixed.cost) and Cs (cost.per.sample).

3. At this point a model object and a utility function have been specified.
The application of the functions eval.on.grid, fit.gpr, fit.loess and
optimise.eu for evaluation on a grid, fitting of a regression function and
optimisation now proceeds just as for the case of a general JAGS model
fully specified by the user.

3.2 Sequential decision problems

3.2.1 Full model specification by the user

1. Choose a value for n.stages, the number of stages for the decision prob-
lem.

2. Construct a specification of the probabilistic model in terms of functions
post.sample, pred.sample and update.state. post.sample should pro-
vide independent samples from the posterior distribution of the parameter
θ given the current stage and state s. pred.sample should provide inde-
pendent samples from the predictive distribution of a new observation X
at a given stage, given θ and the decision taken. update.state should
take the current stage, the state s, a decision d and a list of observed
values into a corresponding list of updated state values for the next stage.

3. Construct a specification of the decisions available at each stage in terms
of lists cont.decisions, term.decisions and term.obs.decisions, cor-
responding to (Dc

i)
k
i=1, (Dt

i)
k
i=1 and (Do

i)
k
i=1, respectively. The length of

each decision list must be equal to the number of stages k. The i:th ele-
ment of each list should be a list of the decisions available (of the respective
type) at stage i. Note that, for each stage i, at least one of the sets Dc

i ,
Dt
i and Do

i must be nonempty. Also, for the last stage k, there can be no
continuation decisions (i.e., Dc

k must be empty).

4. Construct a specification of the utility model at each stage in terms of
lists cont.decisions, term.decisions and term.obs.decisions, corre-

sponding to ((uci (di, Xi))
k
i=1, (uti(di, θ))

k
i=1 and (uoi (di, Xi, θ))

k
i=1, respec-

tively. If at stage i a certain type of decision is not available, that is, if the
i:th list in cont.decisions, term.decisions or term.obs.decisions is
empty, then the corresponding element in cont.decisions, term.decisions
or term.obs.decisions may be set to NA.

5. Create a sequential decision problem object by calling the function se-

quential.dp with the objects constructed in the previous steps as argu-
ments.

6. Define a grid for the state s as a subset of S in terms of three numeric,
atomic vectors mins, maxs and steps. Each must be of length equal to
the dimension of S. mins contains the minimum values of the grid points
in each dimension, maxs the maximum values and steps the step sizes
between grid points in each dimension.

12

7. Solve the sequential problem by calling optimise.sequential.eu with
the objects constructed in the previous steps passed as arguments. opti-
mise.sequential.eu has an optional argument with name state.start.
If left unspecified, it is set to NA, and the output from optimise.sequential.eu

will consist of a list with two components. The first is a function taking
a stage and state into the optimal decision for the closest grid point in
S and the second is a function taking the stage and a value s into the
optimal utility for the closest grid point. In case a value for state.start
is provided, then the optimal action and utility will be computed only for
the specified value for the first stage, and the output will consist of a list
of four components. The first two components gives the optimal decision
and expected utility for stage 1, and the remaining two components are
as for the case state.start = NA.

3.2.2 Group sequential normal model

1. Create a sequential normal decision problem object by calling the func-
tion sequential.normal.dp. The user must specify the number of stages
(n.stages), the group size n (group.size), the standard deviation pa-
rameters τ and σ (tau and sigma) and the gain and cost parameters
(stage.cost, final.cost, final.gain).

2. Solve the sequential normal decision problem by calling the function op-

timise.sequential.normal.eu, passing the decision problem object cre-
ated in the previous step as an argument. The user must specify the range
and step size of the grid for the state.

4 Examples

This section contains code examples illustrating how the different model types
supported by the package may be set up and optimised. Note that library(bdpopt)
must be called before any of the examples are run.

4.1 Simple normal model for phase III sample size opti-
misation

> ## Perform an optimisation for the simple normal model

> out <- n.opt(nu = 0, tau = 1, sigma = 1, alpha = 0.025,

+ gain.constant = 1, gain.function = function(X, mu) 0,

+ fixed.cost = 0, sample.cost = 0.005,

+ k = 1, n.min = 1, n.max = 50, n.step = 1,

+ n.iter = 10000, n.burn.in = 1000, n.adapt = 1000,

+ regression.type = "loess",

+ plot.results = TRUE, independent.SE = FALSE,

+ parallel = FALSE, path.to.package = NA)

> ## Print the grid points used for the sample size,

> ## and the corresponding estimates of the expected utility

> print(out$ns)

> print(out$eus)

> ## Print the estimate of the optimal sample size,

13

> ## and the corresponding utility

> print(out$opt.arg)

