
Correspondence regression: A tutorial

Koen Plevoets

March 13, 2018

1 By way of introduction: A bird’s eye view of
correspondence regression

Correspondence regression rests on the idea, described by Gilula and Haberman
(1988), of modelling a multi-category response variable in terms of several (cat-
egorical) explanatory variables. Consider the built-in data set (in R)
HairEyeColor, which gives the distribution of 592 students with respect to their
hair color, eye color and sex:

HairEyeColor

, , Sex = Male

##

Eye

Hair Brown Blue Hazel Green

Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

##

, , Sex = Female

##

Eye

Hair Brown Blue Hazel Green

Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8

A similar data table (with other subjects and without the Sex variable) was used
by Fisher (1940), where he laid the foundations of the technique of correspon-
dence analysis (together with Hirschfeld 1935). Although Fisher was primarily
concerned with the association between hair color categories and eye color cate-
gories, one could see Eye color as a response variable and Hair color and Sex as

1

two explanatory variables. A geneticist, for instance, might well be interested
in predicting the color of people’s iris (i.e. their eye color) on the basis of their
hair color and sex. Correspondence regression is meant for such an analysis.

The HairEyeColor data set is also contained in the corregp package, where it
is reshaped into the data frame HairEye (and some of the labels have also been
renamed):

library(corregp)

Loading required package: diagram

Loading required package: shape

Loading required package: rgl

data(HairEye)

summary(HairEye)

Hair Eye Sex

Black :108 Blue :215 Female:313

Blond :127 Brown_E:220 Male :279

Brown_H:286 Green : 64

Red : 71 Hazel : 93

ftable(HairEye, col.vars = "Eye")

Eye Blue Brown_E Green Hazel

Hair Sex

Black Female 9 36 2 5

Male 11 32 3 10

Blond Female 64 4 8 5

Male 30 3 8 5

Brown_H Female 34 66 14 29

Male 50 53 15 25

Red Female 7 16 7 7

Male 10 10 7 7

The ‘flat’ contingency table (produced with the ftable() function) nicely illus-
trates how the distribution of the Eye color categories can be studied in function
of the (combination of) the Hair color categories and the Sex categories.

The package corregp has a single function for correspondence regression: the
eponymous corregp(). The name of this function is a reference to the function
corresp() from the package MASS (Venables and Ripley 2002) for simple cor-
respondence analysis, and corregp() shares some of the computational features
of corresp(). In line with the goal of regressing a response variable on explana-
tory variables, corregp() takes a typical R formula as its first argument: e.g.
Eye ~ Hair * Sex performs a correspondence regression of the response vari-
able Eye in function of the (combination of the) two explanatory variables Hair
and Sex (more specifically, it performs a correspondence regression of Eye in

2

function of the main effect of Hair + the main effect of Sex + plus the inter-
action between Hair and Sex, i.e. Hair:Sex). For more details on R formulas,
see help(formula) or Section 2.1. Note that all variables will automatically be
treated as categorical (i.e. R ‘factors’): if you specify a numeric variable some-
where, then corregp() will convert it to a categorical/factor variable! The
data frame containing the (categorical) variables can be specified as a second
argument. The corregp() function contains many other arguments (see Sec-
tion 2.1 for an overview, or read the function’s help page: help(corregp)), but
one important one is the argument b which specifies the number of bootstrap
replications (in fact, these are Monte Carlo simulations). This is relevant if
one wishes to study the inferential properties of the results, such as confidence
regions (the default value for b is 0, which leaves the analysis exploratory). See
Appendix 2 for more details on the inferential procedure. In the example below,
we choose a random seed of 12345 (with the function set.seed()) in order to
make the results reproducible (so, if you also copy-paste it, then you will obtain
the same confidence regions as are printed in this tutorial):

set.seed(12345)

haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)

summary(haireye.crg)

Summary of correspondence regression of Eye ~ Hair * Sex in HairEye

##

Chi-squared: 150.0845

Phi-squared: 0.2535211

N: 592

##

##

Eigenvalues:

1 2 3 TOTAL

value 130.6530753 16.7450400 2.68637037 150.0845

% 0.8705302 0.1115708 0.01789905 1.0000

cum_% 0.8705302 0.9821009 1.00000000 1.0000

The summary of the correspondence regression gives some overall statistics and
it lists the distribution of the so-called ‘eigenvalues’. The Chi-squared value is
the same as Pearson’s Chi-squared statistic of the above-mentioned ‘flat’ con-
tingency table (which you can test yourself: type in
chisq.test(ftable(HairEye, col.vars = "Eye"), correct = FALSE)

and compare the value in the X-squared field of the output). The Phi-squared
value is equal to the Chi-squared value divided by N, the total number of ob-
servations. Both the Chi-squared and the Phi-squared value express the de-
pendence between the response variable (Eye) and the (combined) explanatory
variables (Hair and Sex). The core idea behind correspondence regression is the
same as behind correspondence analysis (or the correlation models of Gilula and
Haberman 1988): these techniques assume that the response variable and the
explanatory variables can be modelled in terms of underlying, latent axes which
explain the observed dependencies. The underlying axes can also be thought

3

of as latent variables, and correspondence analysis calls them ‘principal axes’.
For instance, the first two axes underlying the association between the Eye vari-
able and the combination of the Hair and Sex variables can be illustrated in
the following ‘association graph’ (the details behind association graphs will be
explained later in this tutorial):

11111111111

222222

Blue

Brown_E

Green

Hazel

Black

Blond

Brown_H

Red

Female

Male

Black.Female

Black.Male

Blond.Female

Blond.Male

Brown_H.Female

Brown_H.Male

Red.Female

Red.Male

0.57

−0.51

−0.22

−0.5

0.84

−0.15

−0.57

−0.44

0.9

0.72

−0.27

0.1

−0.37

−0.2

0.22

−0.31

0.32

The eigenvalues in the summary indicate the ‘explanatory power’ of each prin-
cipal or latent axis (correspondence analysis also speaks of ‘principal inertias’,
which are the eigenvalues divided by N). They are given in three ways: the first
row (value) shows the actual eigenvalues, the second row (%) shows the relative
values, and the third row (cum %) shows the cumulative relative values. One sees
that the sum of the actual eigenvalues is equal to the Chi-squared value (the
‘principal inertias’ of correspondence analysis likewise sum to the Phi-squared

value). The interpretation is straightforward: the latent axes decompose the
observed association (between response variable and explanatory variables) into
different sets.

