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Abstract

package bvpSolve (Soetaert, Cash, and Mazzia 2010a), in the open-source software
R , (R Development Core Team 2010) is designed for the numerical solution of boundary
value problems (BVP) for ordinary differential equations (ODE).

It comprizes:

• function bvpshoot which implements the shooting method. This method makes use
of the initial value problem solvers from packages deSolve (Soetaert, Petzoldt, and
Setzer 2010b) and the root-finding solver from package rootSolve (Soetaert 2009).

• function bvptwp, the mono-implicit Runge-Kutta (MIRK) method with deferred
corrections, using conditioning in the mesh selection, based on FORTRAN code
TWPBVPC (Cash and Wright 1991; Cash and Mazzia 2005), for solving two-point
boundary value problems

• function bvpcol, the collocation method based on FORTRAN codes COLNEW
(Bader and Ascher 1987), and COLSYS (Ascher, Christiansen, and Russell 1979)
for solving Multi-point boundary value problems of mixed order

The R functions have an interface which is similar to the interface of the initial value
problem solvers in package deSolve

The default input to the solvers is very simple, requiring specification of only one
function, that calculates the derivatives, while the boundary conditions are represented
as simple vectors.

However, in order to speed-up the simulations, and to increase the number of problems
that can be solved, it is also possible to specify the boundary conditions by means of a
function and provide analytical solutions for the derivative and boundary gradients.

This is one of two vignette of package rootSolve .

Keywords: ordinary differential equations, boundary value problems, shooting method, mono-
implicit Runge-Kutta, R.

1. Introduction

1.1. The Boundary Value Problem Solvers

bvpSolve numerically solves boundary value problems (BVP) of ordinary differential equations
(ODE), which for one (second-order) ODE can be written as:
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d2y

dx2
= f(x, y,

dy

dx
)

a ≤ x ≤ b

g1(y)|a = 0

g2(y)|b = 0

where y is the dependent, x the independent variable, function f is the differential equation,
and g1(y)|a and g2(y)|b the boundary conditions at the end points a and b.

1.2. Package bvpSolve

Three BVP solvers are included in bvpSolve :

• bvpshoot, implementing the shooting method. This method combines solutions of
initial value problems (IVP) with solutions of nonlinear algebraic equations; it makes
use of solvers from packages deSolve and rootSolve .

• bvptwp, a mono-implicit Runge-Kutta (MIRK) method with deferred corrections, and
using conditioning in the mesh selection, based on FORTRAN code TWPBVPC (Cash
and Wright 1991; Cash and Mazzia 2005).

• bvpcol, a collocation method based on FORTRAN codes COLNEW (Bader and As-
cher 1987), and COLSYS (Ascher et al. 1979) for solving Multi-point boundary value
problems of mixed order.

An S3 method for plotting is included. This will plot all variables in separate figures.

All functions can solve higher-order ODEs without writing them as a set of first-order ODEs,
but this makes the interface a bit more difficult.

Only bvpcol is more efficient if the higher-order input is used.

For functions bvpshoot and bvptwp it is slightly more efficient to write them as first-order

ODEs.

For instance:

d2y

dx2
= f(x, y,

dy

dx
)

can be rewritten as:

dy

dx
= z

dz

dx
= f(x, y, z)

where y and z are now the two dependent variables.

In bvptwp and bvpshoot, the boundary conditions must be defined at the end of the interval
over which the ODE is specified (i.e. at a and/or b). In contrast, bvpcol can also have the
boundary conditions specified at intermediate points.
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1.3. Simple and More Complex Input

When using bvptwp and bvpcol, the problem can be specified in several ways.

• By default, the partial derivatives of the differential equations and of the boundary con-
ditions are approximated by the solver using finite differences. Then, the user need not
be concerned with supplying functions that calculate the analytical partial derivatives.
This makes the definition of the problem very simple: only one function, estimating the
derivatives needs to be provided, while the boundary conditions are specified as vectors.
However, some problems cannot be specified this way. It is also the slowest method.

• The bvptwp and bvpcol function is much more efficient if analytical partial derivatives
of the differential equations and of boundary conditions are given.

• Even more simulation time will be gained if the problem is specified in compiled code

(FORTRAN, C). In this case, R is used to trigger the solver bvptwp or bvpcol, and for
post-processing (graphics), while solving the BVP itself entirely takes place in compiled
code.

1.4. Examples in This Vignette

In this package vignette it is shown how to formulate and solve BVPs. We use well-known
test cases as examples.

• We start with a simple example, comprising one second-order ODE ( test problem 7
from the website of Jeff Cash (http://wwwf.imperial.ac.uk/~jcash/BVP_software/

PROBLEMS.PDF)

• This is followed by a more complex example, which consists of 6 first-order ODEs, the
”swirling flow III” problem (Ascher, Mattheij, and Russell 1995). This example is used
to demonstrate how to continuate a solution, i.e. use the solution for one problem as
initial guess for solving another, more complex problem.

• How to implement more complex initial conditions is then exemplified by means of
problem ”musn” (Ascher et al. 1995).

• Next, solving for the fourth eigenvalue of ”Mathieu’s equation” (Shampine, Kierzenka,
and Reichelt 2000), illustrates how to solve a BVP including an unknown parameter.

• The ”nerve impulse” model (Seydel 1988), is an example including periodic boundary
conditions.

• The ”fluid injection” problem (Ascher et al. 1995), is a set of higher-order ODEs, which
is best solved using bvpcol.

• A simple multipoint examplis is solved using bvpcol.

• The ”elastica” problem (Jeff Cash’s website) is used to demonstrate how to specify the
analytic jacobians, and how to implement problems in FORTRAN or C.

http://wwwf.imperial.ac.uk/~jcash/BVP_software/PROBLEMS.PDF
http://wwwf.imperial.ac.uk/~jcash/BVP_software/PROBLEMS.PDF
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• Finally, a standard linear testcase (Shampine et al. 2000) which has a steep boundary
layer is implemented in FORTRAN, and run with several values of a model parameter.

More examples of boundary value problems can be found in the packages examples subdi-
rectory.

The dynload subdirectory includes models specified in compiled code.