> print(out$opt.eu)

>

4.2 Normal model with Emax dose responses for phase III
dose and sample size optimisation

> ## Mean and precision parameters for the priors

> theta.mu <- c(0, 2, 0, 0); theta.tau <- c(1, 1, 8, 8)

> eta.mu <- c(0, 2, 0, 0); eta.tau <- c(1, 1, 8, 8)

> ## Sample size and doses for each observation in phase II

> n.II <- rep(10, 10); d.II <- seq(0.1, 1, 0.1)

> ## Observed responses phase II responses,

> ## taken from the efficacy and safety models using the parameter values

> ## theta = eta = c(0, 2, 1, 1) (rounded to two decimals).

> YE.II <- c(0.18, 0.33, 0.46, 0.57, 0.67, 0.75, 0.82, 0.89, 0.95, 1.00)

> YS.II <- c(0.18, 0.33, 0.46, 0.57, 0.67, 0.75, 0.82, 0.89, 0.95, 1.00)

> sigmaE <- 1; sigmaS <- 1 ## Standard deviations

> k.III <- 2 ## Number of phase III trials

> m1 <- create.normal.model(theta.mu, theta.tau, eta.mu, eta.tau,

+ n.II, d.II, YE.II, YS.II,

+ sigmaE, sigmaS, k.III, path.to.package = NA)

> ## Define a utility function

> n.min <- 0; sig.level<- 0.025; safety.max <- 0.6

> cE <- 1300; cS <- -1000; p <- 0.5

> fixed.cost <- 10; cost.per.sample <- 0.2

> u <- create.utility.function(m1, n.min, sig.level, safety.max,

+ cE, cS, p, fixed.cost, cost.per.sample)

> ## Define a grid and simulate the utility for each grid point

> n.iter <- 4000; n.burn.in <- 1000; n.adapt <- 1000

> gsl <- list(n.III = list(c(1), list(c(10, 150, 10))),

+ d.III = list(c(1), list(c(0.1, 0.4, 0.1))))

> m2 <- eval.on.grid(m1, u, gsl, n.iter, n.burn.in, n.adapt,

+ independent.SE = FALSE, parallel = TRUE)

> ## Do gaussian process regression for the model

> m3 <- fit.gpr(m2, start = c(30, 50, 0.2), gr = TRUE, method = "L-BFGS-B",

+ lower = c(10, 10, 0.1), upper = Inf)

> ## Plot the results of the evaluation and gpr regression

> plot(m3, "n.III[1]", fixed = seq(0.1, 0.4, 0.1))

> ## Optimisation (defaulting to method "L-BFGS-B" of the optim function)

> optimise.eu(m3, start = c(100, 0.3))

>

4.3 Group sequential normal model

> ## Create a sequential decision problem object

> dp <- sequential.normal.dp(n.stages = 4, group.size = 10,

+ tau = 1, sigma = 1,

+ stage.cost = 0.1, final.cost = 1, final.gain = 2)

14

> ## Solve the sequential decision problem and plot the results

> out <- optimise.sequential.normal.eu(dp = dp,

+ range = 8, step.size = 0.02,

+ prior.mean = 0,

+ n.sims = 1000,

+ plot.results = TRUE)

> ## Print the optimal decision and corresponding expected utility

> ## at the first stage assuming a prior mean of 0

> print(out$opt.decision(1, 0))

> print(out$opt.utility(1, 0))

>

15

Acknowledgements

This project has received funding from the European Union’s 7th Framework
Programme for research, technological development and demonstration under
the IDEAL Grant Agreement no 602552.

References

[1] IDEAL project, http://www.ideal.rwth-aachen.de/, accessed 2015-10-
30.

[2] H. Raiffa, R. Schlaifer. Applied statistical decision theory. The M.I.T Press:
Cambridge, MA, 1968.

[3] E. G. Ryan, C. C. Drovandi, J. M. McGree, A. N. Pettitt. A Review of Mod-
ern Computational Algorithms for Bayesian Optimal Design. International
Statistical Review, 2015.

[4] M. Plummer, http://mcmc-jags.sourceforge.net/, accessed 2015-10-
26.

[5] P. Müller, G. Parmigiani. Optimal Design via Curve Fitting of Monte Carlo
Experiments. Journal of the American Statistical Association, Vol. 90, No.
432, 1995.

[6] C. E. Rasmussen, C. K. I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006.

[7] A. E. Brockwell, J. B. Kadane. A Gridding Method for Bayesian Sequen-
tial Decision Problems. Journal of Computational and Graphical Statistics,
Volume 12, Number 3, Pages 566-584, 2003.

16