Because we used the summary() function without any arguments, the reported
eigenvalues are descriptive measures of the data set (for precise details on the
computation of the latent axes, see standard textbooks on correspondence analy-
sis such as Greenacre 2017, or see Appendix 1). However, since we have applied
correspondence regression with bootstrapping (Monte Carlo simulations), we
can compute confidence intervals for the eigenvalues. The confidence intervals
are printed by setting the argument add ci to TRUE:

4

summary(haireye.crg, add_ci = TRUE)

Summary of correspondence regression of Eye ~ Hair * Sex in HairEye

##

Chi-squared: 150.0845

Phi-squared: 0.2535211

N: 592

##

##

Eigenvalues:

Value:

1 2 3 TOTAL

130.65308 16.745040 2.686370 150.0845

lower 96.27591 1.811848 -3.058831

upper 166.02083 33.212165 10.332489

##

Percentage (%):

1 2 3 TOTAL

0.8705302 0.11157076 0.01789905 1

lower 0.7620139 0.02294202 -0.01834225

upper 0.9637663 0.20425758 0.06534700

##

Cumulative percentage (cum_%):

1 2 3 TOTAL

0.8705302 0.9821009 1.0000000 1

lower 0.5782054 0.5644805 0.5754729

upper 1.3505200 1.3561153 1.3600563

For the actual eigenvalues (in Value), the percentages, or the cumulative per-
centages, we see the observed measures together with a lower confidence bound
(in lower) and an upper confidence bound (in upper). For example, the con-
fidence interval for the first eigenvalue is [96.30; 165.60], the confidence interval
for the second eigenvalue is [1.98; 33.34], the confidence interval for the first
relative eigenvalue is [0.76; 0.96], etc. By default, these are 95% confidence in-
tervals, but you can specify the confidence level yourself with the argument cl

(see help(summary.corregp)).

It is the philosophy of the corregp package that as many results as possible
can be visualized. The eigenvalues can therefore be plotted in a ‘scree plot’
together with their confidence intervals. The corregp package has the function
screeplot which also has the argument add ci:

screeplot(haireye.crg, add_ci = TRUE)

5

1 2 3

0
50

10
0

15
0

On the basis of the eigenvalues it can be determined which latent axes are
‘important’. As mentioned, the eigenvalues measure the observed association
between response and explanatory variables, and the results always sort the
eigenvalues from the largest value to the smallest one. Hence, the first eigenval-
ues indicate important or informative axes, whereas the last eigenvalues indicate
uninformative ones. Because any data set is always a random sample, these un-
informative axes can be considered as reflecting the ‘sampling noise’ in the data.
In practice, one inspects the eigenvalues for a certain cutoff point between the
informative and the noisy axes. In a scree plot one typically looks for an ‘el-
bow’ among the eigenvalues: the first few eigenvalues generally exhibit a sharp
decline with large differences between successive eigenvalues, but after a while
the majority of the information (i.e. association) has been ‘explained’, so the
differences between the later successive eigenvalues are not so large anymore.
Such a point can be said to represent an elbow in the scree plot. The scree
plot for the HairEye data contains only a few latent axes, so an elbow is not
so easy to discern, but one could claim that there exists one at the second axis.
That means that the first two latent axes are the informative ones. Because
the eigenvalues are descriptive statistics of the data, such a statement is not
based on statistical inference. However, if we have computed confidence inter-
vals for the eigenvalues, then we can use them to back up our decision. In the
output of the summary() function or in the scree plot, we see that the lower

limit of the second eigenvalue is lower than the upper limit of the third eigen-
value. In other words, the confidence interval of the second eigenvalue overlaps
with the confidence interval of the third eigenvalue, so the difference between
the two eigenvalues can be regarded as not statistically significant (incidentally,
the lower limit of the third eigenvalue is a negative value, which means that

6

0 lies within the confidence interval or that the third eigenvalue is not signifi-
cantly different from 0). The conclusion is that the confidence intervals of the
eigenvalues also indicate that the informative latent axes are the first two.

Once we have decided to retain two latent axes, we can inspect the results
by visually plotting them in a two-dimensional coordinate space. Because cor-
respondence regression is based on correspondence regression, the typical two-
dimensional display is a ‘biplot’, which shows the categories of both the response
variable and the explanatory variables. In the corregp package, the biplot is
made with the generic function plot(), which has many arguments for cus-
tomizing the outlook (see help(plot.corregp)):

plot(haireye.crg, x_ell = TRUE, xsub = c("Hair", "Sex"))

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

1

2

BlueBrown_E

Green

Hazel

Black

Blond

Brown_H

Red

Female

Male

The distances in the plot are (inverse) reflections of the associations between
the categories. For example, the eye color Brown E is highly associated with the
hair color Black, as are the eye color Blue and the hair color Blond. Similarly,
the hair color Red is associated with both the eye colors Hazel and Green, just
as the hair color Brown H (in the center of the plot) appears to be indiscriminate
between the eye colors Brown E and Hazel. Other interpretations can be read
off from the plot in the same vein. Because we asked for confidence regions
for the explanatory variables (with the argument x ell), the plot exhibits a
two-dimensional ‘confidence ellipse’ for every category of Hair and Sex (the
computation of the confidence ellipses is done by a call to the cell() function;
see help(cell.corregp)). As a consequence, we are able to see that the dif-
ference between the hair colors Black and Blond (in the distribution of the eye
colors) is statistically significant, both are significantly different from Brown H

7

and Red, but the latter are not significantly different from each other. Similarly,
there is no statistically significant difference between the sexes Female and Male

(again, with respect to the distribution of the eye colors). A corollary of regress-
ing a response variable on multiple explanatory variables is that the categories
of different explanatory variables can also be compared with each other. For
instance, we see that the sex category Female is not significantly different from
the hair colors Brown H and Red, but it is significantly different from Black or
Blond (and the same holds for Male).

The biplot above only contains the main effects of Hair and Sex because of
our use of the argument xsub (see help(plot) or see Section 2.2 for more
details on ysub, xsub or other arguments of plot()). We have left the (eight)
combination categories of the interaction variable Hair:Sex out of the biplot for
the sake of illustration, since their inclusion would render the plot rather dense
(they could be visualized with xsub = "Hair.Sex"). However, it is a common
practice in the context of regression to first determine the relative importance of
the explanatory variables (in explaining the variation in the response variable)
before examining the effects. This is the regression aspect of correspondence
regression: it is the analysis of how strongly associated each explanatory variable
is to the response variable. It is particularly relevant if one has specified many
different interactions in the formula of the correspondence regression and one
wants to find out which are the important ones (so one could subsequently use
the xsub argument to select only those, for instance). The corregp package
has a function anova() which produces a so-called ‘ANOVA table’, i.e. for
every predictor term in the correspondence regression it lists the (explained)
association with the response variable which is not due to the other predictor
terms. Association is measured by means of the Pearson Chi-squared statistic,
and if one uses the anova() function without any specification of the number
of latent axes, then the values in the output are directly related to the Pearson
Chi-squared statistics of the cross table formed by each predictor term with the
response variable (the specification of the number of latent axes is, of course,
evident after the examination of the eigenvalues and/or the scree plot, but we
first want to describe the ANOVA table):

anova(haireye.crg)