See also document ”bvpSolve: a set of 35 test Problems”, which can be accessed as vignette("bvpTests")

or is available from the package’s site on CRAN: http://cran.r-project.org/package=

bvpSolve/

examples
dynload
http://cran.r-project.org/package=bvpSolve/
http://cran.r-project.org/package=bvpSolve/
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2. A Simple BVP Example

Here is a simple BVP ODE (which is problem 7 from the test problems available from http:

//wwwf.imperial.ac.uk/~jcash/BVP_software/PROBLEMS.PDF ):

ξy′′ + xy′ − y = −(1 + ξπ2) cos(πx) − πx sin(πx)

y(−1) = −1

y(1) = 1

The second-order ODE is expanded as two first-order ODEs as:

y′

1 = y2

y′

2 = 1/ξ · (−xy2 + y1 − (1 + ξπ2) cos(πx) − πx sin(πx))

with boundary conditions

y1(−1) = −1

y1(1) = 1

This is implemented as:

fun<- function(x,y,pars) {

list(c(y[2],

1/ks * (-x*y[2]+y[1]-(1+ks*pi*pi)*cos(pi*x)-pi*x*sin(pi*x)))

)

}

and solved, using the three methods, as 1:

ks <- 0.1

x <- seq(-1, 1, by = 0.01)

print(system.time(

sol1 <- bvpshoot(yini = c(-1, NA), yend = c(1, NA),

x = x, func = fun, guess = 0)

))

user system elapsed

0.02 0.00 0.02

print(system.time(

sol2 <- bvptwp(yini = c(-1, NA), yend = c(1, NA), x = x, func = fun)

))

user system elapsed

0.01 0.00 0.02

1the system time, in seconds is printed

http://wwwf.imperial.ac.uk/~jcash/BVP_software/PROBLEMS.PDF
http://wwwf.imperial.ac.uk/~jcash/BVP_software/PROBLEMS.PDF
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Figure 1: Solution of the simple BVP, for ksi=0.1 - see text for R -code

print(system.time(

sol3 <- bvpcol(yini = c(-1, NA), yend = c(1, NA), x = x, func = fun)

))

user system elapsed

0.00 0.00 0.01

Note how the boundary conditions at the start (yini) and at the end (yend) of the integration
interval are specified, where NA is used for boundary conditions that are not known.

A reasonable guess of the unknown initial condition is also inputted for the shooting method.

The shooting method is often faster than the other methods. However, there are particular
problems where bvpshoot does not give a solution, whereas bvptwp or bvpcol do (see below).

The plot shows that the methods give the same solution:

plot(sol2[,1], sol2[,3], type = "l", main = "test problem 7, ksi=0.1",

lwd = 2, col = "red")

points(sol1[,1], sol1[,3], col = "green", pch = "x")

legend("topright", c("bvptwp", "bvpshoot"),

lty = c(1, NA, NA), pch = c(NA, 1, 3), col = c("red", "green"))

For very small values of the parameter ξ, bvpshoot cannot solve the problem anymore, due
to the presence of a zone of rapid change near x=0.

However, it can still be solved with the other methods, provided that good initial guesses are
provided:

ks <- 0.0005

print(system.time(

sol3 <- bvptwp(yini = c(-1, NA), yend = c(1, NA), x = seq(-1, 1, by = 0.01),

func = fun, xguess = sol2[,1], yguess = t(sol2[,-1]))

))



Karline Soetaert, Jeff Cash and Francesca Mazzia 7

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1

x

−1.0 −0.5 0.0 0.5 1.0

−
1

0
1

2
3

2

x

Figure 2: Solution of the simple BVP, for ksi=0.0001 - see text for R -code. Note that this
problem cannot be solved with bvpshoot

user system elapsed

0.08 0.00 0.09

print(system.time(

sol3b <- bvpcol(yini = c(-1, NA), yend = c(1, NA), x = seq(-1, 1, by = 0.01),

func = fun, xguess = sol2[,1], yguess = t(sol2[,-1]))

))

user system elapsed

0.24 0.00 0.20

When using bvpcol, the simulation can also be continuated by simply passing the previous
solution (as generated by bvpcol to the solver:

ks <- 0.0001

print(system.time(

sol3c <- bvpcol(yini = c(-1, NA), yend = c(1, NA), x = seq(-1, 1, by = 0.01),

func = fun, yguess = sol3b)

))

user system elapsed

0.07 0.00 0.04

Here we produce the output with the S3 plot method, which depicts both dependent variables:

plot(sol3, type = "l", lwd = 2, col = "red")
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3. A More Complex BVP Example

Now the test problem referred to as "swirling flow III" is solved (Ascher et al. 1995).

The original problem definition is:

g′′ = (gf ′ − fg′)/ξ

f ′′′′ = (−ff ′′′ − gg′)/ξ

on the interval [0,1] and subject to boundary conditions:

g(0) = −1, f(0) = 0, f ′(0) = 0

g(1) = 1, f(1) = 0, f ′(1) = 0

3.1. Solving the Problem as a Set of 1st Order Equations

First the second and fourth order equations are rewritten as a set of 1st order ODEs as follows:

y′

1 = y2

y′

2 = (y1 ∗ y4 − y3 ∗ y2)/ξ

y′

3 = y4

y′

4 = y5

y′

5 = y6

y′

6 = (−y3y6 − y1y2)/ξ

Its implementation in R is:

fsub <- function (t,Y,pars) {

return(list(c(f1 = Y[2],

f2 = (Y[1]*Y[4] - Y[3]*Y[2])/eps,

f3 = Y[4],

f4 = Y[5],

f5 = Y[6],

f6 = (-Y[3]*Y[6] - Y[1]*Y[2])/eps)))

}

eps <- 0.001

x <- seq(0, 1, len = 100)

This model cannot be solved with the shooting method. However, it can be solved using
bvptwp and bvpcol:

print(system.time(

Soltwp <- bvptwp(x = x, func = fsub,

yini = c(y1 = -1, y2 = NA, y3 = 0, y4 = 0, y5 = NA, y6 = NA),

yend = c(1, NA, 0, 0, NA, NA))

))
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user system elapsed

0.21 0.00 0.22

print(system.time(

Solcol <- bvpcol(x = x, func = fsub,

yini = c(y1 = -1, y2 = NA, y3 = 0, y4 = 0, y5 = NA, y6 = NA),

yend = c(1, NA, 0, 0, NA, NA))

))

user system elapsed

0.25 0.00 0.22

where the reported system time is in seconds

The diagnostics of the output solved with bvptwp shows that the problem is quite stiff (high
values of the conditioning parameters).

Both solvers require almost the same amount of steps:

diagnostics(Soltwp)

--------------------

solved with bvptwp

--------------------

Integration was successful.

1 The return code : 0

2 The number of function evaluations : 28507

3 The number of jacobian evaluations : 3179

4 The number of boundary evaluations : 84

5 The number of boundary jacobian evaluations : 66

6 The number of steps : 18

7 The number of mesh resets : 1

8 The maximal number of mesh points : 1000

9 The actual number of mesh points : 199

10 The size of the real work array : 280660

11 The size of the integer work array : 14018

--------------------

conditioning pars

--------------------

1 kappa1 : 12601.34

2 gamma1 : 818.5373

3 sigma : 36.8086

4 kappa : 13175.8

5 kappa2 : 574.46
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Figure 3: pairs plot of the swirling flow III problem - see text for R -code. Note that this
problem cannot be solved with bvpshoot

diagnostics(Solcol)

--------------------

solved with bvpcol

--------------------

Integration was successful.

