Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This is a basic example which shows how to run simulations from a CRM with a 2-parameter logistic regression model, using a log normal prior distribution, and custom cohort size, stopping and maximum increments rules:
library(crmPack) # Define the dose grid. empty_data <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100)) # Initialize the CRM model. model <- LogisticLogNormal( mean = c(-0.85, 1), cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2), ref_dose = 56 ) # Choose the rule for selecting the next dose. my_next_best <- NextBestNCRM( target = c(0.2, 0.35), overdose = c(0.35, 1), max_overdose_prob = 0.25 ) # Choose the rule for the cohort size. my_size_1 <- CohortSizeRange( intervals = c(0, 30), cohort_size = c(1, 3) ) my_size_2 <- CohortSizeDLT( intervals = c(0, 1), cohort_size = c(1, 3) ) my_size <- maxSize(my_size_1, my_size_2) # Choose the rule for stopping. my_stopping_1 <- StoppingMinCohorts(nCohorts = 3) my_stopping_2 <- StoppingTargetProb( target = c(0.2, 0.35), prob = 0.5 ) my_stopping_3 <- StoppingMinPatients(nPatients = 20) my_stopping <- (my_stopping_1 & my_stopping_2) | my_stopping_3 # Choose the rule for dose increments. my_increments <- IncrementsRelative( intervals = c(0, 20), increments = c(1, 0.33) ) # Initialize the design. design <- Design( model = model, nextBest = my_next_best, stopping = my_stopping, increments = my_increments, cohort_size = my_size, data = empty_data, startingDose = 3 ) # Define the true function. my_truth <- function(dose) { alpha0 <- 7 alpha1 <- 8 ref_dose <- 56 stand_log_dose <- log(dose / ref_dose) plogis(alpha0 + alpha1 * stand_log_dose) } # Run the simulation on the desired design. # We only generate 1 trial outcome here for illustration, for the actual study # this should be increased of course. options <- McmcOptions( burnin = 100, step = 1, samples = 2000 ) time <- system.time(my_sims <- simulate(design, args = NULL, truth = my_truth, nsim = 1, seed = 819, mcmcOptions = options, parallel = FALSE ))[3]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.