ANOVA Table

(Type III Tests)

##

X^2 Lower Upper

Hair 138.289842 106.474392 186.33528

Sex 1.529824 -2.556352 11.66036

Hair.Sex 10.264820 3.601549 33.31468

It can be easily verified that the value 138.289842 in (the first column X^2

of) the output is the Pearson Chi-squared statistic of the cross table of Hair

and (the response variable) Eye, while 1.529824 is the Pearson Chi-squared

8

statistic of the cross table of Sex and Eye, and 10.264820 is the Pearson Chi-
squared statistic of the cross table of Hair:Sex and Eye minus 138.289842

and 1.529824, i.e. 150.0845 = 138.289842 + 1.529824 + 10.264820. In other
words, the value (X^2) for Hair.Sex (in the third row) expresses the amount of
association that the interaction term Hair:Sex exhibits with the response Eye

which cannot be explained by the main predictors Hair and Sex together. This
is the typical way of analysing the ‘contribution’ of every predictor term to the
explanation of the response variable in regression (the X^2 values in the ANOVA
table are in fact computed according to the ‘additive’ definition of interactions
by Darroch 1974 and Kroonenberg and Anderson 2006).

However, the construction of an ANOVA table for correspondence regression
usually involves the specification of the number of latent axes. This can be
done with the argument nf (see help(anova.corregp) for the other arguments
of the anova() function). From the discussion of the eigenvalues and the scree
plot above we know that the first two latent axes are the informative ones for
haireye.crg, so we build the ANOVA table for those two latent axes (naturally,
the X^2 values are somewhat reduced, since we have omitted the information
on the third latent axis):

anova(haireye.crg, nf = 2)

ANOVA Table

(Type III Tests)

##

X^2 Lower Upper

Hair 136.721942 103.105164 180.72943

Sex 1.463949 -3.047410 10.04126

Hair.Sex 9.212224 1.443563 27.29929

If the correspondence regression contains bootstrap replications/simulations
(like haireye.crg), then the anova() function will also give confidence inter-
vals for the X^2 values, with which their statistical significance can be assessed.
A predicter term is significant (and important) if 0 lies outside of its confidence
interval. In the ANOVA table of the HairEye example, we see that the main ef-
fect of Hair as well as the interaction Hair:Sex are statistically significant, but
the main effect of Sex is not. Apparently, the difference between the two sexes is
not an important predictor for (the response variable) Eye color. This corrobo-
rates the result in the biplot above, where the individual categories Female and
Male were found not to be significantly different from each other (it also means
that the correspondence regression haireye.crg with one main effect and one
interaction represents a so-called non-hierarchical model, but we will not pursue
that issue further here). The presence of non-significant predictor terms does
not necessarily imply the refitting of the correspondence regression, since the
goodness of fit is determined with respect to the (number of) latent axes. Only
when one wants to inspect new effects (or effects which were not included in
the formula before) can one rerun the correspondence regression. However, the
significant predictor terms in the ANOVA table bear on the subsequent steps

9

in the analysis, because they are the typical effects that one wants to visualize
and study. That means that the biplot above should in fact have contained the
effects of the interaction Hair:Sex, i.e. by setting xsub = "Hair.Sex". In the
remainder of this tutorial, we will keep using the main effects Hair and Sex for
the sake of illustration, although the ANOVA table clearly points out that the
interaction Hair:Sex is more informative.

We continue this Introduction with some other plotting functionalities than
the biplot. Although two-dimensional plots are customary for correspondence
analysis, it is also possible to visualize the results of correspondence regres-
sion for one dimension, three dimensions or more. As a matter of fact, it is
a general practice to use the (one-dimensional) confidence intervals for a sin-
gle latent axis in order to determine whether the score of a particular category
(on that latent axis) is significantly different from 0 or not. The plot of the
confidence intervals of the categories on a certain latent axis (which you select)
can be made with the function ciplot() (which itself calls the cint() function
in order to compute the confidence intervals; see help(cint.corregp)). The
ciplot() function has two important arguments among many other ones (see
help(ciplot.corregp)): parm controls which categories are plotted and axis

specifies the latent axis. The parm argument can be used very flexibly: the
value "y" will plot all the categories of the response variable, the value "x" will
plot all the categories of (all) the explanatory variables, a character vector with
names of explanatory variables will plot only the categories of the specified ex-
planatory variables, or finally, a character vector of category names (i.e. ‘levels’)
will plot only the specified categories. For example, the plot of the confidence
intervals of the response variable categories on the first latent axis is obtained
as follows:

ciplot(haireye.crg, parm = "y", axis = 1)

10

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

1

●

●

●

●

Blue Brown_E Green Hazel

This can then be compared to the confidence intervals of the categories of the
explanatory variables (plots of confidence intervals for predictor variables are of
course quite common in regression analysis). As mentioned above, we only illus-
trate the main categories of the Hair and Sex variables (so, not the categories
of the interaction variable Hair:Sex):

ciplot(haireye.crg, parm = c("Hair", "Sex"), axis = 1)

−
0.

5
0.

0
0.

5
1.

0

1

●

●

● ●

●
●

Black Blond Brown_H Red Female Male

11

We see that the score of the hair color Blond (on the first latent axis) is sig-
nificantly larger than 0, the scores of both Black and Brown H are significantly
smaller than 0, but the scores of the hair color Red as well as the two sexes
Female and Male are not significantly different from 0 (similarly, the score of
the eye color Blue is significantly larger than 0, the scores of both Black and
Hazel are significantly smaller than 0 while the score of Green is not signifi-
cantly different from 0). The same tests can be done for all the other latent
axes as well as for the interaction Hair:Sex.