1 The return code : 1

2 The number of function evaluations : 29821

3 The number of jacobian evaluations : 2980

4 The number of boundary evaluations : 294

5 The number of boundary jacobian evaluations : 120

6 The number of steps : 61

7 The actual number of mesh points : 300

8 The number of collocation points per subinterval : 4

9 The number of equations : 6

10 The number of components (variables) : 6

A pairs plot produces a pretty picture.

pairs(Soltwp, main = "swirling flow III, eps=0.01", col = "blue")
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Using the same input as above, the problem cannot be solved with too small values of eps
(but see next section):

> eps <- 1e-9

> Soltwp2 <- NA

> Soltwp2 <- try(bvptwp(x=x,func=fsub,

+ yini=c(y1=-1,y2=NA,y3=0,y4=0,y5=NA,y6=NA),

+ yend=c(1,NA,0,0,NA,NA)),

+ silent = TRUE)

> cat(Soltwp2)

Error in bvptwp(x = x, func = fsub, yini = c(y1 = -1, :

The Expected No. Of mesh points Exceeds Storage Specifications.

3.2. Solving the Problem in Higher Order Form

All functions can also solve the same problem without rewriting it in 1st order form.

However, only for function bvpcol will this lead to a significant improvement of performance.

Thus, the derivative function becomes:

fsubhigh <- function (t,Y,pars) {

return(list(c(d2g = (Y[1]*Y[4] - Y[3]*Y[2])/eps,

d4f = (-Y[3]*Y[6] - Y[1]*Y[2])/eps)))

}

eps <- 0.001

x <- seq(0, 1, len = 100)

To solve the model in this form, we need to specify the order of each equation. The first
equation is of order 2, the second of order 4.

print(system.time(

Solcol2 <- bvpcol(x = x, func = fsubhigh, order = c(2, 4),

yini = c(y1 = -1, y2 = NA, y3 = 0, y4 = 0, y5 = NA, y6 = NA),

yend = c(1, NA, 0, 0, NA, NA))

))

user system elapsed

0.11 0.00 0.11

Whereas both ways of solving the system produce almost the same output (but not quite),
the second way is significantly faster. It indeed solves the problem in less steps:

max(abs(Solcol2-Solcol))

[1] 2.65498e-08

diagnostics(Solcol2)
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--------------------

solved with bvpcol

--------------------

Integration was successful.

1 The return code : 1

2 The number of function evaluations : 17201

3 The number of jacobian evaluations : 1725

4 The number of boundary evaluations : 174

5 The number of boundary jacobian evaluations : 72

6 The number of steps : 35

7 The actual number of mesh points : 160

8 The number of collocation points per subinterval : 5

9 The number of equations : 2

10 The number of components (variables) : 6

This is not case when we use bvptwp, where the higher-order specification is usually a bit
slower than the first-order model:

print(system.time(

Soltwp2 <- bvptwp(x = x, func = fsubhigh, order = c(2, 4),

yini = c(y1 = -1, y2 = NA, y3 = 0, y4 = 0, y5 = NA, y6 = NA),

yend = c(1, NA, 0, 0, NA, NA))

))

user system elapsed

0.24 0.00 0.27

Here the output for the first-order and higher-order specification is exactly the same:

max(abs(Soltwp2- Soltwp))

[1] 0

This problem is much too difficult to be solved with bvpshoot
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4. Solving a Boundary Value Problem using Continuation

The previous -swirl- problem can be solved for small values of eps if the previous solution
(Soltwp) with eps = 0.001, is used as an initial guess for smaller value of eps, e.g. 0.0001.

When using bvptwp, we pass the previous output values in xguess and xguess

eps <- 0.0001

xguess <- Soltwp[,1]

yguess <- t(Soltwp[,2:7])

print(system.time(

Sol2 <- bvptwp(x = x, func = fsub, xguess = xguess, yguess = yguess,

yini = c(y1 = -1, y2 = NA, y3 = 0, y4 = 0, y5 = NA, y6 = NA),

yend = c(1, NA, 0, 0, NA, NA))

))

user system elapsed

0.73 0.00 0.76

Continuation using bvpcol can also be done in the same way, but it is more efficient to pass
the entire previous solution produced by bvpcol in xguess.

print(system.time(

Sol2b <- bvpcol(x = x, func = fsub, yguess = Solcol,

yini = c(y1 = -1, y2 = NA, y3 = 0, y4 = 0, y5 = NA, y6 = NA),

yend = c(1, NA, 0, 0, NA, NA))

))

user system elapsed

1.02 0.00 1.02

We use the S3 plot method to plot all dependent variables at once: These plots are to be
compared with the first column of the "pairs" plot (figure 3).

plot(Sol2, col = "darkred", type = "l", lwd = 2)

mtext(outer = TRUE, side = 3, line = -1.5, cex = 1.5,

"swirling flow III, eps=0.0001")
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Figure 4: Solution of the swirling flow III problem with small eps, using continuation - see
text for R -code.
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Figure 5: Plotting multiple scenario’s at once - see text for R -code.

5. Plotting bvpSolve objects

It is possible to plot several outputs of the same model at once, and to add observed conditions.

plot (Solcol, Sol2b, which = c("y1","y4"), lty = 1)

It is also relatively simple to add observed data. If not specified, then only the variables, in
common between the output and data will be plotted:

obsdat <- matrix (ncol = 2, data =

c(seq(0, 1, 0.2), c(-1, -0.4, -0.1, 0.1, 0.4, 1)))

colnames (obsdat) <- c("x", "y1")

obsdat

x y1

[1,] 0.0 -1.0

[2,] 0.2 -0.4

[3,] 0.4 -0.1

[4,] 0.6 0.1

[5,] 0.8 0.4

[6,] 1.0 1.0

plot(Solcol, Sol2b, obs = obsdat)
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Figure 6: Plotting multiple scenario’s with observed data - see text for R -code.



Karline Soetaert, Jeff Cash and Francesca Mazzia 17

6. More Complex Initial or End Conditions

Problem musn was described in (Ascher et al. 1995).

The problem is:

u′ = 0.5u(w − u)/v

v′ = −0.5(w − u)

w′ = (0.9 − 1000(w − y) − 0.5w(w − u))/z

z′ = 0.5(w − u)

y′ = −100(y − w)

on the interval [0,1] and subject to boundary conditions:

u(0) = v(0) = w(0) = 1

z(0) = −10

w(1) = y(1)

Note the last boundary condition which expresses w as a function of y.

