Description Usage Arguments Details Value Note Author(s) References See Also Examples
Estimate the Renyi divergence measure, a measure of inequality
1 2 3 4 5 6 7 8 9 10 |
formula |
a formula specifying the income variable |
design |
a design object of class |
... |
future expansion |
epsilon |
a parameter that determines the sensivity towards inequality on the top of the distribution. Defaults to epsilon = 1. |
na.rm |
Should cases with missing values be dropped? |
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
If epsilon == 1
, the result matches svygei
with epsilon == 1
. As in the generalized entropy index, when epsilon == 1
, the logarithm in the function only allows for strictly positive variables.
Object of class "cvystat
", which are vectors with a "var
" attribute giving the variance and a "statistic
" attribute giving the name of the statistic.
This function is experimental and is subject to change in later versions.
Guilherme Jacob, Djalma Pessoa and Anthony Damico
Matti Langel (2012). Measuring inequality in finite population sampling. PhD thesis: Universite de Neuchatel, URL https://doc.rero.ch/record/29204/files/00002252.pdf.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)
svyrenyi( ~eqincome , design = des_eusilc, epsilon = .5 )
# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)
svyrenyi( ~eqincome , design = des_eusilc_rep, epsilon = .5 )
## Not run:
# linearized design using a variable with missings
svyrenyi( ~py010n , design = des_eusilc, epsilon = .5 )
svyrenyi( ~py010n , design = des_eusilc, epsilon = .5, na.rm = TRUE )
# replicate-weighted design using a variable with missings
svyrenyi( ~py010n , design = des_eusilc_rep, epsilon = .5 )
svyrenyi( ~py010n , design = des_eusilc_rep, epsilon = .5, na.rm = TRUE )
# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )
dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)
dbd_eusilc <- convey_prep( dbd_eusilc )
svyrenyi( ~eqincome , design = dbd_eusilc, epsilon = .5 )
# Testing if Renyi and GEI match when epsilon == 1:
svyrenyi( ~eqincome , design = subset(dbd_eusilc, eqincome > 0 ), epsilon = 1 )
svygei( ~eqincome , design = subset(dbd_eusilc, eqincome > 0 ), epsilon = 1 )
dbRemoveTable( conn , 'eusilc' )
dbDisconnect( conn , shutdown = TRUE )
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.