Because the corregp package imports the rgl package (Adler, Murdoch et al.
2017), it is also possible to make three-dimensional plots. This is of course not
necessary for the HairEye data, where two latent axes are sufficient, but we
will discuss plots of more than two dimensions for the sake of illustration. The
function for 3D plots is plot3d(), which has special arguments for correspon-
dence regression (see help(plot3d.corregp)). For example, we can ask for
the three-dimensional confidence ellipsoids for the explanatory variables with
the argument x ell (which calls the cell3d() function for the 3D confidence
ellipsoids; see help(cell3d.corregp)), and with the argument xsub we again
visualize only the main categories of Hair and Sex (if you run the following code
statement in R, then you can inspect the contents of the 3D plot by rotating
it):

plot3d(haireye.crg, x_ell = TRUE, xsub = c("Hair", "Sex"))

If you happen to have a data set for which the eigenvalues point out that you
need more than three latent axes, then you have three options (obviously, a sin-
gle scatterplot of the results is no longer possible). A straightforward solution
is to make multiple use of ciplot(), plot() or plot3d() in order to visualize

12

all the relevant latent axes. Both the plot() and plot3d() function have an
axes argument with which you can select a combination of the latent axes (see
the help pages of both functions). For instance, if you have an analysis with
four important latent axes, then you can make four one-dimensional plots with
ciplot(, axis = 1), ciplot(, axis = 2), ciplot(, axis = 3) and
ciplot(, axis = 4), or you can generate all six two-dimensional plots (or just
a subset thereof) with plot(, axes = c(1, 2)), plot(, axes = c(1, 3)),
plot(, axes = c(1, 4)), plot(, axes = c(2, 3)),
plot(, axes = c(2, 4)) and plot(, axes = c(3, 4)), or you can even cre-
ate (a subset of) the four three-dimensional plots with
plot3d(, axes = c(1, 2, 3)), plot3d(, axes = c(1, 2, 4)),
plot3d(, axes = c(1, 3, 4)) and plot3d(, axes = c(2, 3, 4)). An al-
ternative is to make a ‘parallel coordinate plot’, in which the latent axes are
displayed next to each other and the scores of individual categories are con-
nected by a line. The function for a parallel coordinate plot in the corregp
package is pcplot(), which again has many arguments for customization (see
help(pcplot.corregp)). For example, a parallel coordinate plot of the Eye

colors on the first three latent axes can be obtained as follows (just as the 3D
plot above, this plot is not necessary for the HairEye data):

pcplot(haireye.crg, parm = "y", axes = 1:3)

1 2 3

Blue

Brown_E

Green

Hazel

Finally, you can visualize the results of a correspondence regression in an asso-
ciation graph, such as the one on pages 3–4 in this tutorial. Association graphs
are directed acyclic graphs, in which the different latent axes are depicted as
circles and the individual categories of both the response variable and explana-
tory variables are depicted as boxes. It is a convention to give the circles a

13

white color (for continuous variables) and the boxes a grey color (for discrete
variables), but all colors can be changed manually. An association graph draws
an arrow from a specific latent axis to a specific category if and only if the score
of that category on that latent axis is significantly different from 0, i.e. 0 does
not lie within the confidence interval of that category on that latent axis (the
confidence intervals are computed with the cint() function). In other words, if
no arrow is drawn between a certain category and a certain latent axis, then this
indicates that the score of that category on that latent axis is not significantly
different from 0, i.e. it is effectively 0. The fact that the appearance of arrow be-
tween categories and latent axes is based on statistical significance entails, by the
way, that association graphs can only be made if the correspondence regression
contains bootstrap replicates/simulations! The (two) functions for visualizing
association graphs in the corregp package are agplot() and plotag() (see
either help(agplot.corregp) or help(plotag.corregp) for the help page),
which in turn make use of the functionalities in the package diagram (Soetaert
2014). The association graph for the HairEye data above, for instance, can be
obtained as follows:

agplot(haireye.crg, axes = 1:2)

For a general examination of the association between response variable and ex-
planatory variables, the plots of the scores/coordinates are usually informative
enough (especially the biplot). However, one can also look further into the
relations between the latent axes and the individual categories. That can be
useful for finding an interpretation for the latent axes. There are two mea-
sures: the contributions of the points to the axes express how well each category
represents (the inertia corresponding to) a certain latent axis, while the con-
tributions of the axes to the points express how well each latent axis reflects a
certain category. The difference between both measures is essentially that the
former contributions (i.e. of the points to the axes) sum to 100% for each latent
axis, whereas the latter contributions (i.e. of the axes to the points) sum to
100% for each individual category. The former contributions are sometimes also
called the ‘absolute contributions’, and the latter contributions are sometimes
referred to as the ‘squared correlations’. Both contributions can be consulted
with the summary() function by specifying the argument contrib. That argu-
ment can have a plethora of possible values: the contributions of the points to
the axes are given by "p a", "pts axs", "pts2axs", "ptstoaxs", "pts to axs",
"pnts axes", "pnts2axes", "pntstoaxes" or "pnts to axes", the contribu-
tions of the axes to the points are given by "a p", "axs pts", "axs2pts",
"axstopts", "axs to pts", "axes pnts", "axes2pnts", "axestopnts" or
"axes to pnts". Last but not least, the contrib argument can also have the
value "both" or "b". In the following example, we specify the first two latent
axes (with the argument nf), so the contributions of the axes to the points
("axes2pnts") are of course less than 100%:

14

summary(haireye.crg, parm = "y", contrib = "axes2pnts", nf = 2)

Summary of correspondence regression of Eye ~ Hair * Sex in HairEye

##

Chi-squared: 150.0845

Phi-squared: 0.2535211

N: 592

##

##

Eigenvalues:

1 2 TOTAL

value 130.6530753 16.7450400 147.3981153

% 0.8705302 0.1115708 0.9821009

cum_% 0.8705302 0.9821009 0.9821009

##

##

Contributions:

##

Y (Eye):

Axes to points (Squared correlations):

1 2 TOTAL

Blue 0.9744458 0.02539499 0.9998408

Brown_E 0.9568324 0.04059033 0.9974227

Green 0.1315237 0.78261334 0.9141370

Hazel 0.4463229 0.39276850 0.8390914

summary(haireye.crg, parm = "x", contrib = "pts_axs", nf = 2)

Summary of correspondence regression of Eye ~ Hair * Sex in HairEye

##

Chi-squared: 150.0845

Phi-squared: 0.2535211

N: 592

##

##

Eigenvalues:

1 2 TOTAL

value 130.6530753 16.7450400 147.3981153

% 0.8705302 0.1115708 0.9821009

cum_% 0.8705302 0.9821009 0.9821009

##

##

Contributions:

##

X:

Points to axes (Absolute contributions):

##

Hair:

1 2

Black 0.209316873 0.31484902

Blond 0.678929483 0.03082431

15

Brown_H 0.048040842 0.01930658

Red 0.009571926 0.41988166

TOTAL 0.945859124 0.78486157

##

Sex:

1 2

Female 0.0006555480 0.03608747

Male 0.0007354356 0.04048523

TOTAL 0.0013909836 0.07657270

##

Hair.Sex:

1 2

Black.Female 1.284378e-01 0.321689624

Black.Male 8.410841e-02 0.054144972

Blond.Female 5.033496e-01 0.135983679

Blond.Male 1.828826e-01 0.039051095

Brown_H.Female 8.091262e-02 0.017295774

Brown_H.Male 6.512204e-04 0.004223557

Red.Female 1.963481e-02 0.165594391

Red.Male 2.299285e-05 0.262016907

TOTAL 1.000000e+00 1.000000000

In summary, correspondence regression typically involves the following steps:

1. Perform a correspondence regression with the corregp() function.

2. Check the eigenvalues in order to determine the number of important
latent axes. You can use either summary() or screeplot().