Implementation of the ODE function is simple:

musn <- function(x,Y,pars) {

with (as.list(Y), {

du <- 0.5 * u * (w - u) /v

dv <- -0.5 * (w - u)

dw <- (0.9 - 1000 * (w - y) - 0.5 * w * (w - u)) /z

dz <- 0.5 * (w - u)

dy <- -100 * (y - w)

return(list(c(du, dv, dw, dz, dy)))

})

}

This model is solved differently whether bvpshoot or bvptwp is used.

6.1. Solving Problem musn with bvpshoot

It is easiest to solve the musn model with bvpshoot:

There are 4 boundary values specified at the start of the interval; a value for y is lacking (and
set to NA):

init <- c(u = 1, v = 1, w = 1, z = -10, y = NA)

The boundary condition at the end of the integration interval (1) specifies the value of w as
a function of y.

Because of that, yend cannot be simply inputted as a vector. It is rather implemented as a
function that has as input the values at the end of the integration interval (Y), the values at
the start (yini) and the parameters, and that returns the residual function (w-y):



18 Package bvpSolve, solving boundary value problems in R

0.0 0.4 0.8

0.
7

0.
8

0.
9

1.
0

u

x

0.0 0.4 0.8

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

v

x

0.0 0.4 0.8

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

w

x

0.0 0.4 0.8

−
10

.6
−

10
.4

−
10

.2
−

10
.0

z

x

0.0 0.4 0.8

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

y

x

musn

Figure 7: Solution of the musn model, using bvpshoot - see text for R -code.

yend <- function (Y, yini, pars) with (as.list(Y), w-y)

Note that the specification of the boundaries for bvptwp are rather different (next section).

The solution, using bvpshoot is obtained by: 2

print(system.time(

sol <-bvpshoot(yini = init, x = seq(0, 1, by = 0.05), func = musn,

yend = yend, guess = 1, atol = 1e-10, rtol = 0)

))

user system elapsed

0.07 0.00 0.06

and plotted as:

plot(sol, type = "l", lwd = 2)

mtext(outer = TRUE, side = 3, line = -1.5, cex = 1.5, "musn")

6.2. Solving Problem musn with bvptwp or bvpcol

Here the boundary function bound must be specified:

2Note that there are at least two solutions to this problem, the second solution can simply be found by

setting guess equal to 0.9.
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bound <- function(i,y,pars) {

with (as.list(y), {

if (i ==1) return (u-1)

if (i ==2) return (v-1)

if (i ==3) return (w-1)

if (i ==4) return (z+10)

if (i ==5) return (w-y)

})

}

Moreover, this problem can only be solved if good initial conditions are given:

xguess <- seq(0, 1, len = 5)

yguess <- matrix(ncol = 5, (rep(c(1, 1, 1, -10, 0.91), times = 5)) )

rownames(yguess) <- c("u","v","w","z","y")

xguess

[1] 0.00 0.25 0.50 0.75 1.00

yguess

[,1] [,2] [,3] [,4] [,5]

u 1.00 1.00 1.00 1.00 1.00

v 1.00 1.00 1.00 1.00 1.00

w 1.00 1.00 1.00 1.00 1.00

z -10.00 -10.00 -10.00 -10.00 -10.00

y 0.91 0.91 0.91 0.91 0.91

Note that the rows of yguess have been given a name, such that this name can be used in
the derivative and boundary function.

We specify that there are 4 left boundary conditions (leftbc).

print(system.time(

Sol <- bvptwp(yini = NULL, x = x, func = musn, bound = bound,

xguess = xguess, yguess = yguess, leftbc = 4,

atol = 1e-10)

))

user system elapsed

0.10 0.01 0.13

print(system.time(

Sol2 <- bvpcol(yini = NULL, x = x, func = musn, bound = bound,

xguess = xguess, yguess = yguess, leftbc = 4,

atol = 1e-10)

))
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user system elapsed

0.12 0.00 0.11
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7. A BVP Problem Including an Unknown Parameter

In the next BVP problem (Shampine et al. 2000), the fourth eigenvalue of the Mathieus
equation (parameter λ) is computed. The equation is

d2y

dx2
+ (λ − 10 cos(2x)) · y = 0

defined on [0,π], and with boundary conditions dy
dx

(0) = 0 and dy
dx

(π) = 0 and y(0) = 1

Here all the initial values (at x=0) are prescribed, in addition to one condition at the end of
the interval. If λ would be known the problem would be overdetermined.

The 2nd order differential equation is first rewritten as two 1st-order equations:

dy

dx
= y2

dy2

dx
= −(λ − 10 cos(2x)) · y

and the function that estimates these derivatives is written (mathieu).

mathieu <- function(x,y,lambda)

list(c(y[2],

-(lambda - 10 * cos(2 * x)) * y[1]))

7.1. Solving For an Unknown Parameter Using bvpshoot

This problem is most easily solved using bvpshoot; an initial guess of the extra parameter to
be solved is simply passed via argument extra.

init <- c(1, 0)

sol <- bvpshoot(yini = init, yend = c(NA, 0), x = seq(0, pi, by = 0.01),

func = mathieu, extra = 15)

The result is plotted:

plot(sol[,1:2])

mtext(outer = TRUE, side = 3, line = -1.5, cex = 1.5, "mathieu")

The value of lambda can be printed:

attr(sol, "roots") # root gives the value of "lambda" (17.10683)

root f.root iter

2 17.10683 -5.205281e-13 6

7.2. Solving For an Unknown Parameter Using bvptwp or bvpcol

To use bvptwp or bvpcol, we treat the unknown parameter as an extra variable, whose
derivative = 0 (it is a parameter, and by definition does not change over the integration
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Figure 8: Solution of the BVP ODE problem including an unknown parameter, see text for
R-code

interval). This is, the equations are:

dy

dx
= y2

dy2

dx
= −(λ − 10 cos(2x)) · y

dλ

dx
= 0

for dependent variables y, y_2 and λ

The model definition in R becomes:

mathieu2 <- function(x,y,p)

list(c(y[2],

-(y[3] - 10 * cos(2 * x)) * y[1],

0) )

Note the third derivative, and the parameter lambda from previous chapter which is now
y[3], the third variable.

