Nothing
# Error functions
#
# Functions measuring the accuracy between original and predicted data. Can
# be used as target functions for e.g. optimization routines which minimize the
# error term.
#
# The following error functions are available:
# * Mean Absolute Error (MAE)
# * Normalized Mean Absolute Error (NMAE)
# * Root Mean Square Error (RMSE)
# * Normalized Root Mean Square Error (NRMSE)
# * Symmetric Mean Absolute Percentage Error (SMAPE)
# * Sum of Squared Errors (SSE)
#
# @rdname errfun
# @param orig numeric vector of original data points
# @param pred numeric vector of predicted data points
# @return numeric error term
# @examples
# # Mean Absolute Error
# mae(1:5, 1:5+0.1)
# # Sum of Squared Errors
# sse(1:5, 1:5+0.1)
# Mean Absolute Error
mae <- function(orig,pred) {
sum(abs(orig - pred)) / length(orig)
}
# Normalized Mean Absolute Error
# @rdname errfun
# @export
nmae <- function(orig, pred) {
m <- mean(orig, na.rm=TRUE)
mae(orig, pred)/ifelse(m == 0, 1, m)
}
# Root Mean Square Error
# @rdname errfun
# @export
rmse <- function(orig, pred) {
sqrt(sum((orig - pred)^2) / length(orig))
}
# Normalized Root Mean Square Error
# @rdname errfun
# @export
nrmse <- function(orig, pred) {
rmse(orig, pred)/ifelse(mean(orig) == 0, 1, mean(orig))
}
# Symmetric Mean Absolute Percentage Error
# @rdname errfun
# @export
smape <- function(orig,pred) {
100 / length(orig) * sum(2 * abs(pred - orig) / (abs(orig) + abs(pred)))
}
# Sum of squared errors
# @rdname errfun
# @export
sse <- function(orig, pred) {
sum((orig - pred)^2, na.rm = TRUE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.