3. Build an ANOVA table with anova() in order to discern the important
predictor terms among the explanatory variables.

4. Visualize the results with ciplot(), plot(), plot3d(), agplot() (or
plotag()) or pcplot(). In case you need more than two latent axes, you
can use ciplot() or plot() (and even plot3d()) several times and make
different selections of the latent axes.

5. If you want more information on the interpretation of the latent axes,
then you can inspect the contributions of the point to the axes and/or the
contributions of the axes to the points by specifying the contrib argument
of summary().

2 Functions and methods in the corregp package

2.1 The function corregp()

Because corregp() is the central function for correspondence regression, we
will now explain each of its arguments (see also help(corregp)):

16

formula This should be a typical R formula with a response variable on the
left-hand side and explanatory variables on the right-hand side (separated
by a tilde). See Section 11.1 Defining statistical models; formulae of the
standard R manual An Introduction to R for an elaborate description.
Examples for correspondence regression are (for convenience’ sake, we will
denote the response variable as Y and the explanatory variables as X1, X2
etc.):

• Y ~ X1 Correspondence regression of Y in function of X1. This is
equivalent to a simple correspondence analysis of the two variables Y
and X1.

• Y ~ X1 + X2 Correspondence regression of Y in function of both
X1 and X2. The output will only contain the results for the main
categories of X1 and the main categories of X2 (next to the main
categories of Y).

• Y ~ X1 + X2 + X1:X2 Correspondence regression of Y in function
of the interaction between X1 and X2. In other words, the output will
contain results for the main categories of X1, the main categories of
X2 and the combined categories of the interaction X1:X2.

• Y ~ X1 * X2 The same as Y ~ X1 + X2 + X1:X2.

• Y ~ (X1 + X2 + X3)^2 Correspondence regression of Y in func-
tion of all the two-way interactions between X1, X2 and X3. This is
equivalent to Y ~ X1 + X2 + X3 + X1:X3 + X1:X2 + X2:X3.

• Y ~ (X1 + X2 + X3)^2 - X2:X3 Correspondence regression of Y
in function of all the two-way interactions between X1, X2 and X3

except the one between X2 and X3. This is equivalent to
Y ~ X1 + X2 + X3 + X1:X2 + X1:X3.

• Y ~ X1 * X2 * X3 - X1:X2:X3 Correspondence regression of Y

in function of all the two-way interactions between X1, X2 and X3.
The term X1 * X2 * X3 denotes all the possible combinations of X1,
X2 and X3, but the three-way interaction X1:X2:X3 is excluded. In
other words, this is equivalent to
Y ~ X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3 (hence, also to
Y ~ (X1 + X2 + X3)^2).

• Y ~ X1/X2 Correspondence regression of Y in function of X2 nested
with X1. This is just the same as Y ~ X1 + X1:X2 (or as
Y ~ X1*X2 - X2).

• Y ~ -1 + X1 * X2 The same as Y ~ X1 * X2. Intercepts are not
part of correspondence regression in the first place, so their exclusion
in the formula does not change anything.

• Y ~ 0 + X1 * X2 The same as Y ~ -1 + X1 * X2, so also as
Y ~ X1 * X2.

• . . .

17

data This should be the data frame containing all the variables in formula

as columns. IMPORTANT to remember is that any numeric or logical
variable will be converted to a factor (i.e. a categorical variable).

part This can be a (character) vector of conditional variables for both the
response variable and the explanatory variables: if specified, then a cor-
respondence regression of the response variable and the explanatory vari-
ables will be performed given these variables. More specifically, if we
denote such conditional variables as Z1, Z2 etc., then correspondence re-
gression of Y ~ X1 + X2 +... will basically amount to an analysis of
Y:(Z1:Z2:...) ~ X1:(Z1:Z2:...) + X2:(Z1:Z2:...) +
Note that Z1, Z2 etc. have to be columns in data, and the correct nota-
tion of the argument is part = c("Z1", "Z2", ...), i.e. with quotation
marks. A possible example of a conditional variable is a grouping factor for
the categories of the response (Y) variable (which is relevant for so-called
lectometric analyses in linguistics).

b This can be set equal to the number of bootstrap replications (Monte Carlo
simulations). Those are new samples which are generated by resampling
the observed data set (with replication). The new, replicated/simulated
samples lead to to new values for both the eigenvalues and the scores on
the latent axes. These new values can be used (by the functions cint(),
cell() and cell3d()) to construct confidence regions. Usually, the num-
ber of replications/simulations is chosen to be quite large (e.g. 3000). If
set to 0, then no replicate samples are generated, so no confidence regions
can be computed.

xep This argument stands for ‘x separate’. By default, the results for all
predictor terms in formula are collected as separate components in a list.
This also admits the construction of an ANOVA table for the predictor
terms. However, if you want the results of the explanatory variables col-
lected in one overall matrix, then you can set this argument to FALSE.

std This argument specifies whether to standardize the latent axes or not.
The unstandardized scores on the latent axes are also called the ‘principal
coordinates’, and the variance of each latent axis is the corresponding
eigenvalue. The standardized scores (i.e. with variance 1) are also called
the ‘standard coordinates’.

rel By default, correspondence analysis (and correspondence regression)
computes scores for the row profiles and the column profiles, i.e. the rows
of a frequency table divided by their row totals and the columns of the
table divided by their column totals. You can set this argument to FALSE if
you want to obtain scores for the Pearson residuals (O−E√

E
) instead. Leave

this argument untouched unless you know what you are doing.

phi This argument specifies whether the eigenvalues in the output should
sum to the Chi-squared value or to the Phi-squared value, which is the

18

Chi-squared value divided by the number of observations (see Appendix
1). In accordance with the corresp() function in the package MASS,
the default for this argument is the first option.

chr If the formula contains some interaction terms, such as X1:X2, then the
output will contain results for the combination of the categories/levels of
X1 with the categories/levels of X2. The chr argument specifies which
character string will be used as the connector (or ‘separator’) for the
combinations. The default for this argument is to combine the cate-
gories/levels with a single dot.

b scheme This argument specifes the sampling scheme for bootstrapping
(Monte Carlo simulation). It must be either multinomial (the default)
or product-multinomial (or a string matching one of these two values).
Multinomial sampling takes the frequency table of the Y and the (combi-
nation of the) X categories as one overall multinomial variable and uses the
cell frequencies as the probabilities for resampling. Product-multinomial
sampling treats the combination categories of the X variables as separate
observations which are each multinomially distributed for the Y categories.
Accordingly, the (re)sampling probabilities of the Y categories are differ-
ent for each combination category in X. Product-multinomial sampling is
the typical sampling scheme for multicategory response data, but both
sampling schemes often give the same results.