The initial condition, yini and final condition, yend now also provides a value, NA, for the
parameter (y3) that is unknown. We also provide initial guesses for the x- and y-values
(xguess, yguess). 3

Sol <- bvptwp (yini = c(y = 1, dy = 0, lambda = NA), yend = c(NA, 0, NA),

x = seq(0, pi, by = 0.01), func = mathieu2, xguess = c(0, pi),

yguess = matrix(nrow = 3, data = rep(15, 6)) )

The y-value, its derivative, and lambda, are plotted

3This problem is not solved if the initial guess for the y-values is 0; yet any value different from 0 works
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Figure 9: Solution of the BVP ODE problem including an unknown parameter, and using
method bvptwp - see text for R-code

plot(Sol, type = "l", lwd = 2)

mtext(outer = TRUE, side = 3, line = -1.5, cex = 1.5,

"mathieu - solved using bvptwp")
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8. A Boundary Value Problem with Periodic Boundary Conditions

A BVP with cyclic boundary conditions is the nerve impulse model, a problem described in
(Seydel 1988). The equations are:

y′

1 = 3T (y1 + y2 − 1/3y3
1 − 1.3)

y′

2 = −T (y1 − 0.7 + 0.8y2)/3

defined on the interval [0,1] and subject to boundary conditions:

y1(0) = y1(1)

y2(0) = y2(1)

1 = −T (y1(0) − 0.7 + 0.8 ∗ y2(0))/3

8.1. Cyclic Boundary Conditions Solved Using bvpshoot

The problem is first solved using bvpshoot:

The derivative function (where T is the parameter) is:

nerve <- function (t,y,T)

list(c( 3 * T * (y[1] + y[2] - 1/3 * (y[1]^3) - 1.3),

(-1/3) * T * (y[1] - 0.7 + 0.8 * y[2]) ))

and the residual function, at the end of the interval is:

res<- function (Y,yini,T)

c(Y[1] - yini[1],

Y[2] - yini[2],

T*(-1/3) * (yini[1] - 0.7 + 0.8 * yini[2]) - 1)

There are no initial conditions (yini); to solve this model, a reasonable guess of the missing
initial conditions is necessary; the initial guess for the unknown parameter, T , is set to 2π
(extra):

yini <- c(y1 = NA, y2 = NA)

sol <- bvpshoot(yini = yini, x = seq(0, 1, by = 0.01),

func = nerve, guess = c(0.5,0.5), yend = res, extra = 2 * pi)

T is estimated to be 10.710809; the root has been found in 11 iterations:

attributes(sol)$root

root f.root iter

1 -1.183453 -6.435181e-10 11

2 2.004203 -3.778911e-09 11

3 10.710809 -6.905587e-14 11
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8.2. Cyclic Boundary Conditions Solved using bvptwp or bvpcol

Function bvptwp accepts only problems with separated boundary conditions, however, it is
possible to use it also for solving boundary value problems with periodic boundary conditions.

This is done by considering the boundary conditions as “parameters”, and using the strategy
of defining these parameters as extra variables, with derivatives = 0, similar as in previous
section.

The augmented derivative function is, with variable 3 the unknown parameter T, variables 4
and 5 the initial conditions of y1, and y2 respectively, is:

nerve3 <- function (t,y,p)

list(c( 3 * y[3] * (y[1] + y[2] - 1/3 * (y[1]^3) - 1.3),

(-1/3) * y[3] * (y[1] - 0.7 + 0.8 * y[2]) ,

0,

0,

0)

)

The required boundary function, with the first 3 boundary conditions at the left boundary is:

bound <- function(i,y,p) {

if (i == 1) return ( y[3]*(-1/3) * (y[1] - 0.7 + 0.8 * y[2]) - 1 )

if (i == 2) return ( y[1] - y[4] )

if (i == 3) return ( y[2] - y[5] ) # left bnd

if (i == 4) return ( y[1] - y[4] ) # right bnd

if (i == 5) return ( y[2] - y[5] )

}

boundary condition 2 sets the left boundary of y1 equal to parameter y4, boundary condition
4 does the same for the right boundary of y1.

Solving this also requires good initial conditions to find a solution:

xguess = seq(0, 1, by = 0.1)

yguess = matrix(nrow = 5, ncol = length(xguess), data = 5.)

yguess[1,] <- sin(2 * pi * xguess)

yguess[2,] <- cos(2 * pi * xguess)

rownames(yguess) <- c("y1", "y2", "T", "y1ini", "y2ini")

We need to specify that there are three left boundary conditions (leftbc)

Sol <- bvptwp(func = nerve3, bound = bound, x = seq(0, 1, by = 0.01),

ynames = c("y", "dy", "T", "yi", "yj"),

leftbc = 3, xguess = xguess, yguess = yguess)

The first row of Sol shows the initial conditions:

Sol[1,]
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Figure 10: Solution of the nerve impulse problem, comprising two state variables and 3
parameters - see text for R-code

x y dy T yi yj

0.000000 -1.183453 2.004203 10.710808 -1.183453 2.004203

plot(Sol, type = "l", lwd = 2, col = "darkblue")
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9. A Set of Higher-Order BVPs

Here the “fluid injection problem” is solved (Ascher et al. 1995).

The original problem definition is:

f ′′′ − R[(f ′)2 − f ∗ f ′′] + RA = 0

h′′ + R ∗ f ∗ h′ + 1 = 0

O′′ + P ∗ f ∗ O′ = 0

on the interval [0,1], and where A is an unknown constant.

The boundary conditions are:

f(0) = 0, f ′(0) = 0, h(0) = 0, O(0) = 0

f(1) = 1, f ′(1) = 0, h(1) = 0, O(1) = 1

We first solve this equation as a set of 1st order ODEs, which is implemented and solved in
R as:

fluid<-function(t, y, pars, R) {

P <- 0.7*R

with(as.list(y), {

df = f1 #f'

df1= f2 #f''

df2= R * (f1^2 - f*f2)-A #f'''

dh = h1

dh1= -R * f * h1 - 1

dO = O1

dO1= -P * f * O1

dA = 0 # the constant to be estimated

return(list(c(df, df1, df2, dh, dh1, dO, dO1, dA)))

})

}

times <- seq(0, 1, by = 0.01)

yini <- c(f = 0, f1 = 0, f2 = NA, h = 0, h1 = NA, O = 0, O1 = NA, A = NA)

yend <- c(1, 0, NA, 0, NA, 1, NA, NA)

print (system.time(

Solcol1 <- bvpcol(func=fluid, x=times, parms=NULL, R=10000,

yini = yini, yend=yend)

))

user system elapsed

0.39 0.05 0.43

where the reported system time is in seconds. For increasing values of R, the problem becomes
more and more difficult to solve.

