svysst: Sen-Shorrocks-Thon poverty index (EXPERIMENTAL)

Description Usage Arguments Details Value Note Author(s) References See Also Examples

View source: R/svysst.R

Description

Estimate the Sen-Shorrocks-Thon poverty measure.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
svysst(formula, design, ...)

## S3 method for class 'survey.design'
svysst(
  formula,
  design,
  abs_thresh = NULL,
  na.rm = FALSE,
  components = FALSE,
  ...
)

## S3 method for class 'svyrep.design'
svysst(
  formula,
  design,
  abs_thresh = NULL,
  na.rm = FALSE,
  components = FALSE,
  ...
)

## S3 method for class 'DBIsvydesign'
svysst(formula, design, ...)

Arguments

formula

a formula specifying the income variable

design

a design object of class survey.design or class svyrep.design from the survey library.

...

future expansion

abs_thresh

poverty threshold value

na.rm

Should cases with missing values be dropped?

components

Keep estimates of FGT(0), FGT(1), Gini index of poverty gap ratios.

Details

you must run the convey_prep function on your survey design object immediately after creating it with the svydesign or svrepdesign function.

Value

Object of class "cvystat", which are vectors with a "var" attribute giving the variance and a "statistic" attribute giving the name of the statistic.

Note

This function is experimental and is subject to change in later versions.

Author(s)

Guilherme Jacob, Djalma Pessoa and Anthony Damico

References

Anthony F. Shorrocks (1995). Revisiting the Sen Poverty Index. Econometrica, v. 63, n. 5, pp. 1225-230. URL http://www.jstor.org/stable/2171728.

Dominique Thon (1979). On measuring poverty. Review of Income and Wealth, v. 25, n. 4, pp. 429-439. URL http://dx.doi.org/10.1111/j.1475-4991.1979.tb00117.x.

Amartya K. Sen (1976). Poverty: An Ordinal Approach to Measurement. Econometrica, v. 44, n. 3, pp. 219-231. URL http://www.jstor.org/stable/1912718.

See Also

svysen, svyfgt, svygini.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )

# linearized design

des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 ,  weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep( des_eusilc )

# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep( des_eusilc_rep )

# using linearized design
svysst( ~eqincome, des_eusilc, abs_thresh=10000 )

# using replicate design:
svysst( ~eqincome, des_eusilc_rep, abs_thresh = 10000 )


## Not run: 

# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )

dbd_eusilc <-
	svydesign(
		ids = ~rb030 ,
		strata = ~db040 ,
		weights = ~rb050 ,
		data="eusilc",
		dbname=dbfile,
		dbtype="SQLite"
	)


dbd_eusilc <- convey_prep( dbd_eusilc )

# linearized SE:
svysst(~eqincome, dbd_eusilc, abs_thresh=10000)

dbRemoveTable( conn , 'eusilc' )

dbDisconnect( conn , shutdown = TRUE )


## End(Not run)

convey documentation built on July 1, 2020, 11:44 p.m.