The output of the corregp() function is a list, the components of which are de-
scribed in the Value section of the help file (help(corregp)). Each component
can be accessed individually:

is.list(haireye.crg)

[1] TRUE

names(haireye.crg)

[1] "eigen" "y" "x" "freq" "conf" "aux"

haireye.crg$y

1 2 3 4

Blue 0.5652324 0.09124777 -0.007224548 7.518237e-17

Brown_E -0.5052264 0.10405893 0.026220924 -3.367543e-17

Green 0.1516430 -0.36990813 0.122524570 6.331147e-17

Hazel -0.2159174 -0.20254960 -0.129644064 2.901776e-17

2.2 The plotting functions

The plotting functions ciplot(), plot(), plot3d(), agplot() (plotag()) and
pcplot() have many more arguments than the ones described in the Introduc-
tion. The majority of these involve settings for the usual graphical parame-
ters such as color, font size, font type, line width, line type, main title of the
plot, subtitle of the plot, labels for the axes and/or limits for the axes (and

19

so on). See the help pages of the functions for a full overview (help(ciplot),
help(plot.corregp), help(plot3d.corregp), help(agplot),
help(pcplot)). Probably the best way to master these arguments is by trial.

The functions plot(), plot3d() and agplot() (or plotag()) contain two argu-
ments ysub and xsub which require some further clarification. In the examples
in the Introduction, xsub was used with the names of explanatory variables.
That automatically selected the categories (i.e. ‘levels’) belonging to those vari-
ables. However, both ysub and xsub can also be specified with indices for the
individual categories themselves. The following code, for instance, plots only
the main Hair category Blond, the main Sex category Female and the interac-
tion category Blond.Female from the X results (and ysub would work in the
same way):

plot(haireye.crg, x_ell = TRUE, xsub = c("Blond", "Female", "Blond.Female"))

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

1

2

BlueBrown_E

Green

Hazel

BlondFemale

Blond.Female

Both arguments can also be given numeric indices, but there is a difference be-
tween ysub and xsub. Numeric indices for ysub simply select the corresponding
rows from the Y table in the same way as character names do. Numeric indices
for xsub, however, depend on whether the corregp() output was generated with
the argument xep being TRUE or FALSE. If xep = TRUE, then the results for X

form a list themselves and the numeric indices select the corresponding com-
ponents from that list, i.e. all the categories of the selected predictor term(s).
If xep = FALSE, then the results for X are all contained in one overall matrix,
and the numeric indices (again) select the corresponding rows. In other words,
there is no way of selecting individual categories with numeric indices if xep =

TRUE (one has to use character values or rerun corregp() with xep = FALSE).

20

The following code illustrates the use of numeric indices by plotting the Blue

and Brown E Eye colors as well as all the categories of both the main predictor
Hair and the main predictor Sex:

plot(haireye.crg, x_ell = TRUE, xsub = c(1, 2), ysub = c(1, 2))

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

1

2

BlueBrown_E

Black

Blond

Brown_H

Red

Female

Male

2.3 The functions for confidence regions

Although confidence regions in the corregp package are primarily computed
for visualization, there are also functions which give the actual numeric out-
put. These are cint() for (one-dimensional) confidence intervals, cell() for
(two-dimensional) confidence ellipses and cell3d() for (three-dimensional) con-
fidence ellipsoids. Normally, users do not have to call these functions directly
(as they are called by ciplot(), plot() and plot3d(), respectively), but one
can do so if one has a certain use for them (see help(cint), help(cell) or
help(cell3d)). For instance, the confidence intervals of the four Eye colors on
the first latent axis are:

cint(haireye.crg, parm = "y", axis = 1)

Lower Upper

Blue 0.45812381 0.67362007

Brown_E -0.57863679 -0.43192304

Green -0.07212271 0.37556886

Hazel -0.36563837 -0.06592736

21

All three functions contain the argument cl which specifies the confidence level
for the confidence regions (the default value is the conventional 0.95). This
is the percentage of areas which would contain the true population value (i.e.
of a certain score) if the sample were repeated. Because corregp() works
with bootstrap replications (simulations), this means that the confidence level
cl specifies the percentage of the b replicate values (for each score) used to
construct the confidence region.

The cint() function also has the argument nq, which specifies whether one
wants to construct the confidence interval using the normal distribution or not.
The use of the normal distribution (with nq = TRUE) means that the mean and
the standard deviation of the b replicate values are computed on the basis of
which a confidence interval is constructed under the normal distribution (i.e.
by means of the function qnorm()). If one does not use the normal distribution
(with nq = FALSE), then the confidence interval is obtained from the b replicate
values themselves by means of the quantile() function (i.e. by choosing two
actual replicate values as the lower and upper limit which together represent
the confidence level cl). The computation of bootstrap confidence intervals is
usually done in the second ‘non-parametric’ way, but the first option is avail-
able as the (one-dimensional) counterpart of two-dimensional confidence ellipses
(made with cell()), because the latter are always constructed by means of the
bivariate normal distribution. It probably needs no clarification that normal
confidence intervals and non-parametric confidence intervals can sometimes be
quite different. For completeness’ sake, it should be pointed out that both the
summary() function and the screeplot() function also contain the arguments
cl and nq for the confidence intervals of the eigenvalues, where they have the
same meaning. All confidence intervals in the corregp package are computed
with the function ci() (see help(ci)).

The cell() function does not have an argument nq, but it does have an argu-
ment np. That argument specifies the number of points to represent an ellipsis.
These points are connected by lines in the visualization to form the ellipsis.
The representation of ellipses by a series of np points is due to the fact that
corregp() makes use of the ellipse package (Murdoch and Chow 2013) to com-
pute the confidence ellipses (which is inspired by R code on www.carme-n.org).
The default number of points is 100, which usually gives good results. One
can increase this value if one wishes a better resolution, but that will lead to a
longer computation time.

Finally, the cell3d() function makes use of the ellipse3d() function from
the rgl package (which itself creates a so-called mesh3d object). See the help
pages of the rgl package for further information. The cell3d() function has
no additional arguments.