The implementation as a set of higher-order ODEs is as follows:
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fluidHigh <- function(t, y, pars, R) {

P <- 0.7 * R

with(as.list(y), {

d3f = R * (f1^2 - f * f2) - A #f'''

d2h = -R * f * h1 - 1

d2O = -P * f * O1

dA = 0

return(list(c(d3f, d2h, d2O, dA)))

})

}

times <- seq(0, 1, by = 0.01)

yini <- c(f = 0, f1 = 0, f2 = NA, h = 0, h1 = NA, O = 0, O1 = NA, A = NA)

yend <- c(1, 0, NA, 0, NA, 1, NA, NA)

print (system.time(

Solcol2 <- bvpcol(func = fluidHigh, x = times, parms = NULL, R = 10000,

order = c(3, 2, 2, 1), yini = yini, yend=yend)

))

user system elapsed

0.27 0.00 0.23

Note that we have specified the order of each equation (3,2,2,1) in fluidHigh.

The output is the same as the other specification:

head(Solcol1, n = 3)

x f f1 f2 h h1

[1,] 0.00 0.000000000 0.000000 244.549165 0.0000000000 0.030029302

[2,] 0.01 0.008423256 1.361821 53.204941 0.0002321423 0.014032413

[3,] 0.02 0.023462587 1.567566 3.822699 0.0002802765 -0.001566255

O O1 A

[1,] 0.0000000 62.30644 24932.52

[2,] 0.5894266 50.15712 24932.52

[3,] 0.9206130 16.61383 24932.52

head(Solcol2, n = 3)

x f f1 f2 h h1

[1,] 0.00 0.000000000 0.000000 244.549165 0.0000000000 0.030029301

[2,] 0.01 0.008423256 1.361821 53.204941 0.0002321423 0.014032413

[3,] 0.02 0.023462587 1.567566 3.822699 0.0002802765 -0.001566255

O O1 A

[1,] 0.0000000 62.30644 24932.52

[2,] 0.5894266 50.15712 24932.52

[3,] 0.9206130 16.61383 24932.52

plot(Solcol1, main="Fluid injection problem",

which = "f1", type = "l", lwd = 2)
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Figure 11: The fluid injection problem, a set of higher-order ODEs - see text for R -code.
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10. A Multipoint Problem

Function bvptwp can only solve problems whose boundary conditions are located at the start
and/or end of the integration interval.

Function bvpcol (and also bvpshoot) can also solve problems where the extra conditions are
somewhere within the integration interval.

Consider the following problem:

y′

1 = (y2 − 1)/2

y′

2 = (y1y2 − x)/µ

defined in the interval [0,1] and with extra conditions:

y1(1) = 0

y2(0.5) = 1

As the second condition is specified within the integration interval, this is a multipoint prob-
lem.

Mulipoint problems can only be specified in R using a boundary function bound; as the
boundary for y2 is specified before y1, it is treated first in the boundary function (because
posbound has to be sorted).

multip <- function (x, y, p) {

list(c((y[2] - 1)/2,

(y[1]*y[2] - x)/mu))

}

bound <- function (i, y, p) {

if (i == 1) y[2] -1 # at x=0.5: y2=1

else y[1] # at x= 1: y1=0

}

mu <- 0.1

sol <- bvpcol(func = multip, bound = bound,

x = seq(0, 1, 0.01), posbound = c(0.5, 1))

We check the boundary values:

sol[sol[,1] %in% c(0.5,1),]

x 1 2

[1,] 0.5 0.338895 1.000000

[2,] 1.0 0.000000 -2.658449

plot(sol)
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Figure 12: Solution of a multipoint problem - see text for R-code
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11. Specifying the Analytic Jacobians

By default, the Jacobians of the derivative function and of the boundary conditions, are
estimated numerically. It is however possible - and faster - to provide the analytical solution
of the Jacobian.

As an example, the elastica problem is implemented (http://wwwf.imperial.ac.uk/

~jcash/BVP_software/readme.php).

The original system reads:

dx

ds
= cos(φ) (1)

dy

ds
= sin(φ) (2)

dφ

ds
= κ (3)

dκ

ds
= F cos(φ) (4)

dF

ds
= 0 (5)

where F is an (unknown) constant, and with the following boundary conditions:

x(0) = 0

y(0) = 0

κ(0) = 0

y(0.5) = 0

φ(0.5) = −π/2

First implementation uses the default specification:

Elastica <- function (x, y, pars) {

list( c(cos(y[3]),

sin(y[3]),

y[4],

y[5] * cos(y[3]),

0))

}

Sol <- bvpcol(func = Elastica,

yini = c(x = 0, y = 0, p = NA, k = 0, F = NA),

yend = c(x = NA, y = 0, p = -pi/2,k = NA, F = NA),

x = seq(0, 0.5, len = 16))

plot(Sol)

Now several extra functions are defined, specifying

1. the analytic Jacobian for the derivative function (jacfunc)

http://wwwf.imperial.ac.uk/~jcash/BVP_software/readme.php
http://wwwf.imperial.ac.uk/~jcash/BVP_software/readme.php
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Figure 13: Solution of the elastica problem - see text for R-code

2. the boundary function (bound). Here i is the boundary condition "number". The
conditions at the left are enumerated first, then the ones at the right. For instance, i =
1 specifies the boundary for y(0) = 0, or BC1 = y[1] − 0; the fifth boundary condition
is y[3] = -pi/2 or BC3 = y[3] + π/2

3. the analytic Jacobian for the boundary function (jacbound)

This is done in the R -code below:

jacfunc <- function (x, y, pars) {

Jac <- matrix(nrow = 5, ncol = 5, data = 0)

Jac[3,4] <- 1.0

Jac[4,4] <- 1.0

Jac[1,3] <- -sin(y[3])

Jac[2,3] <- cos(y[3])

Jac[4,3] <- -y[5] * sin(y[3])

Jac[4,5] <- Jac[2,3]

Jac

}

bound <- function (i, y, pars) {

if (i <= 2) return(y[i])

else if (i == 3) return(y[4])

else if (i == 4) return(y[2])
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else if (i == 5) return(y[3] + pi/2)

}

jacbound <- function(i, y, pars) {

JJ <- rep(0, 5)

if (i <= 2) JJ[i] =1.0

else if (i == 3) JJ[4] =1.0

else if (i == 4) JJ[2] =1.0

else if (i == 5) JJ[3] =1.0

JJ

}

If this input is used, the number of left boundary conditions (leftbc), and either the number
of state variables (ncomp), or their names (ynames) needs to be specified.

Sol4 <- bvpcol(leftbc = 3, ynames = c("x", "y", "p", "k", "F"),

func = Elastica, jacfunc = jacfunc,

bound = bound, jacbound = jacbound,

x = seq(0, 0.5, len=16))

Solving the model this way is about 3 times faster than the default.
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12. Implementing a BVP Problem in Compiled Code

Even more computing time is saved by specifying the problem in lower-level languages such
as FORTRAN or C, or C++, which are compiled into a dynamically linked library (DLL) and
loaded into R .

This is similar as the differential equations from package deSolve (Soetaert et al. 2010b).

Its vignette ("compiledCode") can be consulted for more information. (http://cran.r-project.

org/package=deSolve/)

In order to create compiled models (.DLL = dynamic link libraries on Windows or .so =
shared objects on other systems) you must have a recent version of the GNU compiler suite
installed, which is quite standard for Linux.

Windows users find all the required tools on http://www.murdoch-sutherland.com/Rtools/.
Getting DLLs produced by other compilers to communicate with R is much more complicated
and therefore not recommended. More details can be found on http://cran.r-project.

org/doc/manuals/R-admin.html.

The call to the derivative, boundary and Jacobian functions is more complex for compiled
code compared to R -code, because it has to comply with the interface needed by the integrator
source codes.

12.1. The Elastica Problem in FORTRAN

Below is an implementation of the elastica model in FORTRAN: (slightly modified from http:

//wwwf.imperial.ac.uk/~jcash/BVP_software/readme.php):

c The differential system:

SUBROUTINE fsub(NCOMP,X,Z,F,RPAR,IPAR)

IMPLICIT NONE

INTEGER NCOMP, IPAR , I

DOUBLE PRECISION F, Z, RPAR, X

DIMENSION Z(*),F(*)

DIMENSION RPAR(*), IPAR(*)

F(1)=cos(Z(3))

F(2)=sin(Z(3))

F(3)=Z(4)

F(4)=Z(5)*cos(Z(3))

F(5)=0

RETURN

END

c The analytic Jacobian for the F-function:

SUBROUTINE dfsub(NCOMP,X,Z,DF,RPAR,IPAR)

IMPLICIT NONE

INTEGER NCOMP, IPAR, I, J

DOUBLE PRECISION X, Z, DF, RPAR

http://cran.r-project.org/package=deSolve/
http://cran.r-project.org/package=deSolve/
http://www.murdoch-sutherland.com/Rtools/
http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.r-project.org/doc/manuals/R-admin.html
http://wwwf.imperial.ac.uk/~jcash/BVP_software/readme.php
http://wwwf.imperial.ac.uk/~jcash/BVP_software/readme.php
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DIMENSION Z(*),DF(NCOMP,*)

DIMENSION RPAR(*), IPAR(*)

CHARACTER (len=50) str

DO I=1,5

DO J=1,5

DF(I,J)=0.D0

END DO

END DO

DF(1,3)=-sin(Z(3))

DF(2,3)=cos(Z(3))

DF(3,4)=1.0D0

DF(4,3)=-Z(5)*sin(Z(3))

DF(4,4)=1.0D0

DF(4,5)=cos(Z(3))

RETURN

END

c The boundary conditions:

SUBROUTINE gsub(I,NCOMP,Z,G,RPAR,IPAR)

IMPLICIT NONE

INTEGER I, NCOMP, IPAR

DOUBLE PRECISION Z, RPAR, G

DIMENSION Z(*)

DIMENSION RPAR(*), IPAR(*)

IF (I.EQ.1) G=Z(1)

IF (I.EQ.2) G=Z(2)

IF (I.EQ.3) G=Z(4)

IF (I.EQ.4) G=Z(2)

IF (I.EQ.5) G=Z(3)+1.5707963267948966192313216916397514D0

RETURN

END

c The analytic Jacobian for the boundaries:

SUBROUTINE dgsub(I,NCOMP,Z,DG,RPAR,IPAR)

IMPLICIT NONE

INTEGER I, NCOMP, IPAR

DOUBLE PRECISION Z, DG, RPAR

DIMENSION Z(*),DG(*)

DIMENSION RPAR(*), IPAR(*)

DG(1)=0.D0
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DG(2)=0.D0

DG(3)=0.D0

DG(4)=0.D0

DG(5)=0.D0

C dG1/dZ1

IF (I.EQ.1) DG(1)=1.D0

C dG2/dZ2

IF (I.EQ.2) DG(2)=1.D0

C dG3/dZ4

IF (I.EQ.3) DG(4)=1.D0

C dG4/dZ2

IF (I.EQ.4) DG(2)=1.D0

C dG5/dZ3

IF (I.EQ.5) DG(3)=1.D0

RETURN

END

12.2. The Elastica Problem in C

The same model, implemented in C is:

#include <math.h>

// The differential system:

void fsub(int *n, double *x, double *z, double *f,

double * RPAR, int * IPAR) {

f[0]=cos(z[2]);

f[1]=sin(z[2]);

f[2]=z[3] ;

f[3]=z[4]*cos(z[2]);

f[4]=0;

}

// The analytic Jacobian for the F-function:

void dfsub(int * n, double *x, double *z, double * df,

double *RPAR, int *IPAR) {

int j;

for (j = 0; j< *n * *n; j++) df[j] = 0;

df[*n *2] = -sin(z[2]);
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df[*n *2 +1] = cos(z[2]);

df[*n *3 +2] = 1.0;

df[*n *2 +3] = -z[4]*sin(z[2]);

df[*n *3 +3] = 1.0;

df[*n *4 +3] = cos(z[2]);

}

// The boundary conditions:

void gsub(int *i, int *n, double *z, double *g,

double *RPAR, int *IPAR) {

if (*i==1) *g=z[0];

else if (*i==2) *g=z[1];

else if (*i==3) *g=z[3];

else if (*i==4) *g=z[1];

else if (*i==5) *g=z[2]+1.5707963267948966192313216916397514;

}

// The analytic Jacobian for the G-function:

void dgsub(int *i, int *n, double *z, double *dg,

double *RPAR, int *IPAR) {

int j;

for (j = 0; j< *n; j++) dg[j] = 0;

if (*i == 1) dg[0] = 1.;

else if (*i == 2) dg[1] = 1.;

else if (*i == 3) dg[3] = 1.;

else if (*i == 4) dg[1] = 1.;

else if (*i == 5) dg[2] = 1.;

}

12.3. Solving the Elastica Problem Specified in Compiled Code

In what follows, it is assumed that the codes are saved in a file called elastica.f, and
elasticaC.c and that these files are in the working directory of R . (if not, use setwd() )

Before the functions can be executed, the FORTRAN or C- code has to be compiled

This can simply be done in R:

system("R CMD SHLIB elastica.f")

system("R CMD SHLIB elasticaC.c")

or
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system("gfortran -shared -o elastica.dll elastica.f")

system("gcc -shared -o elasticaC.dll elasticaC.c")

This will create a file called elastica.dll and elasticaC.dll respectively (on windows).