22

2.4 The functions for extracting coefficients, fitted values
or residuals

The corregp package also has functions for extracting coefficients, fitted val-
ues and/or residuals from a correspondence regression. These are conventially
named coefficients(), fitted.values() and residuals() with their cus-
tomary abbreviations coef(), fitted() and resid(). The coefficients of cor-
respondence regression are essentially the coordinate scores of the categories on
the latent axes, so the function coefficients() (or coef()) prints them in a
matrix or a vector. It is used with the argument parm for the selection of the cat-
egories (i.e. "y" for all the Y categories/levels, "x" for all the X categories/levels,
a vector of any variable/term names in X, a vector of any category/level names
in X or a vector of any category/level names in Y) and the argument axes for the
selection of the latent axes (see help(coefficients.corregp)). The function
fitted() (or fitted.values()) makes use of the coordinate scores in corre-
spondence regression to compute predicted/expected frequencies for every cell
in the cross table of X by Y. It is used with the argument parm (in the same
way as before) and the argument nf for the selection of the number of latent
axes (see help(fitted.corregp)). The function residuals() (or resid())
is the complement to fitted() in that it computes the difference between ob-
served frequencies and predicted frequencies for every cell in the cross table of
X and Y (in other words, for a certain number of latent axes, the sum of the fit-
ted frequencies and the residuals is equal to the observed frequencies — except
when conditional variables have been specified in part, because the computation
does not take the associations with these variables into account). The function
is also used with the arguments parm and nf (see help(residuals.corregp)).
Examples for these three functions are:

coef(haireye.crg, parm = c("Hair", "Sex"), axes = 1:2)

1 2

Black -0.50321092 0.22094409

Blond 0.83573827 0.06375113

Brown_H -0.14814333 -0.03362116

Red -0.13271815 -0.31468597

Female -0.01654207 0.04393890

Male 0.01855795 -0.04929346

fitted(haireye.crg, parm = c("Hair", "Sex"), nf = 2)

Blue Brown_E Green Hazel

Black 20.17722 67.341848 4.105338 16.37560

Blond 94.09737 6.638403 15.508462 10.75577

Brown_H 83.45987 121.005932 31.726772 49.80742

Red 17.26554 25.013817 12.659428 16.06121

Female 114.12142 121.549078 30.387038 46.94247

Male 100.87858 98.450922 33.612962 46.05753

23

resid(haireye.crg, parm = c("Hair", "Sex"), nf = 2)

Blue Brown_E Green Hazel

Black -0.17721681 0.6581523 0.8946619 -1.3755974

Blond -0.09736508 0.3615970 0.4915382 -0.7557700

Brown_H 0.54012560 -2.0059324 -2.7267717 4.1925784

Red -0.26554371 0.9861831 1.3405716 -2.0612110

Female -0.12141708 0.4509219 0.6129623 -0.9424671

Male 0.12141708 -0.4509219 -0.6129623 0.9424671

Appendix 1: The computation of correspondence
regression

Correspondence regression starts from a frequency table formed by crossing
the response variable (Y) with all the possible combinations of the explanatory
variables (X). The latter is the same as the highest-order interaction of all the
explanatory variables, i.e. if the formula is specified as e.g. Y ~ X1 + X2 +

X3, then correspondence regression crosstabulates Y with X1:X2:X3 (in the usual
R notation). If conditional variables (Z1, Z2, . . .) are specified in the argument
part, then correspondence regression constructs a three-way table by crossing Y

and X for every possible combination of the conditional variables (i.e. the joint
distribution of the conditional variables). Correspondence regression then com-
putes the Pearson residuals O−E√

E
of this table, where E is calculated according

to the usual formula of conditional independence of Y and X given Z (if no con-
ditional variable is specified in part, then E is simply calculated as the mutual
independence of Y and X). The three-way table is subsequently aggregated over
the conditional variables with weights

n+jk

n+j+
for every Y level j and Z level k and

weights ni+k

ni++
for every X level i and Z level k. The resulting matrix (of Y versus

X) measures the same association as the three-way correspondence analysis in
Section 3.2 of Van der Heijden et al. (1989) (who make use of Escofier’s 1984
generalized correspondence analysis). If phi = FALSE, then we denote this ma-
trix of (aggregated) Pearson residuals as D. Otherwise, if phi = TRUE, then
we let D be the matrix of (aggregated) Pearson residuals divided by

√
N (i.e.

divided by the square root of the total number of observations).

Just as correspondence analysis, correspondence regression computes the Sin-
gular Value Decomposition of D:

D = USVT

The matrix U contains scores/coordinates for the explanatory (X) categories and
the matrix V contains scores/coordinates for the response (Y) categories, which
both depend on the value of the argument rel. The diagonal matrix S contains
the so-called singular values, which are the square roots of the eigenvalues. In
other words, the eigenvalues are the diagonal values of S2.

24

If rel = FALSE, then the matrices U and V contain the standardized scores/
coordinates of the X and Y categories, respectively. The matrix U has a row for
every possible combination in X, so the more general categories (i.e. the main
categories and/or the lower-order interactions) are obtained by aggregating the
appropriate rows of U. If rel = TRUE, then the standardized scores/coordinates
are computed by dividing the rows of U and V by the square roots of the corre-
sponding total frequencies of the X and Y categories, respectively. More specifi-
cally, let r be (the vector of) the total frequencies of all X categories and let c be
(the vector of) the total frequencies of the Y categories (they are, of course, also
the row and column totals of the original cross table of X and Y). Then the stan-

dardized scores/coordinates of the X categories are obtained with diag
(

1√
r

)
∗U

and the standardized scores/coordinates of the Y categories are obtained with

diag
(

1√
c

)
∗ V. Again, the U matrix only contains rows for every possible com-

bination of the X variables, so the score/coordinate of a more general category
can be obtained by aggregating the appropriate rows of U as well as summing
the corresponding totals in r and multiplying these two. In other words, if the
aggregated rows in U for a certain lower-order category be denoted as U+ and
the corresponding sum of the totals be denoted as r+, then the standardized

score/coordinate of the lower-order category is diag
(

1√
r+

)
∗ U+.

The scores/coordinates which are actually outputted finally also depend on
the argument std (as was explained in Sextion 2.1). If std = TRUE, then the
scores/coordinates in the output for both the X and the Y categories are the
standardized scores/coordinates, which were just discussed. If std = FALSE,
then the output contains the so-called principal scores/coordinates, which are
computed by multiplying the standardized scores/coordinates of both X and Y

by the matrix S.

The contributions of the points to the axes as well as the contributions from
the axes to the points can also be obtained from the matrices U, S and V. The
contributions of the points to the axes (i.e. the ‘absolute contributions’) for the
X categories are in the columns of the matrix U2, which each sum to 1. In other
words, for each latent axis, the contributions of the X categories to the axis are
shown in the columns of U2. Likewise, the contributions of the points to the axes
of the Y categories are in the columns of V2. The contributions of the axes to
the points (i.e. the ‘squared correlations’) involve some matrix multiplication,
so that the contributions can be read from the rows of the resulting matrices.
For the X categories, the contributions of the axes to the points are in the rows
of:

(US)2 ∗ diag

(
1∑

k(US)2ik

)
For the Y categories, the contributions of the axes to the points can be obtained
in the same fashion as the rows of:

(VS)2 ∗ diag

(
1∑

k(VS)2jk

)

25

Appendix 2: The computation of confidence re-
gions

As has been mentioned multiple times in this tutorial, the corregp() function
is able to compute confidence regions for its results by means of a bootstrap
procedure; in particular, this is Monte Carlo simulation. Bootstrapping/
Simulation involves generating many (i.e. b) new, replicated samples by sam-
pling the observed data set with replacement (the replicated samples always have
the same size N as the observed data set). The details of the replication depend
on the argument b scheme of the corregp() function. The default is to arrange
the data in a frequency table (by crossing the response variable Y with all com-
binations of the explanatory variables in X, sometimes extended to a three-way
frequency table in case of conditional variables in part) and to take the individ-
ual cell counts (divided by N) as the estimates of the cell probabilities. These
estimated cell probabilities and the sample total N are passed as arguments to
the built-in R function rmultinom(), which generates b new random multino-
mial data samples. These are the replications/simulations of the observed data
set. Because this approach treats the frequency table as one overall multinomial
variable, it is called multinomial sampling.

The alternative is product-multinomial sampling which creates the same fre-
quency table but which only uses the response categories in Y as a multinomial
variable. The combination categories of the X variable(s) are treated as separate
observations of that multinomial variable. That means that the cell probabili-
ties are estimated for each combination category in X by dividing by the total
frequency of that combination category. Replication/simulation is still subse-
quently done with the function rmultinom() in order to get b random replicates
of the original data table.

In either sampling scheme, each of the replicated tables lead to bootstrap/
simulated replicates of the matrices U, S and V. This is done, in particular,
by means of the partial bootstrap procedure, which is outlined in Alvarez et al.
(2002; 2004; 2006) and Lebart (2004). The partial bootstrap makes use of the
fact that the formula for the Singular Value Decomposition (see Appendix 1
above) can be rewritten into formulas for U, S and V themselves. By substitut-
ing a specific bootstrap/simulated table for the observed table in the application
of these formulas, the bootstrap/simulated replicates of the U, S and V matri-
ces can be obtained (in other words, these are computed in the same way as
supplementary points in correspondence analysis). More specifically, denote the
Pearson residuals of a particular bootstrap/simulated table as D∗. Then, the
bootstrap/simulated replicate of the matrix U, which will be denoted as U∗, can
be derived as follows:

U∗ = D∗VS−1

Similarly, the bootstrap/simulated replicate of V, denoted as V∗, is obtained as:

V∗ = D∗TUS−1

26

Finally, the bootstrap/simulated replicate of S (hence, of the eigenvalues), de-
noted as S∗, can be computed as:

S∗ = UTD∗V

If one repeats this for all the b bootstrap/simulated tables, then one gets b

replicates of the matrices U∗, S∗ and V∗, with which the confidence regions can
be calculated, as explained in Section 2.3.

Some applications of correspondence regression have shown that the
corregp() function is not always able to handle very large data sets well. Con-
sequently, there is now the function corregplicate() which repeats corregp()
a number of times specified by the extra argument r (in other words,
corregplicate() is essentially a wrapper for replicate(r, corregp, ...)).
That means, of course, that the number of replications/simulations in e.g.
corregplicate(..., b = 1000, r = 5, ...) is equal to that of
corregp(..., b = 5000). Therefore, one can use corregplicate() when cer-
tain (large) values of b present problems for corregp: it suffices to reduce b

and choose a value for r so that their product equals the desired number of
replications/simulations (see help(corregplicate)).

Bibliography

Adler, D., D. Murdoch and others (2017) rgl: 3D Visualization Using OpenGL.
R package version 0.98.1.
https://CRAN.R-project.org/package=rgl.

Alvarez, R., M. Becue, J.J. Lanero and O. Valencia (2002) Results stability in
textual analysis: Its application to the study of Spanish investiture speeches
(1979-2000). Proceedings of the Journees internationales d’Analyse statistique
des Donnees Textuelles 2002, 1–12.

Alvarez, R., M. Becue and O. Valencia (2004) Etude de la stabilite des valeurs
propres de l’AFC d’un tableaux lexical au moyen de procedures de reechantil-
lonage. Proceedings of the Journees internationales d’Analyse statistique des
Donnees Textuelles 2004, 42–51.

Alvarez, R., M. Becue and O. Valencia (2006) Partial bootstrap in CA: correc-
tion of the coordinates. Application to textual data. Proceedings of the Journees
internationales d’Analyse statistique des Donnees Textuelles 2006, 43–53.

Darroch, J.N. (1974) Multiplicative and additive interaction in contingency ta-
bles. Biometrika 61 (2), 207–214.

Escofier, B. (1984) Analyse factorielle en reference a un modele: Application a
l’analyse de tableaux d’echanges. Revue de Statistique Appliquee 32 (4), 25–36.

Fisher, R.A. (1940) The precision of discriminant functions. Annals of Eugenics
10 (1), 422–429.

27

Gilula, Z. and S.J. Haberman (1988) The analysis of multivariate contingency
tables by restricted canonical and restricted association models. Journal of the
American Statistical Association 83 (403), 760–771.

Greenacre, M. (2017) Correspondence analysis in practice, Third edition. Boca
Raton: Chapman and Hall/CRC.

Hirschfeld, H. O. (1935) A connection between correlation and contingency.
Proceedings of the Cambridge Philosophical Society 31 (4), 520–524.

Kroonenberg, P.M. and C.J. Anderson (2006) Additive and multiplicative mod-
els for three-way contingency tables: Darroch (1974) revisited. In: M. Greenacre
and J. Blasius (eds), Multiple Correspondence Analysis and Related Methods.
Boca Raton: Chapman and Hall/CRC, 455–502.

Lebart, L. (2004) Validite des visualisations de donnees textuelles. Proceedings
of the Journees internationales d’Analyse statistique des Donnees Textuelles
2004, 708–715.

Murdoch, D. and E.D. Chow (2013) ellipse: Functions for drawing ellipses and
ellipse-like confidence regions. R package version 0.3-8.
https://CRAN.R-project.org/package=ellipse.

Soetaert, K. (2014) diagram: Functions for visualising simple graphs (networks),
plotting flow diagrams. R package version 1.6.3.
https://CRAN.R-project.org/package=diagram.

Van der Heijden, P.G.M., A. De Falguerolles and J. De Leeuw (1989) A combined
approach to contingency table analysis using correspondence analysis and log-
linear analysis. Applied Statistics 38 (2), 249–292.

Venables, W.N. and B.D. Ripley (2002) Modern applied statistics with S. New
York: Springer.

28