After loading the DLL, the model can be run, after which the DLL is unloaded. For the
FORTRAN version, this is done as follows (the C code is similar, except for the name of the
DLL):

dyn.load("elastica.dll")

outF <- bvpcol(ncomp = 5,

x = seq(0, 0.5, len = 16), leftbc = 3, func = "fsub",

jacfunc = "dfsub", bound = "gsub", jacbound = "dgsub",

dllname = "elastica")

dyn.unload("elastica.dll")

Note that the number of components (equations) needs to be explicitly inputted (ncomp).

This model is about 8-10 times faster than the pure R implementation from previous section.

The solver recognizes that the model is specified as a DLL due to the fact that arguments
func, jacfunc, bound and jacbound are not regular R -functions but character strings.

Thus, the solver will check whether these functions are loaded in the DLL with name "elas-
tica.dll". Note that the name of the DLL should be specified without extension.

This DLL should contain all the compiled function or subroutine definitions needed.

Also, if func is specified in compiled code, then jacfunc, bound and jacbound should also be
specified in a compiled language. It is not allowed to mix R-functions and compiled functions.
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13. Passing Parameters and External Data to Compiled Code

When using compiled code, it is possible to

• pass parameters from R to the compiled functions

• pass forcing functions from R to compiled functions. These are then updated to the
correct value of the independent variable (x) at each step.

The implementation of this is similar as in package deSolve. How to do it has been extensively
explained in deSolve’s vignette, which can be consulted for details.

See http://cran.r-project.org/package=deSolve.

Here we implement a simple linear boundary value problem, which is a standard test problem
for BVP code ((Scott and Watts 1977)). The model has a boundary layer at x=0.

The differential equation depends on a parameter a and p:

y′′ +
−apy

(p + x2)2
= 0

and is solved on [-0.1, +0.1] with boundary conditions:

y(−0.1) = −0.1
√

p + 0.01

y(+0.1) = 0.1
√

p + 0.01

where a = 3 and p is taken small.

This differential equation is written as a system of two first-order ODEs.

The implementation in pure R is given first:

fun <- function(t,y,pars)

list(c( y[2],

- a * p * y[1]/(p + t*t)^2

))

with parameter values:

p <- 1e-5

a <- 3

It is solved using bvptwp; note that the initial condition (yini) gives names to the variables;
these names are used by the solver to label the output:

sol <- bvptwp(yini = c(y = -0.1/sqrt(p+0.01), dy = NA),

yend = c( 0.1/sqrt(p+0.01), NA),

x = seq(-0.1, 0.1, by = 0.001),

func = fun)

plot(sol, type = "l")

http://cran.r-project.org/package=deSolve
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Figure 14: Solution of the linear boundary problem - see text for R-code

Next the FORTRAN implementation is given, which requires writing the boundary and ja-
cobian functions (bound, jacfunc and jacbound)

The two parameters are initialised in a function called initbnd; its name is passed to function
bvptwp via argument initfunc.

c FORTRAN implementation of the boundary problem

c Initialiser for parameter common block

SUBROUTINE initbnd(bvpparms)

EXTERNAL bvpparms

DOUBLE PRECISION parms(2)

COMMON / pars / parms

CALL bvpparms(2, parms)

END

c derivative function

SUBROUTINE funbnd(NCOMP,X,Y,F,RPAR,IPAR)

IMPLICIT NONE

INTEGER NCOMP, IPAR(*), I

DOUBLE PRECISION F(2), Y(2), RPAR(*), X

DOUBLE PRECISION a, p

COMMON / pars / a, p

F(1)= Y(2)

F(2)= - a * p *Y(1)/(p+ x*x)**2

END

c The analytic Jacobian for the derivative-function:

SUBROUTINE dfbnd(NCOMP,X,Y,DF,RPAR,IPAR)
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IMPLICIT NONE

INTEGER NCOMP, IPAR(*), I, J

DOUBLE PRECISION X, Y(2), DF(2,2), RPAR(*)

DOUBLE PRECISION a, p

COMMON / pars / a, p

DF(1,1)=0.D0

DF(1,2)=1.D0

DF(2,1)= - a *p /(p+x*x)**2

DF(2,2)=0.D0

END

c The boundary conditions:

SUBROUTINE gbnd(I,NCOMP,Y,G,RPAR,IPAR)

IMPLICIT NONE

INTEGER I, NCOMP, IPAR(*)

DOUBLE PRECISION Y(2), RPAR(*), G

DOUBLE PRECISION a, p

COMMON / pars / a, p

IF (I.EQ.1) THEN

G=Y(1) + 0.1 / sqrt(p+0.01)

ELSE IF (I.EQ.2) THEN

G=Y(1) - 0.1 / sqrt(p+0.01)

ENDIF

END

c The analytic Jacobian for the boundaries:

SUBROUTINE dgbnd(I,NCOMP,Y,DG,RPAR,IPAR)

IMPLICIT NONE

INTEGER I, NCOMP, IPAR(*)

DOUBLE PRECISION Y(2), DG(2), RPAR(*)

DG(1)=1.D0

DG(2)=0.D0

END

Before running the model, the parameters are defined:

parms <- c(a = 3, p = 1e-7)

and the DLL created and loaded; This model has been made part of package bvpSolve , so it
is available in DLL bvpSolve.

Assuming that this was not the case, and the code is in a file called "boundary_for.f", this
is how to compile this code and load the DLL (on windows):

system("R CMD SHLIB boundary_for.f")

dyn.load("boundary_for.dll")
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We execute the model several times, for different values of parameter p; we create a sequence
of parameter values (pseq), over which the model then iterates (for (pp in pseq)); the
resulting y-values (2nd) column) of each iteration are added to matrix Out.

Out <- NULL

x <- seq(-0.1, 0.1, by = 0.001)

pseq <- 10^-seq(0, 6, 0.5)

for (pp in pseq) {

parms[2] <- pp

outFor <- bvptwp(ncomp = 2, x = x, leftbc = 1,

initfunc = "initbnd", parms = parms, func = "funbnd",

jacfunc = "dfbnd", bound = "gbnd", jacbound = "dgbnd",

allpoints = FALSE, dllname = "bvpSolve")

Out <- cbind(Out, outFor[,2])

}

It takes less than 0.06 seconds to do this.

Results are plotted, using R -function matplot:

matplot(x, Out, type = "l")

legend("topleft", legend = log10(pseq), title = "logp",

col = 1 : length(pseq), lty = 1 : length(pseq), cex = 0.6)
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Figure 15: Multiple solutions of the linear problem - see text for R-code
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